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Abstract 

Background:  Trauma-induced coagulopathy (TIC) is a disorder that occurs in one-
third of severely injured trauma patients, manifesting as increased bleeding and a 4X 
risk of mortality. Understanding the mechanisms driving TIC, clinical risk factors are 
essential to mitigating this coagulopathic bleeding and is therefore essential for saving 
lives. In this retrospective, single hospital study of 891 trauma patients, we investigate 
and quantify how two prominently described phenotypes of TIC, consumptive coagu-
lopathy and hyperfibrinolysis, affect survival odds in the first 25 h, when deaths from 
TIC are most prevalent.

Methods:  We employ a joint survival model to estimate the longitudinal trajectories 
of the protein Factor II (% activity) and the log of the protein fragment D-Dimer ( µg/
ml), representative biomarkers of consumptive coagulopathy and hyperfibrinolysis 
respectively, and tie them together with patient outcomes. Joint models have recently 
gained popularity in medical studies due to the necessity to simultaneously track 
continuously measured biomarkers as a disease evolves, as well as to associate them 
with patient outcomes. In this work, we estimate and analyze our joint model using 
Bayesian methods to obtain uncertainties and distributions over associations and 
trajectories.

Results:  We find that a unit increase in log D-Dimer increases the risk of mortality by 
2.22 [1.57, 3.28] fold while a unit increase in Factor II only marginally decreases the risk 
of mortality by 0.94 [0.91,0.96] fold. This suggests that, while managing consumptive 
coagulopathy and hyperfibrinolysis both seem to affect survival odds, the effect of 
hyperfibrinolysis is much greater and more sensitive. Furthermore, we find that the lon-
gitudinal trajectories, controlling for many fixed covariates, trend differently for different 
patients. Thus, a more personalized approach is necessary when considering treatment 
and risk prediction under these phenotypes.

Conclusion:  This study reinforces the finding that hyperfibrinolysis is linked with poor 
patient outcomes regardless of factor consumption levels. Furthermore, it quanti-
fies the degree to which measured D-Dimer levels correlate with increased risk. The 
single hospital, retrospective nature can be understood to specify the results to this 
particular hospital’s patients and protocol in treating trauma patients. Expanding to a 
multi-hospital setting would result in better estimates about the underlying nature of 
consumptive coagulopathy and hyperfibrinolysis with survival, regardless of pro-
tocol. Individual trajectories obtained with these estimates can be used to provide 
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personalized dynamic risk prediction when making decisions regarding management 
of blood factors.

Keywords:  Early trauma survival risk, Longitudinal models, Joint models, Clinical panel 
data, D-Dimer, Factor II

Background
Coagulopathy (as defined here) is a condition in which blood fails to properly form 
robust clot. Following injury and shock from a major trauma, patients become coagu-
lopathic, coinciding with increased bleeding, higher resuscitation requirements and 
much higher rates of death [1–3]. However, despite the increased urgency for treat-
ment, the complexity of the underlying coagulation system makes understanding and 
diagnosis of trauma-induced coagulopathy (TIC) extremely difficult, especially in a 
clinical setting with so much interpatient and intrapatient variability. The main objec-
tive of this study is to quantify the level to which markers of two possible mechanisms 
of TIC affect survival odds, accounting for patient variability, and to understand what 
this tells us about possible targets for intervention.

The coagulation system and coagulopathy

The standard model for the coagulation system consists of two distinct physical pro-
cesses: coagulation (clot formation) and fibrinolysis (clot breakdown). Coagulation is 
the process by which a sequence of protein interactions ultimately leads to the for-
mation of cross-linked fibrin clots, which physically block off a wound site [4]. To 
balance this process, fibrinolysis breaks down fibrin clots and produces fibrin degra-
dation products, which are then flushed out of the system. Properly regulated, these 
two systems prevent excessive bleeding. A schematic is shown in Fig. 1.

Malfunctions in the coagulation system lead to the inability to form clots or to 
keep clots in place, resulting in excessive bleeding at the wound site. Several hypoth-
eses exist to explain the driving factors of TIC [6, 7]. Two important coagolopathic 
conditions are consumptive coagulopathy and hyperfibrinolysis. Consumptive 
coagulopathy focuses on the inability to form fibrin clots, due to a lack of necessary 
pro-coagulants, while hyperfibrinolysis emphasizes the inability to keep a sufficient 
number of fibrin clots active due to overactive fibrinolysis. Though the mechanisms 
are different, both manifest as increased, uncontrollable bleeding at the wound, often 
through a complex interdependent mechanism.

