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Most Rho family GTPases serve as key molecular switches in a wide spectrum of biological processes. An increasing
number of studies have expanded their roles to the spermatogenesis. Several members of Rho family have been confirmed
to be essential for mammalian spermatogenesis, but the precise roles of this family in male reproduction have not been
well studied yet. Here we report a surprising function of an atypical and testis-specific Rho GTPase, RSA-14-44 in
spermatogenesis. Featured by unique structural and expressional patterns, RSA-14-44 is distinguished from three canon-
ical members of Rho cluster. Thus, we define RSA-14-44 as a new member of Rho GTPases family and rename it RhoS
(Rho in spermatogenic cells). RhoS associates with PSMB5, a catalytic subunit of the proteasome, in a series of
stage-specific spermatogenic cells. More importantly, RhoS does not directly modulate the cellular proteasome activity,
but participates in regulating the stability of “unincorporated” PSMB5 precursors. Meanwhile, our data demonstrate that
the activation of RhoS is prerequisite for negatively regulating the stability of PSMB5 precursors. Therefore, our finding
uncovers a direct and functional connection between the Rho GTPase family and the pathway of proteasome biogenesis

and provide new clues for deciphering the secrets of spermatogenesis.

INTRODUCTION

Mammalian spermatogenesis is a paradigm for develop-
ment, during which the genetic information from male germ
stem cells is reedited, reorganized, and finally distributed
into spermatozoa, along with a dramatic metamorphosis of
germ cells (Kierszenbaum, 1994; de Kretser et al., 1998;
Trasler, 2009). This intricate process is strictly regulated by a
system that is constructed from a sophisticated and well-
coordinated program of gene expression (Schultz ef al., 2003;
Rolland et al., 2008; Lui and Cheng, 2008). The most notable
function of this program was performed by numerous testis
and/or germ cell-specific genes in spermatogenesis (Eddy,
2002; Sha et al., 2002; White-Cooper, 2010). Thus, identifica-
tion and further characterization of these specific genes is of
great value to the determination of the mechanism of sper-
matogenesis.
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The mammalian Rho GTPases consist of over 20 distinct
members that are homologous in evolution, forming a sub-
group of the Ras super family (Bustelo et al., 2007). Repre-
sented by CDC42, RAC1, and RhoA, most members of this
super subfamily have been shown to act as key molecular
switches by cycling between an active GTP-bound state and
an inactive GDP-bound state (Etienne-Manneville and Hall,
2002). They are known for their pivotal roles in a wide
variety of cellular functions, including cytoskeleton organi-
zation, cell polarity, microtubule dynamics, membrane
transport pathways, and transcription factor activity
(Mackay and Hall, 1998; Ridley, 2001; Boureux et al., 2007;
Vega and Ridley, 2008). Recently, several members of this
subfamily including Rnd2, Cdc42, Racl, Rac2, and RhoB,
coupled with a group of their regulator proteins, have been
identified in the testis. Some of them have been proved to
respectively participate in regulating Sertoli-germ cell tight
junctions, germ cell movement, or cell division (Freeman et
al., 2002; Naud et al., 2003; Lui et al., 2005; Sarkar et al., 2007;
Adly and Hussein, 2010; Wong and Cheng, 2009). However,
to date, much more work remains to be done to thoroughly
understand the physiological roles of Rho family GTPases
in the testis. In particular, exploring the putative testis
and/or germ-specific Rho-like GTPases and their related
pathways will contribute greatly to our knowledge of
spermatogenesis.

The ubiquitin-proteasome system (UPS) takes the central
stage in nonlysosomal protein degradation in eukaryotic
cells (Tanaka et al., 1992; Rivett, 1993). As a core component
of the UPS, the proteasome works as a protease with high
efficiency and specificity in various cellular processes includ-



ing cell cycle progression, transcriptional regulation, signal
transduction, and cell fate determination (Zwickl, 2002; Ad-
ams, 2003; Hendil and Hartmann-Petersen, 2004). The
highly conserved structure of the 26S proteasome is based
on two subcomplexes, namely, a 20S catalytic core particle
(CP) and a 19S regulatory particle (RP; Walz et al., 1998;
Cheng, 2009). In eukaryotes, the CP is composed of two
identical outer a-rings and two identical inner B-rings, each
consisting of seven homologous subunits («1-7 and B 1-7),
that stack to form a catalytic cylinder (; Groll et al., 2002;
Unno ef al., 2002a,b). All of catalytic -subunits (81, B2, B5)
are expressed in immature precursor forms, thereby pre-
venting self-assembly of the catalytic subunits and active site
exposure. Thus, a major confusion in understanding the
biogenesis of proteasome is how de novo-synthesized
B-subunits precursors are restricted in the assembly of pro-
teasome to avoid being diffused into untargeted subcellular
regions, where these precursors might be incorrectly acti-
vated by nonspecific cleavages.

On the other hand, recent studies have revealed a dy-
namic and heterogeneous nature in the proteasome biogen-
esis. Mammals encode four major additional catalytic -sub-
units (B1i, B2i, B5i, and B5t), which are incorporated upon
induction in place of the corresponding B-subunits (81, 82,
and B5). This variation in B-subunits composition results in
different proteasome subtypes, that is, immunoproteasomes
for proteasomes containing B1i, 82i, and B5i; and thymopro-
teasomes for those containing g5t (Aki et al., 1994; Heink et
al., 2005; Ostrowska et al., 2006; Tomaru et al., 2009). Inter-
estingly, some reports had described alternative or unique
proteasome subunits and its associated proteins in the testes
of various species, whose notable functions are related to the
reproductive ability (Khor et al., 2006; Belote and Zhong,
2009; Zhong and Belote, 2007; Rivkin et al., 2009;). However,
the mechanisms underlying the proteasome biogenesis in
mammalian development processes, especially in spermat-
ogenesis, are poorly understood.

Here, we identified a novel testis-specific small GTPase,
RhoS, in spermatogenesis. In terms of the structural and
enzymatic features of RhoS, we classified it into the Rho
small GTPase subfamily. Surprisingly, instead of canonical
regulators or effectors of Rho GTPases, a core subunit of the
20S proteasome, PSMB5, was identified as a novel RhoS-
associated protein in spermatogenesis. Notably, we found
that the primary functional role of RhoS is to work as a
switch for the degradation of unincorporated PSMB5 pre-
cursors, instead of directly attenuating the proteasome ac-
tivity. Collectively, these findings present the first piece of
evidence for a direct link between Rho family GTPases and
the proteasome biogenesis, expanding the catalogue of the
functions of Rho GTPases in spermatogenesis.

