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Abstract

Background

Several regions of the genome show pleiotropic associations with multiple cancers. We sought

to evaluate whether 181 single-nucleotide polymorphisms previously associated with various

cancers in genome-wide association studies were also associated with melanoma risk.

Methods

We evaluated 2,131 melanoma cases and 20,353 controls from three studies in the Popula-

tion Architecture using Genomics and Epidemiology (PAGE) study (EAGLE-BioVU, MEC,
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WHI) and two collaborating studies (HPFS, NHS). Overall and sex-stratified analyses were

performed across studies.

Results

We observed statistically significant associations with melanoma for two lung cancer SNPs

in the TERT-CLPTM1L locus (Bonferroni-corrected p<2.8x10-4), replicating known pleiotro-

pic effects at this locus. In sex-stratified analyses, we also observed a potential male-specific

association between prostate cancer risk variant rs12418451 and melanoma risk (OR=1.22,

p=8.0x10-4). No other variants in our study were associated with melanoma after multiple

comparisons adjustment (p>2.8e-4).

Conclusions

We provide confirmatory evidence of pleiotropic associations with melanoma for two SNPs

previously associated with lung cancer, and provide suggestive evidence for a male-specific

association with melanoma for prostate cancer variant rs12418451. This SNP is located near

TPCN2, an ion transport gene containing SNPs which have been previously associated with

hair pigmentation but not melanoma risk. Previous evidence provides biological plausibility

for this association, and suggests a complex interplay between ion transport, pigmentation,

and melanoma risk that may vary by sex. If confirmed, these pleiotropic relationships may

help elucidate shared molecular pathways between cancers and related phenotypes.

Introduction
As the most serious form of skin cancer, melanoma is a considerable public health burden. In
2013, there were an estimated 76,690 new diagnoses and 9,480 deaths from melanoma in the
United States alone [1]. Ultraviolet (UV) radiation exposure is the largest environmental risk
factor for melanoma, with an estimated 44–90% of melanoma attributable to sun exposure [2].
Other risk factors include artificial UV sources such as tanning beds [3], larger numbers of
nevi, pigmentation traits (light versus dark hair, eye, and skin color), race/ethnicity (European
versus non-European ancestry), skin response to UV exposure (burn versus tan), older age,
and male sex [2]. Anatomic location of melanoma also tends to vary by sex, arising most com-
monly on the back, abdomen, and chest in males, and on the lower leg, hip, and thigh in fe-
males [2]. Females also appear to have lower risk of metastases and longer melanoma-specific
survival than males [4]. In addition to environmental exposures, genetic risk factors have also
been implicated for both familial and sporadic disease. Genome-wide association studies
(GWAS) have successfully identified at least 11 susceptibility loci for melanoma [5, 6].

Several cancer susceptibility loci identified in GWAS, such as the 8q24 and TERT-
CLPTM1L loci, have also been associated with numerous other cancer sites [7, 8]. Variants in
the TERT-CLPTM1L region, for example, have been associated with basal cell carcinoma, mel-
anoma, and glioma, as well as lung, bladder, prostate, pancreatic, and cervical cancers [8–10].
This provides evidence of pleiotropy, where a single genotype or locus is associated with multi-
ple phenotypes. The existence of such pleiotropic effects suggests that there may be common
mechanisms of carcinogenesis or disease susceptibility pathways across cancer phenotypes.
Finding these effects can be useful for elucidating pathogenic mechanisms, improving disease
classification, or targeting therapeutic intervention. While identifying and characterizing
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pleiotropy is important, the extent of pleiotropy has not been comprehensively explored. This
study aims to evaluate single nucleotide polymorphisms (SNPs) associated with various can-
cers in previous GWAS for additional pleiotropic associations with melanoma. As melanoma
risk and anatomic location have been shown to vary by sex [2], this study also evaluates wheth-
er any of these genetic associations may vary by sex as well.

Material and Methods

Study Populations
We analyzed 2,131 melanoma cases and 20,353 melanoma-free controls from five study popu-
lations. Three of these studies collaborated through their participation in the Population Archi-
tecture using Genomics and Epidemiology (PAGE) Study [11]: the Multiethnic Cohort (MEC)
[12]; the Women’s Health Initiative (WHI) [13]; and Epidemiological Architecture for Genes
Linked to Environment (EAGLE), accessing BioVU, the Vanderbilt biorepository linked to de-
identified electronic medical records [14, 15]. Two non-PAGE studies also contributed: the
Nurses’Health Study (NHS) [16, 17] and the Health Professionals Follow-up Study (HPFS)
[18]. NHS and WHI are female-only studies, and HPFS is a male-only study. Additional details
on each of these studies are provided in the Supplemental Material (S1 File).