In this study we used data collected from trauma patients to quantify how these 
two mechanisms may be realized in patient survival odds. We chose Factor II and 
D-Dimer as representative biomarkers of consumptive coagulopathy and hyperfi-
brinolysis respectively. Factor II, or prothrombin, is a protein that is converted into 
thrombin in the coagulation cascade [8]. Thrombin is the central protein in the 
coagulation cascade, responsible for forming fibrin clots and activating platelets to 
essentially seal a wound. On the other hand, D-Dimer is a fibrin degradation product 
created when plasmin breaks down fibrin clots. We fit a joint survival model to this 
data and examined the distribution of patient longitudinal curves and the hazards of 
both longitudinal covariates.
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Methods
Dataset

Our dataset consists of severely injured patients admitted to the ICU at the UCSF 
Level I Trauma Center. Upon admission, age, sex, injury severity score, injury type, 
and the presence of a traumatic brain injury, in addition to many other measurements, 
were recorded. Blood draws were attempted for each patient at hours close to 0, 2, 3, 
4, 6, 12, and 24 as measured from admission. The time and outcome of each patient 
was recorded post dispatch. From each blood draw, a variety of coagulation activity 
levels were measured, of which only the protein Factor II (% activity) and the protein 
fragment D-Dimer ( µg/ml) were used in this analysis, for the aformentioned reasons. 
Blood assays were conducted using the Stago Compact Analyzer (Diagnostica Stago, 
Parsippany, NJ) according to manufacturer instructions. For D-Dimer, the upper 
limit normal value is ∼0.5 µg/ml [9] while for Factor II standard operating range falls 
within 50–200% activity. The hour 0 measurements of most patients fell within these 
values though with a slight skew due to the nature of the dataset. Patients with no 
Factor II or D-Dimer measurements were omitted. Post pre-processing, a total of 891 
patients remained with 2062 longitudinal observations. In this work we define out-
come as survival at hour 25, which is on the order of when deaths from TIC are most 
prevalent [10]. Past this window, many patients die from other causes such as sepsis. 
From a survival analysis perspective, patients were considered censored if death was 
not recorded within the observation window. A summary of the distributions in the 
data are presented in Table 1.

Fig. 1  The coagulation cascade and fibrinolysis [5]. The coagulation cascade is responsible for formation of a 
fibrin clot, while fibrinolysis is resposible for breaking down fibrin clots. Balance in the system is crucial for the 
regulation of overall coagulation
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Statistical model

To uncover the effects of Factor II and D-Dimer on early trauma survival, we employ a 
joint survival model [11–13]. Joint survival models relate the effects of time-dependent 
covariates, such as measured clinical biomarkers, on time-to-event data, such as death, 
accounting for irregular measurement times and intrinsic measurement variability. 
Recently, joint survival models have been used to study survival in a variety of other dis-
eases [14, 15]. In particular, they have gained prominence due to their ability to robustly 
model how the continuous evolution of biomarkers affects survival. In the following, we 
describe the two subcomponents of the joint model: the longitudinal submodels and the 
survival submodel. We note that for applying this model, we first apply the base-2 log to 
values of D-Dimer and henceforth refer to this quantity as log D-Dimer.

Longitudinal submodels

The longitudinal submodels describe how each time-dependent covariate evolves over 
the observation window. By explicitly specifying the form, as opposed to naively imput-
ing values, we can account for measurement variability when associating the covariate to 
the survival outcome. This has been shown to reduce bias in estimates [12] compared to 
traditional treatments of time-dependent covariates in survival models.