MATERIALS AND METHODS

Expression Constructs

cDNA spanning the full-length open reading frame of RhoS/RSA-14-44 or
PSMBS5 were obtained from rat testis by RT-PCR with corresponding primers
(for RhoS/RSA-14-44, the forward primer was 5'-ACCAT GGCTG CCATC
CGGAA GAAAC TGGTG ATCGT GGGAG-3'" and the reverse primer was
5'-TCAAA AGACA AAGCA ACCAG TCTTT TTCTT CACTC GATTCG-3';
for PSMB5, the forward primer was 5'-ATGGC GCTGG CTAGC GTGTT-3'
and the reverse primer was 5'-GATAT CGGGA CAGAT ACACT ACTG-3).
The PCR products were cloned into a pGEM-T1 vectors (Invitrogen, Carlsbad,
CA), which were confirmed by sequencing. Deletion mutants and wild type
of RhoS were generated by PCR using the pGEM-T1-RhoS as the template and
then were subcloned into a pcDNA6/myc-His B vector (Invitrogen) at Kpnl/
Apal sites with N-terminal Flag tag or N-terminal HA tag (pcDNA6-Flag-
RhoS or pcDNA6-HA-RhoS) for expressing Flag-RhoS or HA-RhoS. Point
mutations of RhoS were introduced into pcDNA6-Flag-RhoS using a PCR
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method for expressing Flag-RhosD13T, RhosG14V, RhosT19N, RhosQ63L, or
RhoS C190S, respectively. The coding region of PSMB5 was subcloned into
pcDNA6/myc-His B with or without N-terminal Flag-tag at EcoRI/Xhol sites
for expressing PSMB5-Myc or Flag-PSMB5-Myc and was also subcloned into
pcDNA4/TO/myc-His B at the same sites for the inducible expression of
PSMB5-Myc. The C-terminally 3XFlag-tagged PSMB5 was constructed by
inserting PSMB5’s coding region into a p3XFLAG-CMV-14 vector (Sigma-
Aldrich, St. Louis, MO) at HindIII/Xba I sites.

The coding regions of RhoA, RhoB, and RhoC were amplified from mouse
tissue cDNAs by PCR with following primers (forward and reverse): RhoA,
5'-GTCGG ATCCA CCATG GCTGC CATCC GGAAG AAACT G-3' and
5-CGCGA ATTCT CACAA GACAA GGCAC CCAG-3'; RhoB, forward
primer as for RhoA and 5'-CGTCT AGATC ATAGC ACCTT GCAGC AGTTG
ATGCA GCCAT TCTGA GATCC G-3'; and RhoC, forward primer as for RhoA
and 5'-CGCGA ATTCT CATCA GAGAA TGGGA CAGCC CCTC-3'. The
PCR products were cloned into pcDNA6/myc-His B vector individually at
BamHI/EcoRI sites with N-terminal Flag tag, except for RhoB at BamHI/Xbal
sites.

For the prokaryote expression vectors, the entire coding sequence of RhoS/
RSA-14-44 was inserted into pGEX-4T-3 (GE Healthcare, Little Chalfont and
Buckinghamshire, United Kingdom) and pET-30a (Novagen, Madison, WI) at
EcoRI/Xhol sites.

Northern Blot Analysis

A normalized Northern blot was used to identify RhoS/RSA-14-44 transcripts
in different rat tissues. Total RNA isolated from the indicated tissues of adult
rats using the Trizol reagent (Invitrogen) was separated and blotted onto a
positively charged nylon membrane (Boehringer Mannheim, Ingelheim on
Rein, DE). The membrane was probed sequentially with a y-32P-labeled
RhoS/RSA-14-44 ¢cDNA probe and then with a y-32P-labeled B-actin probe.
After hybridization, blots were washed at high stringency and exposed to
x-ray film.

Semiquantitative Relative RT-PCR

With Trizol reagent, total RNAs were isolated from tissues of adult mice and
from testes of mice at various ages, ranging from 1 to 10 wk after birth,
respectively. Isolated total RNA, 1 ug, was converted to cDNA with reverse
transcription system (Promega, Madison, WI). cDNA samples were subjected
to PCR amplification using following target and reference gene primers:
RhoA, 5'-CGGAA TGACG AGCAC ACGAG ACGG-3' and 5'-CAAGA
TGAGG CACCC AGA-3'; RhoB, 5-GCGCA GCGAC GAGCA TGTCC
GCAC-3' and 5'-TAGCA CCTTG CAGCA GTTGA TG-3'; RhoC, 5'-GAGGC
AAGATGAGCA TACCA GGAGA-3' and 5'-GAGAA TGGGA CAGCC
CCTCC GGCG-3'; RhoS/RSA-14-44, 5'-CGGAA TGACT TCTAC ACGAT
ACAA-3"and 5'-AAAGA CAAAG CAACC AGT-3';and GAPDH, 5'-AGCGA
GATCC CTCCA AAATC-3' and 5'-GGCAG AGATG ATGAC CCTTT-3'.
Cycling conditions were 1 cycle at 95°C for 2 min, followed by 30 cycles of
denaturation at 95°C for 15 s, and annealing/extension at 56°C for 15 s.

Tissues and Cells

The tissue samples were prepared from adult male BALB/c mice for analyz-
ing the spatial expression pattern of RhoS by RT-PCR, whereas testes tissues
for studying the temporal expression pattern were obtained from male
BALB/c mice at different ages (from 1 to 10 wk after birth). The tissues
samples for Northern blot were isolated from adult male Sprague-Dawley
rats. All of the experimental and surgical procedures were approved by the
Animal Ethics Committee of National Research Institute for Family Planning
Beijing.

Human embryonic kidney (HEK) 293T, MCF-7, and Hela cells were main-
tained in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented
with 10% fetal bovine serum (FBS) at 37°C with 5% CO,. HEK293T cells were
transfected with Vigorous transfection reagent (Vigorous, Beijing, CN).
MCF-7 and Hela cells were transfected with Fugene HD transfection reagent
(Roche, Basel, CH).

For establishing PSMB5 inducible expression stable cell line with Tet-on
system, Hela cells were transfected with combined pcDNA4-TO-PSMB5 and
pcDNAG6-TR at a ratio of 6:1 and then selected for the stable clones with the
mixture of Zeocin and blasticidin according to the manual of the products
(Invitrogen). The cell lines with lower background expression were selected
for the protein stability assay.

