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Abstract: Over 240 million non-cardiac operations occur each year and are associated with a 15–20%
incidence of adverse perioperative cardiovascular events. Unfortunately, preoperative therapies
that have been useful for chronic ischemic heart diseases, such as coronary artery revascularization,
antiplatelet agents, and beta-blockers have failed to improve outcomes. In a pre-clinical swine model
of ischemic heart disease, we showed that daily administration of ubiquinone (coenzyme Q10, CoQ10)
enhances the antioxidant status of mitochondria within chronically ischemic heart tissue, potentially
via a PGC1α-dependent mechanism. In a randomized controlled trial, among high-risk patients
undergoing elective vascular surgery, we showed that NT Pro-BNP levels are an important means
of risk-stratification during the perioperative period and can be lowered with administration of
CoQ10 (400 mg/day) for 3 days prior to surgery. The review provides background information for
the role of oxidant stress and inflammation during high-risk operations and the potential novel
application of ubiquinone as a preoperative antioxidant therapy that might reduce perioperative
adverse cardiovascular outcomes.

Keywords: CoQ10; ubiquinone; myocardial injury; troponin; BNP; vascular surgery; outcomes

1. Introduction

It has been estimated that over 240 million major non-cardiac surgical procedures
are scheduled each year, with at least 1 in 6 suffering from adverse events that occur
during those surgeries including a 30-day risk of either death or significant cardiovascular
complication [1,2]. Based on the magnitude of these clinical consequences, numerous
studies have been completed to focus on strategies that might modify cardiac risks before
scheduling major operations that do not involve the heart [3]. In a randomized controlled
study involving over 500 veterans undergoing elective vascular surgery and 20 medical
centers within the Veterans Affair (VA) health care system, we demonstrated that a strategy
of preoperative coronary artery revascularization before an elective vascular surgery did
not reduce the long-term risk of death at 2.7 years following the operation [4]. Using
an additional preoperative strategy with a preconditioning protocol, we also failed to
reduce the incidence of postoperative elevations in cardiac troponin [5]. Other randomized
controlled trials have tried to reduce adverse perioperative outcomes and have targeted
well-accepted risk factors among patients undergoing elective surgery, including phar-
macological agents that are known to reduce secondary outcome measures in patients
with coronary artery disease. Unfortunately, they have not consistently shown that the
incidence of postoperative adverse cardiovascular events can be mitigated [6–8]. Clearly,
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strategies that modify traditional risks of patients with chronic ischemic heart disease
have not proven effective in reducing perioperative ischemic events and myocardial injury
(MINS) following high-risk surgery. In a sub-study of our trial, termed the coronary artery
revascularization prophylaxis (CARP) trial, we showed that the incidence of elevated
cardiac troponin following surgery was not reduced with preoperative coronary artery
revascularization, yet was a powerful predictor of long-term risk of adverse outcomes [9].
These data are consistent with other trials [10,11] and emphasize the important fact that
cardiac troponins provide incremental value in post-operative risk-stratification [12]. There
may be value in assessing cardiac biomarkers following surgery because among patients
with an elevated troponin who had their medical regimen maximized, rehospitalization
rates following discharge were lower than those individuals with an elevated troponin
who did not have a change in therapy [13].

An emerging strategy that has been advocated is the use of preoperative cardiac
biomarkers as a means of identifying those individuals at risk for postoperative adverse
cardiac events [14]. In that regard, measurement of the cardiac biomarker, Brain Natriuretic
Peptide (BNP) before non-cardiac operations is considered a Class I indication, as recom-
mended by the Canadian Cardiovascular Society for Perioperative Care [15]. That guideline
was based on evidence that BNP levels correlate with postoperative troponin levels and
predict risk of complications within 30 days following surgery [16–18]. Of interest, in a
randomized controlled trial involving patients with heart failure, these biomarkers were
lowered by administration of coenzyme Q10 (CoQ10) [19]. Conceivably, pharmacological
interventions that lower BNP might prove effective in reducing postoperative myocardial
injury. In the present review, the goal is to review relevant work from perioperative care
and outline how a new approach to reducing oxidant stress and inflammatory signals might
reduce injury. The focus of our review is to gather relevant references in perioperative
medicine as well as on the potential value in the application of ubiquinone by using a
search system that encompasses basic and translational sciences, as defined by approaches
recommended and outlined by the PRISMA guidelines.