Table 1  Characteristics of cohort

Characteristic Estimate

Total number of individuals 891

Death within 24 h, n (%) 61 (6.8%)

Sex, n (%)

   Male 728 (81.7%)

Age, n (%)

   ≥ 15, < 20 58 (6.5%)

   ≥ 20, < 30 286 (32.1%)

   ≥ 30, < 40 170 (19.1%)

   ≥ 40, < 50 127 (14.3%)

   ≥ 50, < 60 115 (12.9%)

   ≥ 60, < 70 62 (6.9%)

   ≥ 70, < 80 42 (4.7%)

   ≥ 80 31 (3.5%)

Injury Severity Score, n (%)

   ≥ 0, < 10 344 (38.6%)

   ≥ 10, < 20 168 (18.9%)

   ≥ 20, < 30 192 (21.5%)

   ≥ 30, < 40 108 (12.1%)

   ≥ 40, < 50 25 (2.8%)

   ≥ 50, < 60 38 (4.3%)

   ≥ 60 16 (1.8%)

Trauma type, n (%)

   Penetrating 385 (43.2%)

   Blunt 506 (56.8%)

Traumatic brain injury, n (%) 343 (38.5%)
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Let yij(t) denote the measured activity level of coagulopathic biomarker j for patient i 
at time t. For our study, the longitudinal biomarkers Factor II and D-Dimer are modeled 
using generalized linear mixed effects models with grouping at the individual level. Spe-
cifically, we set yij(t) ∼ N (ηij(t), σF ) , with

the expected value of the respective marker at time t for patient i, and σF the estimated 
standard deviation. In this formulation, β0j and β1ij denote the population and individual 
level intercepts and β2j and β3ij denote the population level and individual level slopes. 
β4jk specifies the effect of the k-th fixed covariate on the j-th time-dependent biomarker. 
The included fixed covariates are age, sex, injury severity score, traumatic brain injury, 
and injury type, selected due to their relevance in other studies in this area. This is 
equivalent to fitting a regression line to each of the coagulopathic biomarkers.

Survival submodel

The survival submodel connects the longitudinal submodel to the observed patient out-
comes. We use the standard proportional hazards model. For each patient, we have a 
tuple (Ti,Di) indicating the time that the patient died or was censored and the binary 
outcome of death. Let hi(t) be the hazard function for the i-th patient at time t,

with h0(t) the baseline hazard function, αj the coefficient indicating the strength of the 
association between longitudinal covariate j and survival, and γk the strength of the asso-
ciation between fixed covariate k and survival. The baseline hazard h0(t) was selected to 
be a 6-th order B-Spline, as this choice offers maximum flexibility in fitting the unique 
survival curves of subgroups while avoiding overparameterization [16]. This hazard 
function at time t can be interpreted as the instantaneous rate at which the subject 
accumulates hazard toward the outcome, assuming that they have survived up to time 
t. Compared to standard time-dependent survival models, the hazard function depends 
on the expected value of the time dependent covariate, as opposed to the observed or 
imputed value. The hazard function is linked to the time of the outcome via the survival 
function

For interpretation, we observe the association strengths, α , which indicate the change in 
survival odds for every unit change in the covariate.

Estimation

We use the rstanarm package [17, 18] and the joint model function to obtain a Bayes-
ian fit for our model to the data. To estimate the patient-level effects in the longitudinal 
covariates, we use hierarchical priors to induce shrinkage in the case of few observations 

ηij(t) = β0j + β1ij + β2jt + β3ijt + β4li jt +
∑

k

β5jkxik ,

hi(t) = h0(t) exp





�

k

γkxik +
�

j

αjηij(t)



,

S(t) = P(Ti ≥ t) = exp

(

−

∫ t

0

hi(x)dx

)

.



Page 6 of 13Jiang et al. BMC Bioinformatics          (2021) 22:122 

[19]. Posterior predictive checks were performed on the longitudinal trajectories to ver-
ify that the resulting fit were consistent with the observed data and convergence metrics 
were checked to validate that the chains were consistent. Analysis was performed using 
4000 posterior draws over 4 chains.