Protein Expression and Purification

Recombinant glutathione S-transferase (GST)- and 6XHis-tagged RhoS were
produced in Escherichia coli BL21 (DE3) cells and purified with glutathione
Sepharose 4B (GE Healthcare, Piscataway, NJ) or Ni-NTA Sepharose (Qiagen,
Hilden, DE) according to the manufacturer’s instructions. Finally, the purified
proteins were dialyzed against buffer A (50 mM Tris-HCI, pH 7.5, 150 mM
NaCl, 0.5 mM EDTA, and 1 mM dithiothreitol) plus 20% glycerol.
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Assay of Rho GTPase Activity

The GTPase activity of purified GST-RhoS was measured using a RhoGAP
assay Biochem Kit (BK105; Cytoskeleton, Denver, CO). All procedures were
performed according to the manufacturer’s protocol.

Active Rho GTPase Pulldown Assay

HEK 293T cells were transfected with the indicated plasmids. Twenty-four
hours after transfection, the activation of Rho GTPase was investigated using
a Rho Activation Assay Kit (STA-403; Cell Biolabs, San Diego, CA) according
to the manufacturer’s protocol.

Antibodies

A mouse polyclonal antibody against purified recombinant 6xHis-tagged
RSA-14-44/RhoS was raised and purified by the chromatography-affinity
method. Other antibodies as follows were purchased from the corresponding
companies: anti-Flag (clone M2; Sigma-Aldrich, St. Louis, MO), anti-Myc
(mouse mAb; Abmart, Shanghai, CN), anti-Myc (rabbit polyclonal antibody;
MBL, Woburn, MA), anti-PSMB5 (Enzo, Plymouth Meeting, PA), anti-PSMA2
(Cell Signaling, Danvers, MA), anti-GFP (MBL, Woburn, MA), anti-GAPDH
(Santa Cruz Biotechnology, Santa Cruz, CA), anti-LaminA+C (Abcam, Cam-
bridge, United Kingdom), anti-Calnexin (Santa Cruz Biotechnology), and
anti-POMP (Sigma-Aldrich).

2.9. Immunohistochemical Analysis

Rat testes were fixed in buffered paraformaldehyde at 4°C and embedded in
paraffin. Deparaffinized sections (7 um) were incubated in phosphate-buff-
ered saline (PBS) containing 3% H,O, to quench endogenous peroxidase
activity. Sections were then blocked in species-specific normal sera for 30—-60
min to reduce nonspecific staining and subsequently were incubated with
primary antibodies or preimmune sera followed by horseradish peroxidase—
conjugated secondary antibody. The signals were detected using a 3,3'-dia-
minobenzidine substrate working solution until the desired staining was
achieved. Nuclei were counterstained with hematoxylin.

2.10. Immunofluorescence Analysis

The separation of germ cells was performed as previously described (Qiao et
al., 2004). Freshly prepared spermatogenic cell suspensions were smeared on
slides. After fixing with methanol and blocking nonspecific sites, the cells
were subjected to double-fluorescent staining. The cells were incubated with
mouse anti-RhoS antibody plus rabbit anti-PSMB5 antibody followed by
FITC-conjugated anti-mouse goat IgG and rhodamine-conjugated anti-rabbit
goat IgG. For the control samples, the primary antibodies were replaced by
the IgGs from the same species. Nuclei were counterstained with DAPT (1
pg/ml) (Invitrogen). The signals were detected by Leica TCS NT laser con-
focal microscopy (Deerfield, IL).

For MCF-7 cells, after fixing in 4% paraformaldehyde, the cells were per-
meabilized and blocked with PBS containing 0.3% Triton X-100 and 5% FBS.
Subsequently, they underwent double-fluorescent staining according to the
same protocols as described above except that the primary antibodies were
replaced by an anti-Flag antibody and an anti-Myc polyclonal antibody.

2.11. Immunoprecipitation and Immunoblot (IB)

For immunoprecipitation (IP), HEK293T cells were lysed with ice-cold buffer
B (50 mM Tris-HCI, pH 7.5, 150 mM NaCl, 10 mM MgCl,, 2 mM ATP, and 1
mM dithiothreitol) containing 0.5% Triton X-100 and centrifuged at 13,000
rpm for 10 min at 4°C. The supernatant (~1 mg) was added to M2-agarose
(Sigma-Aldrich) and incubated for 1 h at 4°C. The immunoprecipitates were
washed several times with ice-cold buffer A containing 0.2% Triton X-100 and
then boiled in SDS sample buffer with beta-mercaptoethanol.

For immunoblotting, the samples were separated by 12% SDS-PAGE (Rot-
tinger et al., 2006) and transferred to a PVDF membrane (Millipore, Bedford,
MA). The membranes were immersed in 5% BSA overnight at 4°C and
incubated with primary antibody. The bound antibodies were detected using
corresponding horseradish peroxidase-conjugated secondary antibodies (an-
ti-mouse, goat IgG; anti-rabbit, goat IgG; Santa Cruz Biotechnology) and ECL
reagents (Engreen, Beijing, CN).

Determination of PSMB5 Protein Stability

Twenty-four hours after transfection with indicated plasmids, cells were
incubated with 100 pg of cycloheximide (CHX) for effectively blocking the
protein synthesis. The concentration of PSMB5, including both the precursor
and mature forms, was monitored by Western blotting at various time points
after CHX addition.

For measuring the PSMB5 protein level in steady state using the Tet-on
expression system, the selected stable cell lines with low level of leaky
expression were transfected with the indicated plasmids. Twenty-four hours
after transfection, the cells was induced by replacing with tetracycline (1
pg/ml) containing media for 4 h. To suppress the expression of PSMB5, the
cells were then cultured in Tet-free medium for another 1 h before harvest at
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different time points. The protein level of PSMB5 was analyzed by Western
blot.

Cellular Proteasome Activity Assay

The HEK293T cells were transfected with corresponding plasmids and ho-
mogenized on ice in buffer B devoid of sodium. The cell lysates were clarified
by centrifugation, and the supernatants were used for the determination of
protein concentration and the subsequent assay for proteasome activity using
the fluorogenic substrate succinyl LLVY-7amc. The detailed procedures were
as same as described previously (Hirano et al., 2005).

Glycerol Gradient Analysis

After transfection, HEK 293T cells were lysed in buffer B containing 0.5%
NP-40. The lysates were clarified by centrifugation at 13,000 rpm at 4°C, and
the supernatants were subjected to 10-40% (vol/vol) linear glycerol density
gradient centrifugation at 100,000 X g for 12 h, as described previously (Qiu
et al., 2006).