2. Preoperative Risk Assessment and Postoperative Adverse Outcomes

For over four decades, clinical researchers have developed several models to identify
high-risk patients prior to elective vascular surgery [3]. In a comprehensive approach,
Lee and colleagues validated six clinical risk variables that independently predict adverse
postoperative events following surgery [20]. Termed the Revised Cardiac Risk Index,
these variables include a history of coronary artery disease, stroke, heart failure, insulin-
dependent diabetes, creatinine > 2.0 mg%, and high-risk operations that include vascular
surgery. In a cohort of the CARP trial, we showed that these variables were highly pre-
dictive of either death or myocardial infarction within the first 30 days post-surgery, but
the risk of adverse events in those subsets could not be lowered with preoperative coro-
nary artery revascularization [21]. Additional randomized controlled studies that targeted
therapies for chronic ischemic heart disease, including beta-blockers, aspirin, clonidine,
and statins did not show consistent results in preventing myocardial injury following non-
cardiac surgery (MINS) [6–8,22,23]. In a large cohort of patients undergoing surgery [24],
BNP was used as a preoperative biomarker for improving risk-stratification [14] and has
now been incorporated into Canadian guidelines for the risk-assessment of patients under-
going elective vascular surgery [25]. Considering that BNP level is a modifiable variable,
we completed a pilot study to determine whether preoperative administration of CoQ10
might reduce BNP in patients undergoing high-risk vascular surgery. In that regard, the
primary results of our randomized controlled trial was that N-terminal pro hormone BNP
(NT-proBNP) levels before and after the procedure predicted risk for having myocardial
injury as well as having a prolonged post-operative hospitalization period following the
elective operation (Figure 1) [2]. These observations are consistent with those of Canadian
investigators in use of perioperative cardiac biomarkers prior to non-cardiac operations [25].
Of interest and important for the development of new approaches in perioperative care,
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we also showed that preoperative administration of coenzyme Q10 (CoQ10) for 3 days prior
to the elective vascular surgical procedure reduced perioperative NT-proBNP levels [2]
(Figure 2). These data support the notion that perioperative use of antioxidant therapies
may play a critical role in reducing the incidence of cardiac biomarker elevations and
possibly improve outcomes following hospital discharge. Clearly, a novel approach to
preventing myocardial injury following high-risk surgery is needed. This would require a
shift in paradigm, addressing the biological significance of oxidant stress and inflammatory
signaling that is incorporated in the pathophysiology of cardiac biomarker release.
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Figure 2. Patients were randomized to either coenzyme Q10 (CoQ10) (n = 62) or placebo (n = 61) for 3 days before elective
vascular surgery, and as shown, NT-Pro BNP levels were lower with treatment. The degree of injury, as defined by the
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that of the CoQ10 treatment group [2]. Values are expressed as medians, interquartile values, and means. Permission was
granted to reproduce the data.
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3. Oxidant Stress and Cardiovascular Disease

Oxidative stress is a well-known factor involved in cardiovascular diseases includ-
ing ischemia-reperfusion and heart failure [26]. While a small amount of ROS (reactive
oxygen species) may play a physiological role in signaling transduction, uncontrolled
ROS formation, especially during early reperfusion, increases oxidative stress and cell
injury [26–28]. The burst in ROS generation is a critical factor in the increased opening
of mitochondrial permeability transition pores (MPTPs) that increases cell injury during
ischemia-reperfusion [29,30]. The MPTP is a non-selective pore that is located in inner
mitochondrial membranes [31]. MPTP opening leads to increased permeability of the inner
membrane that triggers mitochondrial damage. A permeabilized inner membrane during
MPTP opening may augment ROS generation by increasing electron flow into the electron
transport chain due to uncoupled respiration [32]. The permeation of the inner membrane
leads to decreased ATP generation by depolarizing inner mitochondria membrane poten-
tial [31]. MPTP opening also leads to increased permeability of the outer membrane by
inducing mitochondrial matrix swelling through accumulation of calcium and H2O within
the matrix [33]. Proteins located within the mitochondrial intermembrane space, including
cytochrome c and apoptosis-inducing factor (AIF), are translocated into the cytosol through
the leaky outer membrane and increase apoptosis in both a caspase-dependent and caspase-
independent manner [34–36]. An increase in ROS generation also impairs cardiac function
by oxidizing the proteins involved in cardiac contractile activity [37]. ROS generation im-
pairs mitochondrial quality control mechanisms including inhibition of autophagy, which
is a key process for removing dysfunctional mitochondria in the heart [38]. The increased
ROS production also increases apoptotic cell death and cardiac hypertrophy by activating
signaling transduction [39]. ROS generation also increases ventricular fibrosis, including in
aged hearts, by activating cardiac fibroblasts [39,40]. ROS generation can also increase ER
(endoplasmic reticulum) stress [41,42] that contributes to mitochondrial dysfunction and
cardiac injury during aging [43]. The ER not only plays a critical role in protein folding
and lipid synthesis but is a calcium storage site and regulates calcium homeostasis [41,43].
An increase in misfolded proteins within the ER causes ER dysfunction (ER stress) [44].
The initial response to the ER stress is an attempt to restore ER function by slowing down
protein synthesis. However, prolonged ER stress increases cell injury. Induction of acute ER
stress using thapsigargin increases cell death by impairing mitochondrial function in adult
hearts [44–47]. ER stress is increased in the heart with aging [43]. Chronic treatment with
4-phenylbutyrate (4-PBA), which is a chemical chaperone that stabilizes protein conforma-
tion within the ER, improves mitochondrial function in aged hearts [43], supporting the
notion that ER stress contributes to mitochondrial dysfunction during aging. Although the
mechanisms by which aging leads to increased ER stress remains unclear, ROS generation
is a potential causative factor. Therefore, future studies should consider whether the atten-
uation of ROS generation by overexpression of either catalase [48] or CoQ treatment [19]
can decrease ER stress in aged hearts.