Results
Factor II and D‑Dimer trajectories

In Table 2 we show the estimated fixed effect coefficients for Factor II and log D-Dimer 
in the longitudinal submodels. Traumatic brain injury is tied to significantly higher levels 
of both covariates while penetrating injuries tend to decrease the predicted log D-Dimer 
levels. Higher injury severity score and age slightly increase the level of log D-Dimer and 
decrease the level of Factor II. These effects indicate that older and more severely injured 
patients have higher D-Dimer and lower Factor II, which would be intuitive as they indi-
cate higher levels of fibrinolysis and lower levels of available pro-coagulants. Penetrat-
ing injuries provide an uncertain effect on Factor II but are associated with lower levels 
of log D-Dimer. At the population level, Factor II tends to decrease over time while 
D-Dimer tends to increase. For healthy patients, these would be the expected patterns as 
clotting factors are used and fibrin degradation products are produced. Figures 2 and 3 
show the estimated mean Factor II and log D-Dimer trajectories for 4 patients. Crucially 
for diagnosis, the 4 patients show varying individual behavior but also reversion to the 
population level distribution in the case of patients with few measurements.

Factor II and log D‑Dimer associations with survival

Estimated association strengths, interpreted as the increase in odds for every unit 
increase in the biomarker, as well as 95% credible intervals are shown in Table  3. For 
exogenous covariates, we find minimal evidence that a higher initial injury severity score 
and age increases the risks of death. The large uncertainty in the gender hazard ratio is 
likely due to an insufficient sample size of women in the dataset. As previously known, 
we find that traumatic brain injury has an extremely large effect on the risk of early 
death. Interestingly, penetrating injuries seem to significantly increase the risk of early 
death (hazard ratio [6.08, 3.37–11.19]), however, the large credible intervals indicate a 
relative lack of data for patients who ultimately died.

Table 2  Coefficients for longitudinal biomarkers

Factor II Log D-Dimer

Coefficient 95% credible interval Coefficient 95% credible interval

Intercept 84.03 80.04, 88.04 − 0.64 − 0.41, − 0.18

Slope − 0.23 − 0.30, − 0.17 0.011 0.008, 0.016

Age − 0.15 − 0.21, − 0.10 0.008 0.004, 0.011

Sex (ref: male) − 1.58 − 4.07, 0.90 − 0.20 − 0.34, − 0.06

Injury severity score − 0.37 − 0.44, − 0.30 0.043 0.039, 0.047

Traumatic brain injury (ref: yes) 2.65 0.18, 5.07 0.44 0.30, 0.59

Penetrating injury (ref: yes) − 0.28 − 2.73, 2.10 − 0.25 − 0.38, − 0.11
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Fig. 2  Sample Factor II patient trajectories. Each plot shows a random patient along with their estimated 
mean trajectory for Factor II and confidence intervals of the mean trajectory. Scattered points are observed 
data points

Fig. 3  Sample log D-Dimer patient trajectories. Each plot shows a random patient along with their estimated 
mean trajectory for log D-Dimer and confidence intervals of the mean trajectory. Scattered points are 
observed data points
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For the longitudinal coagulopathic covariates, we find that unit increases in log 
D-Dimer significantly increase the risk of early death (hazard ratio [2.22, 1.57–3.28]). At 
the same time, unit increases in Factor II only marginally decrease the risk of death (haz-
ard ratio [0.94, 0.91–0.96]) but with high certainty. This is in good agreement with [20] 
that concludes that high log D-Dimer levels are the more definitive predictor of death 
regardless of fibrinogen levels. The significant effect of log D-Dimer suggests that main-
taining or lowering the rate of fibrinolysis and thus D-Dimer generation is a key compo-
nent in reducing the risk of early death in a hospital setting.

Variation among longitudinal trajectories

In addition to associations, our model estimates individual trajectories for each patient. 
In this cohort, the vast majority of patients gradually decrease in Factor II levels over the 
25 h window, as shown by the distribution of median slopes in Fig. 4. The relatively low 
rate seems to indicate that, for the majority of patients, Factor II is being held relatively 
consistent in this 25 h window. We see no cases where the model indicates that Factor II 

Table 3  Median and 95% credible interval for hazard ratios

Hazard ratios 95% credible interval

Factor II 0.94 0.91, 0.96

Log D-Dimer 2.22 1.57, 3.28

Age 1.02 1.01, 1.03

Sex (ref: male) 0.76 0.45, 1.32

Injury severity score 1.03 1.01, 1.04

Traumatic brain injury (ref: yes) 2.71 1.51, 5.04

Penetrating injury (ref: yes) 6.08 3.37, 11.19

Fig. 4  Distribution of median Factor II slopes Estimated median slopes of Factor II for each patient. Red, 
dashed line indicates the zero-line
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is being consumed at a significantly large rate. In comparison, for log D-Dimer trajecto-
ries, we observe large variation from expected behavior. As shown in Fig. 5, patients are 
centered around 0 but have significant probability mass at both increasing and decreas-
ing D-Dimer levels. However, as D-Dimer is only a product of fibrinolysis, it is difficult 
to predict what a traditionally healthy trajectory would consist of.

