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Background: Immunogenic cell death (ICD) characterized by the release of damage-associated molecular 
patterns (DAMPs) from dying cancer cells may contribute to the synergistic antitumor effect of cytotoxic 
chemotherapy combined with an immune checkpoint inhibitor. The kinetics of circulating DAMP levels in 
cancer patients have remained largely uncharacterized, however. 
Methods: We evaluated the possible effects of various systemic anticancer therapy modalities on the 
kinetics of plasma DAMP concentrations in a prospective observational study of patients with advanced lung 
cancer. The plasma concentrations of high-mobility group box 1 (HMGB1), calreticulin (CRT), heat shock 
protein 70 (HSP70), annexin A1, and histone H3 were thus determined in 121 such patients at four time 
points during the first cycle of treatment. 
Results: The mean of the maximum fold change in HMGB1, HSP70, or annexin A1 concentration 
observed during treatment was significantly greater than the corresponding baseline value (P<0.005). 
The maximum fold changes in HMGB1 and CRT concentrations tended to be associated with clinical 
response as evaluated by RECIST criteria, although the changes in the levels of these two DAMPs were 
not correlated, suggestive of differential induction mechanisms. Among the various treatment modalities 
administered, platinum-based combination or single-agent chemotherapy tended to elicit robust increases in 
the concentrations of HMGB1 and CRT. 
Conclusions: Serial monitoring of plasma revealed that systemic anticancer therapy increased the 
circulating levels of HMGB1 and CRT and that these changes tended to be associated with clinical response, 
suggesting that agents capable of releasing these DAMPs into plasma might induce ICD in advanced lung 
cancer patients. 
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Introduction

Lung cancer is the leading cause of cancer-related mortality 
worldwide and has a poor prognosis (1). The standard 
treatments for advanced non-small cell lung cancer and 
small cell lung cancer have changed markedly over the 
last decade, however (2). Several recent phase 3 studies 
have revealed that platinum (cisplatin or carboplatin)-
based combination chemotherapy together with immune 
checkpoint inhibitors including antibodies to programmed 
cell death-1 (PD-1) or to its ligand PD-L1 confers 
a significantly longer overall survival compared with 
chemotherapy alone in individuals with advanced lung 
cancer (3-6). Such synergistic effects have been proposed to 
be attributable in part to the induction of immunogenic cell 
death (ICD) (7), a type of regulated cell death that results 
in the activation of a secondary adaptive immune response 
to tumor-associated antigens. ICD has been characterized 
by the release or exposure on the cell surface of a defined 
set of molecules that are known as damage-associated 
molecular patterns (DAMPs) (8,9) and which include high-
mobility group box 1 (HMGB1), calreticulin (CRT), heat 
shock protein 70 (HSP70), and annexin A1 (8,10). Histone 
H3 has also been shown to function as a DAMP, or alarmin, 
in inflammatory conditions (11,12). Recent preclinical 
studies have indicated that several chemotherapeutic agents 
stimulate an antitumor immune response by triggering 
DAMP-related ICD in addition to exerting direct 
cytotoxicity (7,13-15). 

An approach to evaluation of ICD in cancer patients 
undergoing anticancer therapy has not been well 
established (9). Although immunohistochemical detection 
of DAMPs as ICD-associated biomarkers in surgically 
resected tumor specimens has provided prognostic 
indications under certain circumstances (16,17), this 
procedure is not applicable to patients with inoperable or 
recurrent tumors and is not suitable for repeat assessments. 
The establishment of an approach to the detection of 
surrogate ICD biomarkers that is safer, easier to perform, 
and more amenable to repeated evaluation is thus urgently 
needed. As such an approach, we have focused on sampling 
of peripheral blood for measurement of DAMPs in patients 
with advanced lung cancer. Evidence for the practicality of 
this approach has been provided by the previous findings 
that an enzyme-linked immunosorbent assay (ELISA) 
was able to detect a preoperative chemoradiation-induced 
increase in the serum level of HMGB1 in patients with 
esophageal squamous carcinoma (17), and that the serum 

concentration of CRT was higher in patients with lung 
cancer (18) or rheumatoid arthritis (19) than in healthy 
control individuals. However, little information has been 
available with regard to the kinetics of DAMP levels, 
especially those in peripheral blood during the early phase 
of anticancer therapy in advanced cancer patients, as well 
as with regard to the relation of such kinetics to clinical 
response. 