RESULTS

RhoS/RSA-14-44 Is Specifically Expressed in Testis

In previous studies, we had identified a series of factors in
spermatogenesis through a system combining laser capture
microdissection (LCM) and suppressive subtractive hybrid-
ization (Zhang et al., 2003; Liang et al., 2004; Chen et al.,
2008). Based on this technique, a new gene was isolated and
cloned from rat testis cONA library and assigned the name
of RSA-14-44 (GenBank ID: 297173). To elucidate the expres-
sion pattern of RSA-14-44, a Northern blot analysis was
applied to a panel of rat tissues, the result of which showed
its expression is restricted to the testis (Figure 1A). To fur-
ther determine the distribution of RSA-14-44 in the testis, we
raised a specific antibody against RSA-14-44 and used it to
probe the frozen section of rat testis (Figure 1B). All positive
signals were exclusively found in seminiferous tubules, and
notably, much stronger stains were observed in an array of
spermatogenic cell lineages at defined stages of spermato-
genesis, including panchytene spermatocytes, round sper-
matids, and elongated spermatids. Thus, RSA-14-44 is a
testis-specific gene with putative roles at some specific
stages of spermatogenesis.

RhoS/RSA-14-44 Is Classified into the Rho GTPases
Family

Based on our in silico analysis utilizing the Pfam (http://
www.sanger.ac.uk/resources/databases/pfam.html) and
InterProScan  (http://www.ebi.ac.uk/Tools/InterProScan)
databases, RSA-14-44 was predicted to contain a Rho-type
structure (amino acids 1-182) and a CAAX motif (amino
acids 190-193; C is cysteine, A is an aliphatic amino acid, and
X is variable; Figure 2A). These two conserved parts are
actually the typical structural symbols of Rho family GT-
Pases. In addition, there was an “insert region” (amino acids
123-136) in RSA-14-44 (Figure 2A) that was similar in some
degree with the “insert loop” of Rho subfamily GTPases.
Collectively, these results raised a high possibility that RSA-
14-44 belongs to the Rho GTPases family, and thus we
renamed it RhoS (Rho in spermatogenic cells).

To determine whether RhoS could hydrolysis GTP in the
same enzymatic way as other Rho family GTPases, we per-
formed GTP hydrolysis analysis based on a well-developed
in vitro assay using purified GST-RhoS protein (Supplemen-
tal Figure 1). The intrinsic GTPases activity is generally very
low in the case of the Ras superfamily of GTPases, including
Rho family. This hydrolysis can be accelerated by RhoGAP
proteins like p50RhoGAP, with distinct specificities for their
respective GTP-binding proteins (Zhang and Zheng, 1998).
As shown in Figure 2B, p50RhoGAP significantly elevated
the GTP hydrolysis reaction catalyzed by RhoS, whereas the
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Figure 1. The expression of RhoS/RSA-14-44 is restricted to germ
cells. (A) Tissue distribution of RhoS/RSA-14-44 mRNA in adult rats
was analyzed by Northern blot. Each lane contains 20 ug of total
RNA. (B) The spermatogenic cell-specific expression pattern of
RhoS. Immunohistochemistry was carried out using anti-RhoS poly-
clonal antibodies (right) to clarify the localization of the protein in
rat testis. A negative control was performed using normal rabbit
sera (left). P, pachytene spermatocytes; Rs, round spermatids; Es,
elongated spermatids; L, lumen of seminiferous. Bar, 100 um in top
panels and 20 um in bottom panels.

intrinsic activity of RhoS remained at a considerably low
level when p50RhoGAP was absent in the reaction system.
Therefore, we characterized RhoS as a Rho type GTPase.
We then made sequence alignment of RhoS with three
Rho GTPase isoforms (RhoA, RhoB, and Rho C). The result
indicates that RhoS shared high similarity with these mem-
bers in the Rho GTPase domain (amino acids 1-121) and the
CAAX motif (Figure 3A), represented by some well-con-
served residues such as D13, G14, T19, Q63, and C190.
Previous studies confirmed that the mutations in these spe-
cific residues can genetically modify the activation of Rho
family GTPases. For example, D13T or T19N mutation oc-
curred in RhoA results in a dominant negative form of
GTPase (Zallen et al., 2000), whereas G14V or Q63L mutant
is constitutively active (Bourne et al., 1991). Moreover, most
Rho family members undergo CAAX-terminal posttransla-
tional modification at C190 site, which is critical for the
membrane association and biological activity of Rho GT-
Pases (Hori ef al., 1991; Thara et al., 1998; Solski et al., 2002).
Therefore, to further verify the correlation of the Rho type
structure of RhoS to its GTPase activity, we introduced
respective mutations into RhoS to assess their effects on the
activation of the GTPase through a pulldown assay, in
which activated Rho GTPase could be isolated through se-
lectively binding to RBD (Rho-binding domain) fused beads
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(Knaus et al., 2007). As shown in Figure 2C, all the mutants
we generated behaved in ways similar to those described in
previous reports on other Rho family members. Higher ef-
ficiency in pulldown of activated GTPase was exhibited in
the G14V and Q63L groups compared with that of wild-type
protein, whereas low levels of positive signals were detected
in D13T, T19N, and C190S groups. Meanwhile, we com-
pared the cellular localization of the C190S mutant and
wide-type protein by IF (Figure 2D). In contrast to the pe-
rinuclear centered pattern of the wild-type protein, C190S
mutant was dispersed in both nuclear and cytoplasmic re-
gions, which is similar to the case of RhoA<'% (Benetka et
al., 2006). This dramatic difference occurred in the C190S
mutant was also confirmed by the Western blot analysis
(Supplemental Figure 2). These results indicate that Rho
type structure of RhoS provides a dynamic base for its
biological activity, thus confirming RhoS is a member of the
Rho GTPases family. On the other hand, this experiment
validated a group of RhoS activity—related mutants that
became powerful tools in our subsequent work for exploring
the biological functions of RhoS.

Characterization of RhoS as a New Member of the Rho
GTPases Family

Despite a high level of similarity between RhoS and the
canonical Rho family members (RhoA, RhoB, and RhoC),
there are substantial differences between these GTPases, not
only in their detailed structures but also in their expression
patterns. Many divergences in the protein sequences of Rho
GTPases occur in the hypervariable region in the C-terminal
structure (Figure 2A). In addition, the insert region also
contributes to forming the structural and functional distinc-
tion in different Rho GTPases. Actually, in RhoS, there are
evolutionally conserved variations in these two symbolic
structures compared with RhoA, RhoB, and RhoC (red ar-
rows in Figure 3A and Supplemental Figure 3). Further
phylogenetic tree analysis confirmed that these differences
significantly lead to the separation of RhoS from other mem-
bers of Rho subfamily (Figure 3B).