The level of variation among patients, controlling for all of the fixed covariates, indi-
cates that these biomarkers are likely subject to some unaccounted for patient level vari-
ability. From a treatment perspective, the varying trends among patients indicate that 
when making risk assessments for a particular patient, it is important to understand 
both the estimated hazard ratio as well as the projected trajectory of their biomarkers. 
As an example, if a patient exhibits high D-Dimer but it is seemingly decreasing, perhaps 
treatment for fibrinolysis is not necessary.

Discussion
Hazard ratios

The hazard ratios indicate that, in this cohort, unit increases in Factor II levels only 
marginally increase survival odds, while a doubling of D-Dimer (due to the log trans-
formation) largely affects survival odds. Observing the data, a doubling of D-Dimer is 
not uncommon. Thus, although both consumptive coagulopathy and hyperfibrinolysis 
do seem to affect survival in some regard, increased rates of fibrinolysis are much more 
likely to be damaging to survival. From this perspective, greater benefit would be gained 
by controlling hyperfibrinolysis rather than further managing or increasing factor avail-
ability levels.

High levels of D-Dimer have often been associated with poor patient outcomes as a 
proxy for hyperfibrinolysis. This is further consistent with the growing literature which 
indicates the importance of addressing hyperfibrinolysis in TIC. Hyperfibrinolysis is 

Fig. 5  Distribution of median log D-Dimer slopes Estimated median slopes of log D-Dimer for each patient. 
Red, dashed line indicates the zero-line
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estimated to occur in a large number of trauma cases, often with significantly higher 
mortality rates [21]. The relatively low, but positive impact of Factor II levels suggests 
that managing Factor II levels is not a significant problem in this cohort. Indeed, the 
importance of coagulation consumption has long been studied [22] and linked to poor 
outcomes. As this is a single hospital, retrospective study, it is possible that monitoring 
and treatment for factor depletion is better monitored and maintained, leading to better 
outcomes for patients that exhibit signs of coagulopathy.

Also of note is the significant effect of both traumatic brain injury and penetrating 
trauma, independent of the levels of both Factor II and D-Dimer. Largely, the increased 
mortality from injuries of this types are well known in trauma [23]. The scale of the haz-
ard ratios provides a rough perspective on the priority of treatment, with concern based 
on the the type of injury preceding further monitoring of hyperfibrinolysis and finally 
consumptive coagulopathy.

D‑Dimer modulation in trauma care

D-Dimer, while often used as a surrogate for measuring fibrinolysis, can also be affected 
by other factors. Due to the risk associated with high levels of D-Dimer as indicated by 
our model, it is important to further describe some of these alternative factors.

From a physiological perspective, as D-Dimer is a protein fragment created from 
the breakdown of a fibrin clot, any processes which affects the rate of clot breakdown 
could result in measured changes in D-Dimer levels. In ICU patients, while initially 
elevated levels of D-Dimer are expected due to the nature of the injuries involved, the 
type of injury can have a significant effect on D-Dimer levels over time the condition 
of the patient evolves. As seen in Table  3, patients with non-penetrating or traumatic 
brain injuries tend to see an increase in D-Dimer levels over time. Typically, for healthy 
patients recovering from injury, coagulation and fibrinolysis are expected to slow down, 
resulting in declining D-Dimer levels. Sathe et  al. [24] further mentions several non-
hyperfibrinolytic pathological and non-pathological conditions which have also been 
shown to increase D-Dimer. An important possibility that may affect D-Dimer levels 
without clearly indicating increased fibrinolysis is the decreased ability to clear D-Dimer 
from the blood, as has been found in patients with liver disease and cirrhosis [25]. In 
these cases, an underlying liver problem may result in abnormally high levels of D-Dimer 
as it accumulates over time, even when the patient is not hyperfibrinolytic.