In addition to the direct damage caused by free radicals, oxidative stress can increase
mitochondrial and cell injury by facilitating proteases, including calpain activation [49].
Calpains are a family of calcium-activated cysteine proteases that include 14 isoforms [49].
Ubiquitous calpains, including calpain 1 and calpain 2, exist in cytosol and mitochon-
dria [49,50], and their activation increases tissue injury during myocardial ischemia and
reperfusion [34,51–57]. In fact, the activities of calpain 1 and calpain 2 are both increased in
isolated hearts following ischemia-reperfusion [49]. Cytosolic calpain 1 activation leads to
cleavage of proteins including bid, Na+,K+-ATPase, Ca2+-ATPase, spectrin, and troponin
T [49,55–57]. Activation of calpain 1 impairs cardiac function by degrading contractile
proteins including junctophilin-2 [58]. Ischemia-reperfusion also leads to increased ac-
tivities of mitochondrial calpain 1 [34] and calpain 2 [50]. Activation of mitochondrial
calpain 1 and calpain 2 leads to a damaged electron transport chain (ETC) and MPTPs
that are sensitized to opening [34,50,54,59]. Interestingly, elevated calcium concentrations,
even in pathological conditions, are below the threshold to activate calpain 1 and calpain
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2 [49]. However, the calcium concentration required to activate calpain 1 and calpain 2
is markedly decreased in the presence of oxidative stress [60,61]. Thus, increased ROS
generation may be a key co-factor to activating calpain 1 and calpain 2 during cardiac
stress states including catecholamine exposure, ischemia-reperfusion, heart failure, and
aging [62]. Thus, ROS generation at the time of a major, high-risk operation can lead to cell
injury through direct oxidation of proteins and indirectly facilitate proteases activation.

In cardiac myocytes, most ROS are generated from the electron transport chain
(ETC) [26–28]. Superoxide anion (O2

•−) is the most abundant ROS in cells [63]. The
superoxide anion is formed when O2 captures an additional electron leaking from the ETC.
Superoxide anions are the base for generating other types of ROS, including hydrogen per-
oxide (H2O2), hydroxyl (OH•), and peroxynitrite (ONOO−). Since most ROS are generated
at the ETC, it is not surprising that the initial target of ROS damage is in the ETC itself [64].
Prevention of electron flow into the ETC leads to decreased ROS generation in control [65]
and ischemia-damaged mitochondria [66,67]. Inhibition of proximal electron flow through
the ETC reduces cardiac injury during reperfusion by decreasing ROS generation [30,68,69]
and calcium overload [69]. Blockade of the electron transport also decreases cardiac injury
in aged hearts following ischemia-reperfusion [70,71]. These results indicate that the mito-
chondrial respiratory chain is a key source of ROS production in cardiac myocytes. ROS
generated by the ETC first impairs the ETC itself to further augment ROS generation [66].
Thus, the damaged ETC plays a central role in ROS generation [63] and, in that regard,
may be an important pharmacological target during major operations.

Complexes I, II, and III are potential sites for ROS production by the ETC [26,72,73].
Complex I is the first respiratory complex and consists of a membrane arm embedded in
the inner membrane and a peripheral arm oriented into the mitochondrial matrix [74,75].
The peripheral arm is responsible for NADH oxidation and subsequent electron transfer
through complex I to ubiquinone [74]. The membrane arm is essential for proton pumping
across the inner membrane. Although complex I is a key site of ROS generation, the exact
sites (subunits) of ROS generation within complex I are poorly defined. Subunits in both
the membrane arm, including N2, and the peripheral arm, including flavin mononucleotide
(FMN), are proposed to be sites of ROS generation within complex I [76,77]. Complex
I generates ROS through two mechanisms: forward (complex I→ Q→ complex III) or
reverse (complex II→ Q→ complex I) electron flow-mediated ROS generation [78,79]. The
forward flow-induced ROS generation requires an almost fully reduced condition within
complex I [80]. This situation usually occurs when complex I is severely damaged or in
the presence of complex I inhibitors including rotenone [65,68,81]. Ischemia-reperfusion
damages complex I at its quinone binding sites, which leads to electron accumulation
within complex I and increases forward flow-mediated ROS generation [82]. Inhibition of
complex I using rotenone also increases ROS generation from complex I [65]. Blockade of
electron transport at the distal site of the ETC including cytochrome oxidase also favors
forward flow-induced ROS generation from complex I [62,83].