Even though, we still wonder whether RhoS serves as an
unconventional Rho GTPase with unique biological roles.
For this purpose, we chased the spatial and temporal ex-
pression patterns of RhoS. RT-PCR analysis showed that the
expression of RhoS is restricted to mouse testis, whereas
RhoA, RhoB, and RhoC are expressed ubiquitously in all of
tissues examined (Figure 4A). This result is consistent with
the previous reports on the distribution of RhoA, RhoB, and
RhoC (Liu et al., 2001; Ducummon and Berger, 2006; Mitchell
et al., 2007). Further analysis was performed on the testes
obtained from mice at different times after birth. Previous
studies confirmed that for the mice at the age of 1 wk, most of
the cells in testis belong to somatic population, and the pro-
portion of germ cells sequentially increases as spermatogenesis
proceeds. As showed in Figure 4B, only the expression of RhoS
showed dynamic variation in the whole process of establishing
spermatogenesis. Lowest level of expression appeared in the
second week, and the level began to increase after 3 wk, reach-
ing the peak at about 4 or 5 wk. These data provide another
piece of evidence for the germ cell-specific expression pattern
of RhoS, distinguished from the cases of canonical Rho GT-
Pases (RhoA, RhoB, and RhoC). Therefore, we conclude that
RhoS is a new member of Rho GTPases family that might play
unique roles in mammalian spermatogenesis.

RhoS Associates with PSMB5 in Spermatogenesis

To elucidate the biological roles of RhoS in the spermato-
genesis, we tried to seek its associated proteins in the testis

4315



N. Zhang et al.

A B 03
025
g 02
1 193 g
Insert loop B 045
\ a
181 O o4
Rho GTPase domain ]120 7 AAX. 005
< Hypervariable region o L EE s
GST-RhoS | - + - |
PSORhoGAP | - | - | + [+ [+ [+

Cc D

> N
fé"?‘g

A
;5? & S

- ‘... +GTPYS

RBD pull-down

Figure 2. The conservation of RhoS in the
structure and enzymatic activity as a Rho GT-
Pase. (A) A schematic structural model of
RhoS. Numbers indicate corresponding amino
acids in sequence. (B) GTP hydrolysis activity
assay. Enzymatic activity was measured by
GTP hydrolysis using purified GTPase protein.
The phosphate generated by hydrolysis of GTP
was measured by the addition of CytoPhos (Cy-
toskeleton) reagent and reading the absorbance
at 650 nm. Results are presented as the mean *
SD from three experiments. (C) Activated Rho
GTPase (GTP-bound) protein pulldown assay.
Extracts were prepared from HEK293T cells tran-
siently expressing Flag-tagged wild-type or mu-
tated RhoS including RhoS(D13T), RhoS(G14V),
RhoS(T19N), RhoS(Q63L), and RhoS(C190S). Af-
ter a 1-h incubation with GST-RBD glutathione
beads, the bound proteins were analyzed by
Western blotting using anti-Flag antibody. (D) A
conserved C-terminal site (C190) is essential for
the proper localization of RhoS. Subcellular dis-
tributions of wild-type and C190S mutant were
analyzed by immunofluorescence. Twenty-four
hours after transfection, MCF-7 cells transfected
with the indicated plasmids were prepared for
immunofluorescence analysis using anti-Flag an-
tibody. Bar, 18.73 um.

though yeast two-hybridization screening. PSMB5, a key =~ RhoS responsible for the association with PSMB5, several
catalytic subunit of the 20S proteasome, was identified as a deletion mutants of RhoS were generated. Different con-
novel candidate protein. CoIP of PSMB5 with RhoS pro- structs respectively expressing the full-length or deletion
vided the further evidence to confirm the association be- mutant RhoS were cotransfected into HEK293T cells with
tween these two proteins (Figure 5A). To define the region in PSMB5. As shown in Figure 5B, different RhoS proteins
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Figure 3. The structural features distinguish RhoS from canonical Rho GTPases. (A) Alignment of the amino acid sequence of RhoS and
three classical Rho GTPases (RhoA, RhoB, and RhoC). The alignment was performed by DNAMAN (Lynnon, Quebec, Canada). Homology
levels are highlighted in different colors. Black: 100%; Pink: 75%; Blue: 50%. Arrows: residues conserved between RhoS and 4930544G11Rik
(mRhoS) but significantly distinct from RhoA/B/C; Points: conserved resides for regulating the activity of Rho type GTPases. (B)
Phylogenetic tree analysis of three Rho isoforms, RhoS, and 4930544G11Rik. Data generated from alignment (Figure 3A) were loaded to
reconstruct the rooted neighbor-joining phylogenetic tree by the maximum likelihood method. Numbers indicate branch length. r, rat.
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(B) Expression analysis of RhoS, RhoA, RhoB, and RhoC in testes from the mice at different ages after birth. W: week; each number represents

the age of mice after birth.

exhibited significant variation in the affinity for PSMB5. The
highest affinity was observed in the phosphate-binding loop
deletion (20-193) group, followed by the switch I loop de-
letion (64-193) and the C-terminal deletion (1-182) groups;
the GTPase domain deletion (121-193) and full-length
groups had much lower affinity for PSMB5. These results
indicate that RhoS associates with PSMB5 mainly through its
GTPase domain (1-120), particularly the region covering the
switch I and switch II loops (20-120). It is noted that the
switch I and switch II loops not only are involved in Rho
GTPase effectors’ binding, but also define the specificities of
Rho GTPases to their effectors (Bishop and Hall, 2000). So,
we proposed that PSMB5 might be a novel target protein of
RhoS.