We have now conducted a prospective observational 
study to investigate the possible effects of systemic 
anticancer therapy—including platinum-based combination 
chemotherapy, concurrent chemoradiotherapy (CCRT), 
single-agent chemotherapy, and molecularly targeted 
therapy [tyrosine kinase inhibitors (TKIs) specific for the 
epidermal growth factor receptor (EGFR) or anaplastic 
lymphoma kinase (ALK)]—on the plasma levels of DAMPs 
including HMGB1, CRT, HSP70, annexin A1, and histone 
H3 in 121 individuals with advanced lung cancer. We 
also examined the relation between the extent of any such 
changes and clinical outcome.

We present the following article in accordance with the 
STROBE reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-21-92). 

Methods

Patients and sample collection

We conducted a prospective observational study of 
treatment-naïve or previously treated patients with advanced 
(stage III or IV according to the 8th edition of the TNM 
classification) or recurrent lung cancer who underwent 
a first cycle of systemic anticancer therapy—including 
cytotoxic chemotherapy [such as platinum (cisplatin or 
carboplatin) doublet chemotherapy and single-agent 
chemotherapy (including docetaxel, pemetrexed, and S-1 
among others)], CCRT (cisplatin- or carboplatin-based), or 
molecularly targeted therapy with an EGFR-TKI or ALK-
TKI—at Kyushu University Hospital between February 
2019 and March 2020. The concentrations of DAMPs 
were measured in plasma collected at four time points: 
immediately before and on days 3 and 8 after the onset of 
the first cycle of treatment as well as immediately before the 
second treatment cycle. The best clinical response observed 
after the first or second cycle of treatment was defined 
according to the Response Evaluation Criteria in Solid 
Tumors (RECIST, version 1.1). The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
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in 2013). It was approved by the Ethics Committee of 
Kyushu University and Kyushu University Hospital (IRB: 
30-434), and informed consent was taken from all individual 
participants.

ELISAs

The concentration of HMGB1 in plasma was measured 
with an ELISA kit (#326054329; Shino-Test Corp., 
Sagamihara-shi, Japan) (20). The plasma concentration of 
histone H3 was also measured with an ELISA kit (Shino-
Test Corp.) as recently described (21,22). The plasma 
levels of CRT (#ELH-CALR-1; RayBiotech, Peachtree 
Corners, GA), HSP70 (#KE00059; Proteintech, Tokyo, 
Japan), and annexin A1 (#EK1745; Boster Biological 
Technology, Pleasanton, CA) were similarly quantified 
with ELISA kits.

Statistical analysis

Statistical analysis was performed with GraphPad Prism 
5.0d software (GraphPad Software, San Diego, CA; RRID: 
SCR_002798). Changes in plasma DAMP levels were 
evaluated with the paired t test, one-way analysis of variance 
(ANOVA), repeated-measures ANOVA, or Pearson’s 
correlation analysis, as indicated. A P value of <0.05 was 
considered statistically significant.