In addition to blocking electron transport at the individual respiratory complexes,
disruption of supercomplexes can contribute to decreased oxidative phosphorylation and
increased ROS generation [84]. The supercomplexes are assembled with complexes I, III,
and IV in the ratio of 1:2:1 [62]. Formation of the supercomplexes increases the efficiency of
electron transport and decreases ROS generation by reducing electron leakage from the
ETC [85,86]. Destabilization of supercomplexes increases ROS generation from complex
I [87,88]. The content of supercomplexes is decreased in mitochondria from aged or failing
hearts [62]. This may lead to increased ROS generation from complex I during aging and
heart failure.

Complex I can also produce ROS by inducing the reverse electron flow that occurs
when succinate is used as a complex II substrate to provide electron flow from complex II
to complex I [79,89]. Mitochondrial membrane potential is a driving force for the electron
flow from complex II to complex I [78]. Thus, depolarization of mitochondrial membrane
potential using an uncoupler [78,79] is an efficient approach to eliminate the reverse flow-
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induced ROS generation. In addition, blockage of electron transport from complex II to I
by using complex I [90] or complex II inhibitors also decreases the ROS generation by the
reverse electron flow [79,89]. ROS generated by reverse electron flow also increases cell
injury during ischemia-reperfusion [91,92].

As discussed above, complex II plays a role in reverse flow-induced ROS generation.
The complex II may also directly generate ROS within complex II [93,94]. ROS generation
by complex II is dependent on the succinate concentration [79]. High concentration of
succinate (>5 mM used in most in vitro analysis) inhibits ROS generation from complex II.
ROS generation is increased in complex II when a relatively low concentration of succinate
(0.5 mM) is used in the presence of complex II inhibitor (thenoyltrifluoroacetone (TTFA)) or
a complex III Qo center inhibitor [93]. TTFA blocks electron transport at the terminal part
of complex II, which increases electron accumulation within complex II and subsequent
ROS generation [93]. In contrast, inhibition of complex II at the succinate-binding site with
malonate decreases ROS generation from complex II due to decreased electron flowing into
complex II [65].

Complex III is a key source of ROS generation in heart mitochondria [65,72]. ROS
is generated in both the complex III Qo center (quinol oxidation site oriented to the
mitochondrial intermembrane space) and the Qi center oriented to the mitochondrial
matrix space. ROS produced at the Qo center are oriented to the intermembrane space
and subsequent cytoplasm through voltage-dependent anion channel (VDAC) in the outer
mitochondrial membrane [65,72,95,96]. ROS generated at the Qi center are released into
the mitochondrial matrix and detoxified by mitochondrial antioxidants. Antimycin A is a
classic complex III inhibitor that inhibits electron transport at the Qi center [65]. Antimycin
A predominantly increases ROS generation from the Qo center. Myxothiazol or stigmatellin
inhibit electron transport at the complex III Qo center [65,97]. Thus, inhibition of complex
III using myxothiazol or stigmatellin leads to decreased ROS generation from complex III.
As discussed above, myxothiazol or stigmatellin increases ROS generation from complex
I or complex II based on the substrate usage. ROS generated from the complex III Qo
center plays a critical role in aging and ischemia-reperfusion injury [97]. Recent study
also showed that ROS generated by the Qo site of complex III increases ER (endoplasmic
reticulum) stress [42].

The electron transport chain is not the only source of oxidant stress within mitochon-
dria of heart tissue [27,62]. Monoamine oxidase (MAO), p66shc, and NOx4 are potential
sources of ROS generation within mitochondria. MAO is located on the outer mitochon-
drial membrane and functions in the regulation of catecholamines and other biogenic
amines [37]. MAO has two isoforms: MAO-A and MAO-B. Both MAO-A and B isoforms
are equally expressed in human hearts. However, MAO-A is the major isoform in rat
hearts, and the MAO-B is the major isoform in mouse hearts [37]. H2O2 is generated
when MAO breaks down neurotransmitters, including norepinephrine, epinephrine, and
dopamine [98]. MAO-mediated ROS generation contributes to cardiac injury [99], muscle
dystrophy [100], and aging.