A  FlagRhos - +

GTPases of Rho family generally act as switches that
convert extracellular signals into multiple intracellular ef-
fects, which is mediated by various target proteins. To clar-
ify whether PSMB?5 is a physiological effector of RhoS, we
tracked the expression of RhoS and PSMB5 in the whole
process of the spermatogenesis. It was turned out that the
distributions of RhoS and PSMB5 were dynamic and highly
overlapped in multiple types of spermatogenic cells in the
spermatogenesis (Figure 5C). In spermatocytes, both of these
two proteins were restricted to a cytoplasmic region near the
nucleus. In round spermatids, both of them exhibited a
scattered distribution surrounding the nucleus. However, in
elongated spermatids, these two proteins were seemed to be
translocated into a space around the post-acrosome area,
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Figure 5. RhoS associates with PSMB5. (A) CoIP of RhoS with PSMB5. HEK293T cells were transfected with Flag-tagged plasmid encoding
RhoS and Myc-tagged plasmid encoding PSMB5 as indicated. The immunoprecipitates were immunoblotted for Flag and Myc epitopes. P,
precursor; M, matured. (B) Mapping the region in RhoS interacting withPSMB5. Wild-type RhoS and its deletion mutants were coexpressed
with PSMB5 in HEK293T cells respectively. The following IP and immunoblotting were performed as described in A. (C) RhoS physiolog-
ically associates with PSMB5 in spermatogenesis. Isolated spermatogenic cell population were fixed and used for immunocytochemical
analysis with anti-PSMB5 and anti-RhoS antibodies. The data were collected and analyzed using confocal microscopy. The nucleus was
stained with DAPL Bar, 8 um. A, spermatocytes; B, round spermatid; C, elongated spermatid and D, spermatozoa.
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where RhoS was predominantly localized in the vicinity of
the posterior area of nucleus, whereas PMSB5 mainly re-
sided in the cytoplasmic sect peripheral to RhoS. Finally, in
spermatozoa, representing the end of spermiogenesis, the
distributions of RhoS and PSMB5 underwent another re-
modeling process, during which they were relocated to the
acrosome and midpiece parts of spermatozoa. Notably, an
earlier description of the ubiquitin-proteasome system in the
spermatogenesis had shown similar results as that from this
observation (Berruti and Martegani, 2005; Tengowski et al.,
2007). Therefore, we propose that PSMB5 is an important
physiological partner of RhoS in spermatogenesis.

RhoS Is Not a Modulator Directly Regulating the Cellular
Proteasome Activity

PSMB5 is one of three catalytic 8 subunits undertaking the
function of proteasomes in protein degradation (Voges et al.,
1999). As RhoS associates with PSMB5 in spermatogenesis,
we simply hypothesized that RhoS might directly regulate
the proteasome activity as described in the reports on the
proteasome-associated proteins (Kleijnen et al., 2000; Liu et
al., 2006). To verify this hypothesis, the proteasome activity
was measured in the cells with transient expressions of
target proteins. We found unexpectedly that the cellular
proteasome activity was not altered significantly under ei-
ther coexpression of RhoS and PSMB5 or single expression
of each protein in a confined time course, namely, from 36 to
72 h (Figure 6). So, in our hands, there was no evidence that
RhoS directly regulate the cellular proteasome activity.

RhoS Associates with Only “Unincorporated” PSMB5
Precursors

The negative results from the proteasome activity assay led
us to look for alternative ways to explore the functions of the
association between RhoS and PSMB5. Similar to many
other proteases, the active 8 subunits of the proteasome
including PSMB5 are synthesized as precursor form of pro-
teins with N-terminal propeptides. On cleavage of the
propeptide, these B8 subunits are activated in the assembled
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proteasomes (Figure 7A). Following this clue, we planned to
define which type of PSMB5 associates with RhoS in the
cells. First, we performed a glycerol density gradient—based
assay to analysis the dynamic distribution of RhoS and
PSMBS5 in different steps of the proteasome assembly pro-
cess. Assembly of the 20S proteasome starts with the forma-
tion of a half-proteasome intermediate that contains one full
a-ring and one B-ring containing incorporated but unproc-
essed precursor forms of subunits. At the late stage of the
assembly, the dimerization of half-proteasomes leads to the
maturation of 20S proteasome, during which the proteolytic
B subunits become active through autocleavage (Tanaka,
2009). The a-subunits are usually taken as “trackers” to
reflect the whole assembly process, because they reside in
both assembly intermediates and mature protesome. Thus,
we chose PSMA?2 to track the proteasome assembly process.
As shown in Figure 7B, the distribution of PSMA2 defined
two types of proteasomes in the assembly process: one was
located in fractions 5-6, representing the half-proteasome
(half-PSM) and the other in fractions 9-17, standing for the
mature 20S proteasome. All of the mature PSMB5 existed
exclusively in the 20S proteasome fractions; in contrast,
PSMBS5 precursor was absent from matured 20S proteasome.
Except for only small part of the PSMB5 precursors located
in the assembly intermediates, most of them stayed in the
floating factions (1-4), to which RhoS also was restricted.
This result implies that RhoS associates with only unincor-
porated PSMB5 precursors and is unlikely to impede the
steps after the formation of the half-proteasome. Second, we
designed a series of IP experiments to compare the compo-
sition of the PSMB5 precursor containing complexes isolated
from the cells according to different strategies (Figure 7C).
PSMA? and a proteasome assembly chaperone, POMP, both
existed in the complex coimmunoprecipitated with the
PSMBS5 precursor, whereas they were totally disappeared in
the complex coimmunoprecipitated with RhoS. Based on
this result, we clarified two important facts: 1) the tran-
siently expressed PSMB5 is able to participate in the protea-
some assembly pathway, thus verifying the model we used;
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and 2) the PSMB5 precursor associating with RhoS remains
an “unincorporated” state in the cells, which is consistent
with our novel finding in the preceding glycerol gradient
analysis (Figure 7B). Finally, we found that in transfected
MCF-7 cells, RhoS was just partially colocalized with PSMB5
in a perinuclear region, seemed to be the endoplasmic retic-
ulum (ER), where the proteasome assembly is thought to
take place (Fricke et al., 2007; Figure 7D). Collectively, these
data testify that RhoS associates with only the unincorpo-
rated precursor of PSMB5 and suggest that it is mainly
involved in the earlier steps of the proteasome biogenesis.