Results

Patient characteristics

A total of 121 individuals with advanced lung cancer 
scheduled to receive systemic anticancer therapy was 
enrolled. The baseline characteristics of the study patients 
are shown in Table 1. The median age was 67 years (range, 
31–89 years), and 88 (73%) patients were male. Seventy 
(58%) patients had adenocarcinoma, 18 (15%) squamous 
cell carcinoma, and 24 (20%) small cell lung cancer, and 
83 (69%) patients had stage IV disease. With regard to 
treatment modalities, 59 (49%) patients received platinum 
(cisplatin or carboplatin) doublet chemotherapy, 28 (23%) 
single-agent chemotherapy (docetaxel, pemetrexed, 
or S-1 among others), 23 (19%) CCRT (cisplatin- or 
carboplatin-based), and 11 (9%) an EGFR-TKI (erlotinib 
or osimertinib) or ALK-TKI (alectinib, crizotinib, or 

Table 1 Characteristics and treatment regimens of the study 
patients (n=121, 100%)

Characteristic n [%]

Median age [range], years 67 [31–89]

Sex

Male 88 [73]

Female 33 [27]

Smoking history

Former or current 100 [83]

Never 21 [17]

ECOG performance status

0 26 [21]

1 88 [73]

2 or 3 7 [6]

Histology

Adenocarcinoma 70 [58]

Squamous cell carcinoma 18 [15]

NOS 9 [7]

Small cell lung cancer 24 [20]

Oncogenic driver

EGFR mutation 11 [9]

ALK rearrangement 4 [3]

Clinical stage at screening

III 38 [31]

IV 83 [69]

Number of prior treatment lines at screening

0 81 [67]

1 15 [12]

≥2 25 [21]

Systemic anticancer therapy regimens

Platinum doublet chemotherapy 59 [49]

Single-agent chemotherapy 28 [23]

CCRT 23 [19]

EGFR-TKI or ALK-TKI 11 [9]

ECOG, Eastern Cooperative Oncology Group; NOS, not 
otherwise specified; EGFR, epidermal growth factor receptor; 
ALK, anaplast ic lymphoma kinase; CCRT, concurrent 
chemoradiotherapy; TKI, tyrosine kinase inhibitors.
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brigatinib). 

Increased plasma DAMP levels during systemic anticancer 
therapy

We measured the plasma levels of five DAMPs (HMGB1, 
CRT, HSP70, annexin A1, and histone H3) at four 
serial time points including baseline (the day before 
the first cycle of systemic anticancer therapy), days 3 
and 8 of the first cycle, and the day before the second 
cycle of treatment (Figure S1). The fold changes in 
the concentrations of the five DAMPs during the first 
treatment cycle relative to the baseline value were 
determined (Figure 1A), with the fold changes in both 
HMGB1 and CRT levels at the three time points after 
treatment onset being substantially higher than the 
baseline value but those in HSP70 and annexin A1 
being only slightly higher (Figure 1B). The mean of the 
maximum fold change in HMGB1, HSP70, or annexin A1 
apparent after the onset of systemic anticancer therapy 
was significantly higher than that of the corresponding 
baseline value [1.00 vs. 3.15 (P=0.002), 1.00 vs. 1.57 
(P<0.0001), and 1.00 vs. 1.18 (P<0.0001), respectively] 
(Figure 1C). No corresponding significant difference was 
apparent for CRT and histone H3 levels [1.00 vs. 6.52 
(P=0.053) and 1.00 vs. 1.26 (P=0.60), respectively]. 

Association between changes in plasma DAMP levels and 
clinical response

We next evaluated the possible association between the 
maximum fold changes in plasma DAMP concentrations 
relative to baseline and clinical response as determined by 
RECIST criteria. Given that histone H3 was undetectable 
in plasma of 97 patients at baseline, it was excluded from 
this analysis. The maximum fold changes in both HMGB1 
and CRT levels for patients showing a complete or partial 
response were higher than those for patients showing stable 
disease [means ± SEM of 3.98±1.68 vs. 2.83±0.61 (P=0.75, 
Student’s t test) and 13.06±8.13 vs. 3.56±1.46 (P=0.28), 
respectively], which were in turn higher than those for 
patients with progressive disease [2.83±0.61 vs. 1.68±0.18 
(P=0.86) and 3.56±1.46 vs. 1.93±0.36 (P=0.98), respectively] 
(Figure 2A,B), whereas no such substantial differences 
were apparent for HSP70 and annexin A1 concentrations 
(Figure 2C,D). Although these results were not statistically 
significant, they suggested that clinical response might be 
associated with the maximum fold change in plasma levels 

of HMGB1 and CRT. 