Another redox enzyme that exists in the mitochondrial intermembrane space is p66shc.
It is one of the isoforms in the ShcA adaptor protein family [62,101 and has a cytochrome c
binding region towards the N-terminal side end [101]. The cytochrome c binding domain is
the redox center of p66Shc [101,102]. In conditions with increased ROS generation, including
cardiac ischemia, the cytochrome c binding domain in p66Shc binds with cytochrome c lead-
ing to electrons transferring from cytochrome c to oxygen to increase ROS generation [101].
Downregulation of p66Shc leads to decreased ROS generation and prolonged mouse life
span, indicating that ROS generation from p66Shc contributes to the aging process [103,104].

4. Antioxidants and Cardioprotection

Cells have antioxidant defenses to detoxify the ROS [63]. The antioxidant enzymes
include superoxide dismutase (SOD), catalase, and glutathione peroxidase. SODs are the
most effective antioxidant enzymes at converting superoxide anion (O2

•−) to hydrogen
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peroxide (H2O2). SODs also inhibit the formation of peroxynitrite (ONOO−) by preventing
NO reaction with superoxides via the timely removal of superoxides [105]. SOD has three
isoforms: cytosolic SOD1, mitochondrial SOD2, and extracellular SOD3. Since copper (Cu)
and zinc (Zn) are required as cofactors for SOD1 and SOD3, these SODs are also called Cu-
ZnSOD. SOD2 is also referred to as Mn(manganese)SOD in that the Mn is used as a cofactor
in SOD2 [105]. Stimulation of SOD1/2 expression decreases cerebral injury during heart
arrest and resuscitation [106]. Genetic disruption of the SOD2 gene increases oxidative
stress and cardiac hypertrophy [107], supporting the concept that superoxide anions
generated from mitochondria play a critical role in oxidative stress-induced cell injury.

Hydrogen peroxide is detoxified by antioxidants including catalase, glutathione per-
oxidase (GPX), and peroxiredoxins (PRDX) [63]. Catalase reduces H2O2 to H2O, especially
in the presence of high concentrations of hydrogen peroxide, and also functions as a perox-
idase in conditions with low concentrations of hydrogen peroxide [108,109]. Aging leads
to myocardial hypertrophy and dilatation, cardiac dysfunction, and increased fibrosis.
Overexpression of mitochondrial-targeted catalase reverses these defects in aged mice.
These results clearly show that increased mitochondrial oxidative stress contributes to
cardiac dysfunction during aging [48].

Peroxiredoxins (PRDXs) reduce hydrogen peroxide and peroxynitrite [110]. PRDXs
are a family of thiol specific antioxidant proteins including six isoforms in mammalian
cells. PRDX 1, 2, 3, and 6 mainly exist in the cytosol. PRDX 4 is found in the endoplasmic
reticulum [111]. In addition, PRDX 3 and 5 are present in the mitochondria [90,111].
Ischemia-reperfusion leads to decreased PRDX 3 activity in mouse heart mitochondria [112].
Overexpression of the PRDX3 decreases the development of myocardial infarction-induced
heart failure [113]. Genetic inhibition of the PRDX 6 increases cell injury during ischemia-
reperfusion by increasing lipid peroxidation [114]. In contrast, overexpression of PRDX 6
decreases cardiac injury during oxidative stress [115]. Interestingly, knockout of p53 leads to
increased PRDX3 content in mouse hearts in the basal condition. Knockout of p53 improves
mitochondrial function and decreased cardiac injury during ischemia-reperfusion [90],
supporting that PRDXs play a critical role in reducing ROS generation from mitochondria
during ischemia-reperfusion.

Glutathione peroxidases (Gpx), with six isoforms, are located in the cytoplasm, nuclei,
and mitochondria [116]. Glutathione (GSH) is the major intracellular thiol reserve, mainly
present in the reduced form. GSSG is glutathione disulfide. The Gpx reduces H2O2 to
H2O and simultaneously oxidizes GSH to GSSG. Then, the GSSG is reduced to GSH
by glutathione reductase in the presence of NAPDH. The GSH/GSSG ratio is used as a
marker of oxidative stress. Ischemia-reperfusion leads to decreased Gpx4 expression [117].
Resveratrol treatment protects cells exposed to exogenous H2O2 by increasing glutathione
peroxidase, catalase, and heme oxygenase-1 (HO-1), indicating that resveratrol treatment
increases vascular oxidative stress resistance by scavenging H2O2 [118]. These results
clearly show that glutathione peroxidase plays a critical in deceasing oxidative stress
during pathological conditions.