3.7. RhoS Down-Regulates the Stability of PSMB5
Precursors

In previous studies, we noticed an intriguing fact that the
protein level of PSMB5 precursors is remained very low in
mammalian cells, compared with the mature form of PSMB5
(Hirano et al., , 2005, 2006). Despite the contribution of rapid
turnover from the precursor to the mature proteins (Chen
and Hochstrasser, 1996, Ramos et al., 1998), in our opinion, a
lower level of PSMB5 precursors seems to be partially a
result of its protein stability, significantly lower than the
matured PSMB5. To verify this notion, we checked the sta-
bility of a PSMB5 precursor using CHX to block the protein
synthesis in the cells. The PSMB5 precursor was obviously
unstable, but could be stabilized only with MG-132, an
inhibitor of the proteasome activity, whereas the mature
form of PSMB5 behaved conversely (Figure 8A). In particu-
lar, the loss of the precursor was much greater than the
increase in the mature protein, implying it is the protea-
some-mediated protein degradation that plays major roles in
decreasing the level of PSMB5 precursor. Most of the tran-
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precursor and matured PSMB5 to define which type
of PSMB5 associates RhoS. The proteins complex
were immunoprecipitated from the indicated cells
using anti-Flag antibody and resolved for detecting
the existence of RhoS, PSMB5 precursor, PSMA?2,
and POMP individually. (D) Partial colocalization of
RhoS and PSMBS5 in the cells. MCF-7 cells coexpress-
ing Flag-RhoS and PSMB5-Myc were fixed and
probed with anti-Flag and anti-Myc antibodies. Nu-
clei were stained with DAPI. Bar, 19.7 um.

siently expressed PSMB5 precursor stays in an unincorpo-
rated state and RhoS associates with this part of precursor in
the cells (Figure 7). Thus, we wondered whether RhoS affects
the protein stability of PSMB5 precursor. To this end, we
first observed the effect of increased amounts of RhoS on the
level of PSMB5. The level of PSMB5 precursor decreased
significantly as a result of the increased dose of RhoS; in
contrast, no disturbance was observed in the level of mature
PSMBS5 (Figure 8B). This result indicates that RhoS is in-
volved in regulating the protein level of PSMB5 precursor
rather than its autocleavage, which is consistent with the
notion that it associates with only unincorporated part of the
PSMB5 precursor. Second, we measured the stability of
PSMBS5 precursor under transient expression of RhoS. Over-
expressed RhoS dramatically down-regulated the stability of
the PSMB5 precursor and exhibited no significant effect on
the stability of the mature PSMB5 (Figure 8C). To avoid any
artifact interference from inhibiting protein synthesis, the
stability of PSMB5 precursor was also measured in “steady
state” based on an inducible expression system. As shown in
Figure 8D, the expression of PSMB5 was efficiently re-
pressed before adding the tetracycline and was very sensi-
tive to the inducer, indicating the successful set-up of a
system to study the stability of PSMB5. We found that the
half-life of PSMB5 precursor was still short, even shorten in
further under the overexpression of RhoS. These results suggest
that RhoS down-regulates the stability of PSMB5 precursor.

The PSMB5 Precursor Serves as a Unconventional Effector
of RhoS

Most Rho GTPases act as signaling gates, switching on when
bound to GTP (activated) and switching off when bound to
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analysis. The uninduced controls were included for monitoring the repression of background expression.

GDP (inactivated). After specifically binding to the activated
GTPases, various effector proteins could recognize and dis-
criminate the differences in the conformation of GTPases
with GTP loading (Bishop and Hall, 2000). To determine
whether the PSMB5 precursor belongs to this kind of effec-
tors of RhoS, we investigated the effect of GTP binding on
the interaction between RhoS and the PSMB5 precursor. All
of the dominant active or dominant negative mutants used
in this part had already been validated in preceding works
(Figure 2C). Strikingly, either dominant active (G14V and
Q63L) or dominant negative RhoS mutants (D13T, T19N,
and C190S) could be coIPed with PSMB5 precursors. How-
ever, there was a significant discrimination in the efficiency
in coIP of the PSMB5 precursor between dominant negative
and dominant active RhoS, suggesting the activation of
RhoS must have something to do with the association be-
tween these two proteins (Figure 9A). Next, we changed our
focus on testing the effect of RhoS activation on the stability
of PSMB5 precursor. Intriguingly, all dominant negative
RhoS mutants not only neutralized the effect of wild-type
RhoS on PSMBS5, but also somehow elevated the stability of
PSMB5 precursor compared with the control group (empty
vector). In contrast, compared with wide-type protein, all
dominant active RhoS mutants exerted more vigorous, at
least equal effect on the stability of PSMB5 precursor, indi-
cating the GTP loading is a critical switch-on signal for
modulating the PSMB5 precursor stability by RhoS (Figure
9B). Considered together, these observations suggest that
the PSMB5 precursor serves as an unconventional effector of
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RhoS, thereby providing important complements to the clas-
sical regulation networks of Rho family GTPases.

DISCUSSION

Identification and characterization of differentially ex-
pressed genes in testis has provided us additional insight
into the mechanisms of spermatogenesis (Lui and Cheng,
2008; White-Cooper, 2010).

In the present study, we identified a spermatogenesis
stage—specific gene RSA-14-44 from rat germ cells. This gene
encodes a protein containing a well-conserved Rho type
structure (Figure 2A); thus we renamed it RhoS (Rho in
spermatogenic cells). Enzymatic analysis of RhoS shows that
it could catalyze the GTP hydrolysis like other members of
Rho GTPase family (Figure 2B). Though RhoS shares high
amino acid similarity with the canonical members of Rho
GTPase family, it still reasonable for us to suspect that it
might be a new member of this family, because sharing high
structural similarity is never a surprise for the members of
this family, especially for the Rho cluster (RhoA, RhoB, and
RhoC; Takai et al., 2001). The most structural divergences in
the members of Rho GTPase family focus two “hotspots”:
one is in the “hypervariable region” and the other locate in
the “insert loop” (Michaelson et al., 2001; Wheeler and Rid-
ley, 2004). We observed significant and evolutionally con-
served variations within these two structures in RhoS, dis-
tinct from the corresponding parts in the classical Rho
isoforms (Figure 3, A and B; Supplemental Figure 3). How-
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ever, in this family with “high similarity,” the more solid
discrimination for each member relies on the differences in
their expression patterns or their cellular activities. RT-PCR
analysis showed that RhoS is a spermatogenic cell-specific
gene, seriously distinct form the conventional Rho isoforms
(Figure 4, A and B). Interestingly, when looking for the
putative homologues of RhoS in other species by searching
the NCBI database, we found that an uncharacterized gene,
4930544G11Rik, is considered to be the ortholog of RhoS in
mice (mRhoS; Okazaki et al., 2002). Microarray data from the
Genomics Institute of the Novartis Research Foundation
(La Jolla, CA; Su et al., 2004) confirmed that the expression of
4930544G11Rik is also restricted to the testis. These results
provide vigorous supports for us to propose that RhoS is a
new and spermatogenesis-specific member of Rho GTPases
family. Even though, much works needs to be done for
thoroughly understanding the biological role of RhoS as a
GTPase. For example, identifying the regulators like GEFs
(guanine nucleotide exchange factors), GAPs (GTPase-acti-
vating proteins) and GDIs (guanine nucleotide dissociation
inhibitors) specific for RhoS should be helpful to explore its
related signaling pathways and regulation mechanisms.
Screening the RhoS-associated proteins in the testis led us
to identify PSMB5, a catalytic subunit of the proteasome.