Comparison of the maximum fold change in DAMP levels 
among systemic anticancer therapy modalities 

To identify the most effective inducers of ICD among 
systemic anticancer therapy modalities, we next compared the 
maximum fold changes in plasma DAMP levels for patients 
showing a complete (n=1) or partial (n=43) response. The 
mean values for the maximum fold change in HMGB1 levels 
were numerically greater in patients receiving platinum-based 
combination or single-agent chemotherapy than in those 
receiving CCRT or TKIs (Figure 3A). The maximum fold 
change in plasma CRT levels was greatest in patients treated 
with platinum-based combination chemotherapy (Figure 3B). 
There were no robust differences in the maximum changes 
in HSP70 or annexin A1 levels among treatment modalities 
(Figure 3C,D). 

Correlation between maximum fold changes in plasma 
DAMP levels

Finally, we performed a correlation analysis for the 
maximum fold changes in the levels of HMGB1, CRT, 
HSP70, and annexin A1 in the total patient population 
(n=121). There were no significant correlations between 
maximum fold changes for HMGB1 versus those for CRT, 
HSP70, or annexin A1 (Figure 4A,B,C). In contrast, there 
was a significant correlation between maximum fold changes 
for HSP70 and either CRT or annexin A1, although not 
between those for CRT and annexin A1 (Figure 4D,E,F). 
Rates of concordance were examined for patients who 
showed a >2-fold increase in HMGB1 (n=34), CRT (n=34), 
or HSP70 (n=24) levels (Figure 4G), with this analysis not 
being performed for annexin A1 because only five patients 
showed such an increase. The rates of concordance for 
HMGB1, CRT, and HSP70; for HMGB1 and CRT; for 
HMGB1 and HSP70; and for CRT and HSP70 were 
11.3%, 21.0%, 24.2%, and 14.5%, respectively.

Discussion

We have here shown that the plasma concentrations of 
HMGB1, CRT, HSP70, and annexin A1 were substantially 
increased during anticancer therapy in a subset of 
individuals with advanced lung cancer. We also found that 
the extent of the change in the plasma levels of HMGB1 
or CRT tended to be associated with clinical response, 

https://cdn.amegroups.cn/static/public/TLCR-21-92-supplementary.pdf
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Figure 1 Dynamics of plasma DAMP levels in advanced lung cancer patients during the first cycle of systemic anticancer therapy. (A) Time 
course of the fold change in plasma concentrations (relative to baseline) of HMGB1, CRT, HSP70, annexin A1, and histone H3 in individual 
patients. Plasma samples were collected before and on days 3 and 8 after the onset of the first cycle as well as before the onset of the second 
cycle of treatment. (B) Fold change in the plasma levels of HMGB1, CRT, HSP70, annexin A1, and histone H3 during the first treatment 
cycle relative to baseline. Data are means + SEM. The P values for differences in mean values were determined by repeated-measures 
ANOVA. (C) Comparison of baseline values and maximum values after the onset of the first cycle of treatment for the fold change in plasma 
levels of the five DAMPs. The numbers of patients showing a >2-fold increase were 34, 34, 24, 5, and 3 for HMGB1, CRT, HSP70, annexin 
A1, and histone H3, respectively. CRT and histone H3 were undetectable at baseline in 10 and 97 patients, respectively, and these patients 
were excluded from the analysis. The P values for differences in mean values were determined with the paired t test. DAMP, damage-
associated molecular pattern; HMGB1, high-mobility group box 1; CRT, calreticulin; HSP70, heat shock protein 70; SEM, standard error 
of the mean; ANOVA, analysis of variance. 

suggesting that the increased concentrations of HMGB1 
and CRT in plasma may reflect the extent of ICD induction 
by the systemic anticancer therapy. A significant correlation 
was not apparent between the maximum fold changes 
in plasma HMGB1 and CRT levels, suggesting that the 
mechanisms by which HMGB1 and CRT are released from 
dying cancer cells may differ.