Heme oxygenase (HO) catabolizes heme to produce labile Fe, carbon monoxide (CO),
and biliverdin [119]. Free heme increases the production of hydroxyl radicals through the
Fenton reaction (4). HOs include two isoforms: HO-1 and HO-2. HO-1 is an inducible
form. Heme catabolism by HO-1 extracts Fe from the protoporphyrin IX ring to produce
labile Fe that is buried in a multimeric complex to prevent labile Fe from triggering the
Fenton reaction [119]. Heme catabolism also produces biliverdin that is converted to biliru-
bin, having an antioxidant effect. CO (carbon monoxide) is also produced during heme
catabolism [119]. Although an increasing amount of evidence indicates that oxidative stress
plays a key role in cell damage during heart failure [120], ischemia-reperfusion, and aging,
the effect of administering exogenous antioxidant treatment and reducing cell injury during
pathological conditions including aging and heart failure is still controversial [121]. As
discussed above, overexpression of catalase improves cardiac function in aged hearts [48],
indicating that promotion of endogenous antioxidants may be a proper strategy to decrease
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oxidative stress. Interestingly, administration of dimethyl fumarate leads to increased
Nrf2 and HO-1 expression [122]. Dimethyl fumarate treatment also decreases cell injury
during ischemia-reperfusion by increasing HO-1 expression [123,124]. Stimulation of HO-1
expression with dimethyl fumarate treatment may be a novel approach to decrease cell
injury during aging because endogenous antioxidants are already impaired [121].

5. Potential Mechanisms of CoQ10 Against Oxidant Stress

Coenzyme Q10 (CoQ10), or ubiquinone, is a lipid-soluble benzoquinone with 10 iso-
prenyl units in its side chain. It plays a key role as an intracellular antioxidant, protecting
membrane phospholipids and mitochondrial membrane proteins from free radical-induced
oxidative injury [2]. Functioning within the inner mitochondrial membrane [2], ubiquinone
serves as a structural component of complexes I and III and facilitates the transport of
electrons to their ultimate reaction with oxygen for water production. In this capacity, the
synthesis of adenosine triphosphate within the electron transport chain of myocytes is
critical [125,126]. CoQ10 also prevents the leakage of electrons to oxygen that would result
in the production and release of reactive oxygen species (ROS) (Figure 3).

In addition to its actions on electron transport, CoQ10 binds to common sites involved
with the MPTP, preventing pore formation and membrane depolarization, both of which
trigger apoptosis. The mechanism by which CoQ10 inhibits pore formation in mitochondria
involves secondary changes in MPTPs’ calcium binding affinity, preventing cytochrome
c release and subsequent ATP hydrolysis [127]. The protection of complex I activity
during ischemia-reperfusion by inhibiting calpain 1 and 2 leads to a reduction in ROS
generation [75]. Additional experimental work from various animal models as well as
patients supports the notion that supplementation of CoQ10 has value in reducing oxidant
stress [128]. In a rat model of Alzheimer’s disease, cultured cortical neuron induced-
damage by exposure to amyloid-beta can be inhibited with the addition of CoQ10 and
ROS can be reduced through a mechanism involving activation of the PI3-K/Akt survival
pathway [129]. In a swine model, dietary supplementation of CoQ10 (5 mg/kg/day) for
30 days increased the myocardial content of ubiquinone in isolated mitochondria by 30%.
When the pig hearts were then placed on cardiopulmonary bypass and subjected to 30 min
of regional ischemia-reperfusion, CoQ10 treated hearts showed improved left ventricular
(LV) function, lower levels of creatine kinase release, and reduced levels of malonaldehyde
(MDA) content, a marker of oxidant stress within post-ischemic tissue [130].