Vol. 21, December 15, 2010

_

IB a-GFP

Surprisingly, only the PSMB5 precursor associates with
RhoS (Figure 9A) and is merely subject to the regulation of
activated RhoS (Figure 9B). This is a novel finding, not only
because so far there are few cases describing the direct associ-
ation between Rho GTPases and proteasome subunits (Dong et
al., 2004), but also because such a regulation mechanism is
somehow unconventional for both Rho family GTPase and the
proteasome biogenesis. However, considering Rho family
GTPases as one of the most important molecular switches
controlling nearly every basic cellular event, it is not sur-
prising that a unique member of this family, RhoS partici-
pate in the proteasome biogenesis pathway. RhoS associates
with PSMB5 in a novel pattern that is distinguished from the
traditional ones in the cases of typical Rho GTPases and their
effectors. In our opinion, there are three possible reasons to
understand this phenomenon: 1) it might be a artifact re-
sulted from the forced expressions of target proteins in cells;
2) PSMB5 may not be the direct effector of RhoS, and there
should be some unidentified factor (or factors), most likely
some enzymes that would be recruited by RhoS, and be
capable of discriminating the signal from the activation of
RhoS and converting it to the event of regulating the PSMB5
precursor stability; and 3) until now, most of literature on
Rho GTPases family paid much more attention to the roles
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of a few classical members such as RhoA, Racl, and Cdc42.
This preference definitely brings us some interference to
thorough understanding the biological activities of unca-
nonical Rho GTPases like RhoS.

Further evidences indicate that RhoS is involved in the
regulation of the stability of PSMB5 precursor. Due to the
high similarity between RhoS and other three Rho isoforms,
i.e., RhoA, RhoB, and RhoC, we wondered whether this
function is unique for RhoS. Actually, we found that except
for RhoA, both RhoB and RhoC associate with the PSMB5
precursor and down-regulate its stability in the similar way
as observed in RhoS (Supplemental Figures 4 and 5). In our
opinion, there are two possibilities for explaining this phe-
nomenon. The first one is that the high level of similarity
between these Rho family members led to the functional
redundancy. The region in RhoS responsible for its associ-
ating with PSMB5 was shown to be located in the conserved
Rho GTPase domain (Figure 5B), which is shared by other
three Rho isoforms. In fact, most RhoA targets identified so
far also interact with RhoB and RhoC (Bryan and D’Amore,
2007). The other possibility is that RhoB and RhoC might be
the functional ortholog of RhoS in somatic cells. This idea
could be supported by two facts: 1) the protein level of the
PSMB5 precursor is low in somatic cells where RhoB and
RhoC, instead of RhoS, exist; and 2) RhoA, though sharing
higher similarity in the structure with RhoS than RhoB and
RhoC, showed less effect on the stability of the PSMB5
precursor.

Assembly of the proteasome is not a straightforward pro-
cess. The complicated architecture of proteasomes justifies
the great amount of energy consumed by the cell to assem-
ble this degradation machinery correctly. Although the fun-
damental mechanisms of 20S proteasome assembly are well
described, there is still at least one question remains to be
answered: how to balance the synthesis of B subunits pre-
cursors and the proteasome assembly to keep unnecessary
energy wastes as low as possible? Our finding provides
some possible mechanisms for this challenge. First, the pro-
teasome-mediated degradation of 8 subunit precursors (Fig-
ure 8A) would establish a feedback mechanism to realize the
self-control of the proteasome level in cells. Second, the
rapid autocleavage of B subunit precursors and the slow
metabolism of assembled proteasomes make it possible that
a low level of B subunit precursors is enough for maintain-
ing the proper level of proteasomes. That is exactly what has
been observed in this and previous studies (Figure 7B).
Finally, the rapid and controlled degradation of the B sub-
unit precursor could extremely minimize the accumulation
of the unincorporated precursors, even the proteasome as-
sembly was inhibited for some reason.

The composition and organization of the proteasome com-
plex is highly dynamic (Matias et al., 2010). Recent studies
indicate that a variety of additional or alternative subunits
could be assembled into proteasomes resulting in a series of
subtype proteasomes (Dahlmann et al., 2000; Merforth et al.,
2003; Schmidt et al., 2006). These proteasome subtypes were
mostly isolated from different tissues. For example, the 85t-
containing subtype was isolated from the thymus (Murata et
al., 2007). On the other hand, a series of specific events are
interwoven in spermatogenesis, such as reduction of the
chromosomal number from diploid to haploid in meiosis,
remodeling of the nucleosomes by replacing histones with
protamines, and formation of acrosomes (Trasler 2009).
These processes definitely require highly efficient and dy-
namic protein metabolism, most of which is mediated by
various types of proteasomes. We believe that the organiza-
tion pattern of proteasomes in the spermatogenesis must be
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unique and dynamically adaptive to the complicated regu-
lation networks. This notion is also supported by recent
findings (Tengowski et al., 2007; Zhong and Belote, 2007).
The question then is how to balance the formation of the
specific proteasome subtypes such as immunoproteasome
and the formation of the constitutive ones. Our data suggest
that at least in mammalian spermatogenesis, RhoS serves as
a switch for sequestering the unincorporated PSMB5 precur-
sor from the proteasome assembly pathway. Once activated
by intracellular or extracellular signals, RhoS could lower
the pool of PSMB5 available for its assembly into the con-
stitutive proteasomes, thus accelerating the formation of
different proteasome subtypes. Intriguingly, some reports
showed that extracellular stimuli such as IFN-y could
activate Rho family members (Badr et al., 2010; Utech et
al., 2005). In addition, our unpublished data also support
this model by demonstrating that the organization of
proteasomes in the testis is indeed distinct from that in
other tissues.

In summary, our present study provides evidence that a
spermatogenesis specific Rho GTPase, RhoS serves as a
switch for modulating the stability of a proteasome B sub-
unit (PSMB5) precursor, hence participating in the regula-
tion of proteasome biogenesis pathway. Further studies are
needed to define the mechanism for this regulation and
clarify its related signal networks.
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