HMGB1 is a nuclear protein that associates with DNA 
and acts as an architectural chromatin-binding factor. 
During cell death, it is translocated from the nucleus to the 
cytoplasm and then released into the extracellular space in 
soluble form (23). Released HMGB1 in the extracellular 

environment binds to the receptor for advanced glycation 
end products (RAGE) and Toll-like receptors 2 and 
4 and acts as a multifunctional alarmin to orchestrate 
immune activity (24). CRT has been implicated in various 
physiological and pathological processes in cells (25). The 
translocation of CRT from the endoplasmic reticulum to 
the cell surface and its consequent exposure are thought 
to be triggered by reactive oxygen species or endoplasmic 
reticulum stress (26). Extracellular CRT has also been 
detected at late stages of apoptosis in cancer cells as a 
result of passive extracellular release (27). In addition to 
differences in the mechanisms underlying their release 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/advanced-glycation-end-product-receptor
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/advanced-glycation-end-product-receptor
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/toll-like-receptor-2
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fold change in HMGB1 (A), CRT (B), HSP70 (C), or annexin A1 (D) levels is shown as the mean + SEM for patients classified according 
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from dying cells, differences in the effects of the various 
modalities of anticancer treatment administered and in the 
background of the lung cancer patients studied may also 
have contributed to the absence of a correlation between 
the maximum fold changes in plasma HMGB1 and CRT 
levels. Although the relevance of the intervention-induced 
increase in the circulating concentrations of HMGB1 or 
CRT to systemic antitumor immunity in advanced cancer 
patients remains to be verified, our present findings suggest 
that measurement of the kinetics of HMGB1 and CRT in 
plasma may be a safer and more repeatable approach to the 
evaluation of ICD compared with the collection of tumor 
tissue by biopsy.

We also found that the maximum plasma levels of HSP70 

and annexin A1 after the onset of systemic anticancer 
therapy were significantly higher than the levels at baseline. 
In contrast to HMGB1 and CRT, however, the maximum 
fold changes in plasma HSP70 and annexin A1 did not 
appear to be related to clinical response or the modality 
of anticancer treatment. It is possible that this difference 
may be attributable in part to the release of HSP70 and 
annexin A1 from normal cells such as endothelial cells (28) 
and macrophages (29) rather than from collapsing tumor 
cells. The fact that the serum levels of both HSP70 (30) and 
annexin A1 (31) were previously found to be significantly 
higher in untreated lung cancer patients than in healthy 
individuals may also account in part for the lack of an 
association between the maximum fold changes in the plasma 
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Figure 3 Maximum fold changes in plasma DAMP concentrations according to anticancer treatment modality. The maximum fold change 
in HMGB1 (A), CRT (B), HSP70 (C), or annexin A1 (D) levels is shown as the mean + SEM for patients with a CR (n=1) or a PR (n=43). 
Treatment modalities included platinum doublet chemotherapy (n=22), single-agent chemotherapy (n=3), CCRT (n=11), and EGFR- 
or ALK-TKIs (n=8). CRT was undetectable at baseline in four patients receiving platinum doublet chemotherapy, one receiving single-
agent chemotherapy, and two receiving CCRT, and these patients were excluded from the analysis. The P values for differences in mean 
values were determined by one-way ANOVA. DAMP, damage-associated molecular pattern; HMGB1, high-mobility group box 1; CRT, 
calreticulin; HSP70, heat shock protein 70; SEM, standard error of the mean; CR, complete response; PR, partial response; CCRT, 
concurrent chemoradiotherapy; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; TKI, tyrosine kinase inhibitor; 
ANOVA, analysis of variance.