Similar observations have been shown in patients pretreated with CoQ10 prior to
coronary artery bypass graft surgery (CABG) [2], with reduced levels of MDA and protein
carbonyls and enhanced glutathione peroxidase activity observed post-CABG [131,132].
Although CoQ10 levels may have a direct effect on reducing oxidant stress, chronic admin-
istration may also improve the antioxidant status indirectly at the transcriptional level by
the regulation of mitochondrial protein expression. In skeletal muscle tissue, aging reduces
the levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-
1α), the master switch of mitochondrial biogenesis. This reduced PGC-1α level leads to
depleted concentrations of glutathione (GSH) with enhanced oxidative stress markers [133].
In studies of isolated C2C12 skeletal muscle cells [128], supplementation of CoQ10 with α-
lipoic acid enhanced PGC-1α expression and increased genes that encode proteins involved
in glutathione synthesis, recycling, and metabolism [134]. These findings are consistent
with observations made in a rat model of pharmacologically-induced seizures, whereby
administration of CoQ10 reduced oxidant stress by enhancing PGC-1α nearly 3-fold [135].
These changes were also associated with increased levels of nuclear factor erythroid 2-
related factor 2 (Nrf2) and silencing information regulator 1 (Sirt1), both of which improve
redox control within the cell, by increasing mitochondrial antioxidants such as superoxide
dismutase 2. It has been suggested that CoQ10 increases the expression and activity of
PGC-1α by its activation of the cAMP response element binding protein and adenosine
monophosphate-activated protein kinase (AMPK) phosphorylation [136]. In our swine
model of chronic myocardial ischemia, we administered daily CoQ10 (400 mg/day) for
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4 weeks, and compared to placebo-treated animals, we observed an enhanced expression
of nuclear-bound PGC1-alpha, indicating activation of mitochondrial biogenesis, as well as
increased expression of antioxidant proteins within isolated mitochondria [137] (Figure 4
and Table 1). In addition to its role in mitochondrial biogenesis and protection, CoQ10, the
only endogenously produced lipid-soluble antioxidant in the cell, is also present within the
Golgi apparatus, and plays a key role in redox control and nitric oxide elaboration by main-
taining coupling and normal activity of eNOS [138]. Taken together, these data support
the concept that CoQ10 provides a key role as an antioxidant in the heart cell by enhancing
ETC exchange within mitochondria as well as increasing expression of antioxidant proteins
to reduce the accumulation of oxidant stress within cardiac tissue [128].
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Table 1. Mitochondrial anti-oxidant proteins.

Antioxidant Protein Accession # p Value

Glutathione peroxidase A0A287AG70_PIG 0.029
Superoxide dismutase A0A287A4Z2_PIG 0.001

Aldehyde dehydrogenase 6 F1S3H1_PIG 0.002
Superoxide dismutase (Cu-Zn) SODC_PIG 0.87

Glutathione S-transferase kappa F1SRV4_PIG 0.6
Cluster of aldehyde dehydrogenase F1SDC7_PIG [4] 0.54

Alcohol dehydrogenase F1RTZ1_PIG 0.62
Thioredoxin reductase 2 A0A287BQ74_PIG 0.99

Glutathione-disulfide reductase F1RX66_PIG 0.93

n = 4/group; Data normalized to healthy animals; Log fold change calculated by Hib + CoQ10/Hibernation.
Significance determined by the Permutation test with the Benjamini–Hochberg test; Resulting p value: p < 0.00834.

Reducing oxidant stress in the mitochondria within the myocyte may play a key role in
attenuating inflammation within cardiac tissue. In a meta-analysis, CoQ10 administration
was shown to significantly decrease plasma C-reactive protein (CRP) levels [139]. A number
of cytokines, including interleukin-6 (IL-6) [2], are secondary messengers that activate
production and release of CRP in the liver [140] and are reduced following administration
of CoQ10 [135]. The greatest effect on CRP reduction with CoQ10 administration is observed
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among those patients with increased IL-6 levels, providing support for the notion that the
hepatic release of CRP is downstream from IL-6 [141]. A reasonable mechanism combining
CoQ10′s antioxidant effect with mitigation of inflammation is by the inhibition of NF-kB,
which transcriptionally regulates the production and elaboration of pro-inflammatory
cytokines [142]. Very importantly, this regulation of inflammatory cytokine markers is
activated by complex I-generated ROS [143,144], providing additional support for the
importance of the Q-cycle within the inner mitochondrial membrane of hearts as a key
regulator of inflammation (Figure 5).
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by transcriptionally regulating antioxidant proteins in heart tissue. * p < 0.05.
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6. Administration of CoQ10 and Improved Clinical Outcomes