Common interventions may also cause D-Dimer levels to change. A recent stand-
ard treatment for hyperfibrinolysis is administration of the anti-fibrinolytic drug, 
Tranexamic acid (TXA). As it’s mechanism of action is to prevent plasmin formation 
and thus slow down fibrinolysis, it naturally decreases D-Dimer levels. This has been 
demonstrated in both laboratory and clinical settings [26, 27] with time-scales as short 
as 30 minutes after administration [28].

Clinical considerations

Our findings broadly suggest that, from an early clinical perspective, managing 
fibrinolysis is typically more of a concern than managing consumptive coagulopa-
thy over a 24 h window of care. Furthermore, as shown in Figs.4 and 5, the trends of 
these factors can vary significantly between different patients and thus treatment and 
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evaluation of patient state can possibly improve by projecting how a patients’ state is 
trending. This follows exactly the thinking of the clinician where they are constantly 
evaluating current physiologic/biologic state of a patient and trying to predict and 
modify trajectory. Although high D-Dimer levels are linked to poor outcomes, if the 
patient is projected to be improving, further treatment may not be necessary. The 
development of explicit risk metrics which provide individual projected trajectories 
as such could provide valuable information in acute decision making.

As the factors analyzed in this work are not typically measured in real-time, our 
work primarily aims to explore the risk factors in TIC and to observe patient-level 
variations over their ICU stay. State of the art treatment of TIC in the ICU typi-
cally includes providing blood products such as crystalloids, fresh frozen plasma, 
and packed red blood cells through transfusion and by administering drugs such as 
Tranexamic acid [26, 29] both of which aim to control hyperfibrinolysis as well as 
consumptive coagulopathy. A significant amount of recent research has focused on 
implementing better protocols for these interventions using viscoelastic assays, such 
as TEG and ROTEM [30, 31]. These measurements aim to provide a more holistic 
picture of blood coagulation, which can lead to significant advantages in accuracy 
or diagnosis of coagulation malfunctions. Additionally, in the future, we expect that 
results can be extracted at the point-of-care and used for a truly precision medicine 
individualized approach to diagnosis and treatment.

The use of viscoelastic measurements in a similar computational study can extend 
the conclusions of this work to more precisely capture malfunctions of the coagula-
tion system as well as provide for a practical component in a dynamic risk-prediction 
system that can aid in acute decision making over a patient’s stay.

Model limitations

Importantly, there are a few limitations to full interpretation of this model. Due to the 
retrospective and single hospital nature of the data, these results can be understood 
more as an evaluation of early trauma hospital protocol. As interventions such as 
mass transfusion are not accounted for, from this perspective, we find that the trauma 
protocol mediates the effects of most covariates but does not seem to adequately con-
trol for the effects of increasing log D-Dimer levels. To improve interpretation, we 
would need to utilize data from multiple hospitals. Furthermore, certain studies indi-
cate that elevated log D-Dimer is not necessarily a definitive sign of hyperfibrinolysis 
[32] and can be rather thought of as a confounded measure of injury severity and the 
need for an activated coagulation system. Thus, utilization of viscoelastic assays, such 
as TEG and ROTEM, that offer different measurements may help to better distinguish 
the effect of the two components of coagulation on survival. Despite this however, 
our data show that D-dimer, whatever its biologic meaning (fibrinolysis or enhanced 
clot breakdown) is an important marker of future mortality. Similarly, use of other 
proteins in the coagulation cascade may reveal more informative results with respect 
to how much of an impact consumptive coagulopathy over time actually has on sur-
vival odds. A secondary model for interventions may also help for improving treat-
ment for TIC.
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Conclusions
We fit a joint-survival model to trauma to quantify the effect of activity levels of Fac-
tor II and log D-Dimer on survival in a early 25 h window. From this work, we find 
that increases in Factor II levels have a small, but positive effect on survival, while 
increases in log D-Dimer levels have a large negative effect on survival. The nature of 
this study suggests further investigation into methods to prevent excessive fibrinolysis 
in hospital protocol. Furthermore, this model can also be used to better understand 
individualized and dynamic risk prediction from a standard patient, due to the large 
variability in patient longitudinal trajectories.
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