levels of these proteins and clinical response. With regard 
to histone H3, it was essentially undetectable in the plasma 
of most patients, suggesting that it may not be relevant to 
cancer biology but rather related to other morbid conditions 
such as infection. Indeed, one patient who achieved a partial 
response showed a rapid decrease in the plasma concentration 
of histone H3 between before and day 3 after the onset of 
the first cycle of chemotherapy. Before treatment onset, this 
patient had experienced infection associated with an increased 
C-reactive protein level and had undergone intravenous 
infusion of antibiotics for 7 days that led to resolution of his 
symptoms. The high initial circulating level of histone H3 
in this patient may thus have been related to the infection, 

and its decline during systemic anticancer therapy may have 
reflected amelioration of the inflammatory pathophysiology 
of infection, consistent with a previous finding (22).

Among the therapeutic modalities administered to 
the study patients, we found that platinum combination 
chemotherapy was associated with greater maximum 
fold changes in the plasma levels of HMGB1 and CRT 
compared with CCRT or TKI therapy, suggesting that it 
may be superior to these latter modalities with regard to 
the promotion of antitumor immunity. Indeed, preclinical 
studies of mouse models have shown that cytotoxic 
chemotherapeutic agents induce ICD associated with 
the release of DAMPs, which then function as adjuvants 
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to enhance the antitumor immune response (15,32-34). 
Among various chemotherapeutic agents recently tested 
either alone or in combination, cisplatin alone was found to 
be most effective at inducing the release of ICD-associated 
DAMPs from A549 lung cancer cells in vitro, suggesting 
that the pairing of cisplatin with immunotherapy may be 
a promising treatment strategy for lung cancer (35). This 
previous study also suggested that derivation of a DAMP 
index of immunogenicity by mathematical integration 
might prove useful as a measure of the extent of ICD for 
comparison with clinical parameters such as the response 
to anticancer therapies (35). Our results suggest that a 
DAMP index based on the treatment-induced increases in 
the plasma levels of HMGB1, CRT, HSP70, and annexin 
A1 may prove helpful in this regard, although a study with 
a larger patient population will be necessary to evaluate 
this notion. Although assessment of the circulating levels 
of individual DAMPs is important, it will also be essential 
to investigate whether these levels are sufficient to activate 
antigen presenting cells such as dendritic cells in cancer 
patients during anticancer therapy.

The fact that CCRT was not associated with a substantial 
increase in the plasma levels of HMGB1 or CRT might 
be due to a relatively small extent of tumor destruction, 
given that CCRT is administered to patients with stage 
III non-small cell lung cancer, whose tumor burden is 
generally lower than that of those with stage IV lung 
cancer. Alternatively, it is possible that the time points at 
which plasma was collected for analysis might not have been 
appropriate to detect a peak in the plasma levels of HMGB1 
or CRT during treatment with CCRT. Other limitations 
of the present study include its relatively small sample 
size, which may have rendered it underpowered to detect 
significant differences. In addition, the enrolled patients 
were diverse with regard to tumor histology and systemic 
anticancer therapy modalities.

Conclusions

In summary, we have shown that systemic anticancer 
therapy—in particular, platinum-based combination 
chemotherapy—was associated with marked increases in 
the plasma concentrations of HMGB1 and CRT that were 
apparent within the first week of treatment in patients with 
advanced lung cancer, and that the maximum fold changes 
in the circulating levels of these DAMPs tended to be 
associated with clinical response. Our findings suggest that 
patients with elevated DAMP levels in plasma who respond 

to anticancer therapy may experience robust ICD that 
boosts anticancer immunity and thereby contributes to the 
control of tumor growth. Serial monitoring of DAMPs in 
plasma during systemic anticancer therapy may be helpful 
for the development of novel combination regimens for 
cancer immunotherapy. We are currently performing 
a prospective observational study to investigate the 
relation between changes in the plasma levels of DAMPs 
including inflammatory cytokines and the clinical benefit 
of chemotherapy combined with immune checkpoint 
inhibitors.
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