Among older individuals, the concentration of plasma CoQ10 levels is low, but when
increased, inversely correlates with levels of lipid oxidative biproducts [145]. CoQ10
supplementation is well tolerated with doses of at least 2400 mg/day [146] and is pro-
tective against oxidative stress with a number of cardiovascular and neurodegenerative
diseases [147,148]. In patients scheduled for open heart surgery, CoQ10 administration
lowers the requirement for inotropic drugs following surgery, with an observed reduc-
tion in the number of arrhythmias [149]. In elderly patients from Sweden, giving CoQ10
(200 mg/day) with selenium (200 µg as selenized yeast) was associated with reduced
cardiovascular deaths after 4 years, an observation that was also observed 10 years post-
randomization [150]. In addition to the improved outcomes, CoQ10 supplementation
reduced elevated cardiac biomarkers in the blood that have been used as identifiers of poor
outcomes. In a group of dialysis patients who were randomized to receive daily CoQ10
(1200 mg/day), plasma concentrations of oxidant stress markers, F2-isoprostanes, were
lower after 4 months compared with that of placebo-treated patients [151]. Very interest-
ingly, among a prespecified group of individuals, therapy reduced troponin-T and NT
pro-BNP levels, providing additional evidence for a critical link between oxidant stress and
these commonly used cardiac biomarkers. This observation is important for interpreting
the results of the Q-SYMBIO trial, which among patients with stable congestive heart
failure tested the benefit of chronic administration of CoQ10 (300 mg/day) versus placebo.
The design of the trial was a double-blind, randomized, controlled study and showed that
treatment led to a significant long-term reduction in major cardiovascular endpoints [19].
Consistent with other studies, treatment also lowered plasma BNP levels, which is an
important cardiac biomarker for predicting adverse outcomes in patients with heart failure.
Among healthy elderly patients, serum levels of ubiquinol are correlated with reduced
levels of NT pro-BNP [152], and when treatment is provided, it further lowers BNP levels
over a period of 5 years [150,153]. The mechanism by which CoQ10 reduces BNP is unclear
but may be related to its effects on reducing either oxidant stress or inflammation. In a co-
hort of 51 patients with stable ischemic heart disease, those patients who were randomized
to CoQ10 (300 mg/day) for 4 months had increased activity of antioxidant enzymes, such
as superoxide dismutase, catalase, and glutathione peroxidase, and reduced inflammatory
markers TNF-α and IL-6 [154]. The effects of CoQ10 administration on reducing the in-
flammatory cytokines in heart tissue is critical for the interpretation of the Q-SYMBIO trial
results in patients with congestive heart failure [2]. Elaboration of the cytokine IL-6 occurs
within cardiac myocytes and with sustained activation of gp130, a member of the signaling
pathway, and induces adverse remodeling in the heart, such as hypertrophy. At 6 weeks
following transaortic constriction (TAC) in wild type mice, the degree of hypertrophy was
activated by a combination of CaMKII and the STAT3 pathways, and this signaling cascade
in addition to the ventricular hypertrophy was blocked in those mice with disruption of the
IL-6 gene [155]. The degree of BNP expression was also lowered in the IL-6 knock-out mice
following TAC, providing additional evidence that the elaboration of BNP in the heart is
downstream from cytokine activation of IL-6. Furthermore, among those patients with
insulin resistance and rheumatoid arthritis, increased IL-6 levels were the best predictor
of increased NT-proBNP levels, further supporting a direct link between inflammation
and elevated cardiac biomarkers [156]. These clinical observations are also supported by
work in human cardiac fibroblasts, which has shown increased BNP expression following
exposure to various inflammatory markers, including the interleukins [2,157].

In summary, traditional therapies that improve outcomes in patients with chronic
ischemic heart disease have failed to reduce perioperative adverse outcomes following
non-cardiac operations. Use of cardiac biomarkers such as NT-proBNP has become an
important means of risk-stratification and can identify those patients who will experi-
ence myocardial injury as defined by elevated cardiac troponin following surgery. There
is emerging evidence that administration of ubiquinone prior to a major cardiac opera-
tion will reduce these elevations in BNP and troponin by mitigating oxidant stress [158].
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However, the number of studies that have used rigorous designs involving randomized,
controlled, double-blind strategies with treatment of CoQ10 versus placebo prior to major
vascular or cardiac operations are limited (Table 2). Clearly, additional studies are needed,
particularly related to the proper dosing of ubiquinone relative to plasma levels, as well
to understanding the potential benefits in patients with congestive heart failure relative
to oxidant stress markers and improved bioenergetics [159]. Hopefully, the community
dealing with perioperative care can advance novel, alternative, safe antioxidant therapies
prior to and following major vascular operations, particularly among high risk patients
defined by either the revised cardiac risk index [20] or an elevated preoperative level
of BNP [14] as a means of reducing short-term and potentially long-term postoperative
adverse outcomes.

Table 2. Randomized, controlled, double-blind studies testing the effects of preoperative treatment with CoQ10 vs. placebo
on postoperative outcome measures.

Study Results of
Treatment Type of Surgery Sample Size Pre-Op Rx Time Dose of CoQ10

Primary End
Point Measure Post-Op Time

Khan et al. [2] Vascular n = 121 3 days 400 mg/d NT Pro-BNP 30 days

Orlando et al. [160] AVR n = 50 7 days 400 mg/d Troponin
I/CK-MB 5 days

Rosenfeldt et al. [131] CABG ± AVR n = 121 14 days 300 mg/d MDA 30 days

Taggart et al. [161] CABG n = 20 12 h 600 mg Troponin
T/CKMB 30 days

Judy et al. [162] CABG ± AVR n = 20 14 days 100 mg/d CI/LVEF 30 days

MDA (malondialdehyde); CK-MB (creatine kinase-myocardial band); CI (cardiac index), LVEF (left ventricular ejection fraction), CABG
(coronary artery bypass graft), AVR (aortic valve replacement).
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