Each study performed a nested case-control analysis of melanoma using a subset of their
overall study population. Invasive melanoma cases were defined as incident cases of melanoma
in participants without a previous cancer diagnosis (except for non-melanoma skin cancer).
EAGLE-BioVU also included prevalent melanoma cases diagnosed up to 5 years before en-
trance into the study, and some cases could have had prior cancers. Incident cancers were iden-
tified through follow-up questionnaires (WHI, NHS, HPFS), tumor and cancer surveillance
registries (EAGLE-BioVU, MEC) and medical record entries (EAGLE-BioVU). Melanoma in
situ cases were excluded in all studies.

Both matched and unmatched melanoma-free controls were used. In PAGE, a subset of
controls were matched to melanoma cases on age (EAGLE-BioVU, MEC, WHI), sex (EAGLE-
BioVU, MEC), enrollment date (WHI), race/ethnicity (EAGLE-BioVU, MEC, WHI), randomi-
zation arm (WHI), study site (MEC), or blood/urine collection factors (MEC). To improve
power, each PAGE study also utilized additional unmatched melanoma-free controls, which
had been matched to cases of other cancer types for similar PAGE analyses (sensitivity analyses
showed no difference from including these additional controls). NHS and HPFS controls were
not matched to melanoma cases, but came from previously matched nested case-control
GWAS. Demographic and epidemiologic data were obtained according to individual study
protocols. Due to low case numbers in other race/ethnicity groups, we restricted our analysis to
participants of European ancestry.

The protocol for this study was approved by Institutional Review Boards at their respective
institutions: BioVU was approved by the Vanderbilt Institutional Review Board; HPFS and
NHS were approved by the Institutional Review Board at Brigham and Women’s Hospital and
the Harvard School of Public Health; MEC was approved by the Human Studies Program at
the University of Hawaii and the Office for the Protection of Research Subjects at the Universi-
ty of Southern California; and WHI was approved by the Fred Hutchinson Cancer Research
Center Institutional Review Board. All participants of HPFS, NHS, MEC, and WHI provided
written informed consent. All BioVU participants signed a ‘‘consent-to-treatment” form in-
forming them that anonymized genetic information from their discarded blood, along with de-
identified EMR information, would be used for research; participants were given the choice to
decline participation via an ‘‘opt-out” box on the form.
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SNP Selection and Genotyping
In PAGE, a custom panel of 189 SNPs associated with risk of various cancer types was selected
and genotyped. SNPs were chosen based on the literature as of 2010 [11], as well as SNPs asso-
ciated with cancer in the National Human Genome Research Institute GWAS catalog [19].
Each PAGE study genotyped a subset of this panel in order to maximize replication and gener-
alization opportunities according to the characteristics of their study population. The risk allele
for each SNP was defined as the allele associated with an increased risk of cancer, based on
prior literature for the first reported association (S1 Table). Eight of these SNPs were originally
identified as associated with melanoma risk, and were analyzed separately [20]. Several SNPs
included in the PAGE panel were later reported to be associated with additional cancers, in-
cluding melanoma. To remain consistent with their original reason for inclusion in the pleiot-
ropy analyses, we analyzed all SNPs according to their initially reported cancer association.
Thus, 181 SNPs were evaluated in this analysis.

Standard quality assurance and quality control measures were utilized to ensure genotyping
quality. In PAGE, samples and SNPs were included based on call rates (�90%), concordance of
blinded replicates (>98%), and no strong evidence of departure from Hardy-Weinberg equilib-
rium expectations (p<0.001). Each laboratory also genotyped 360 HapMap samples to serve as
cross-laboratory and cross-platform quality control samples [21].

In NHS and HPFS, participants had been previously genotyped in nested case-control
GWAS of various outcomes (S1 File). For the melanoma GWAS,>2.5 million SNPs were im-
puted based on NCBI build 35 of phase II HapMap CEU data using MACH. Only SNPs with
an imputation quality r2>0.95 in each study were included. Genotype information for the
panel of 189 SNPs assembled by PAGE was available from this existing GWAS data.

To evaluate the pairwise correlation between SNPs in a region (such as TPCN2), we used
the program SNAP [22]. As our study was restricted to those of European ancestry, we used
the 1000 Genomes Pilot CEU data for obtaining r2 values between SNPs.

Statistical Analyses
For each study we estimated the association between individual SNPs and risk of melanoma
using unconditional logistic regression. SNPs were coded additively with 0, 1, 2 referring to the
number of purported risk alleles (or the dosage for imputed SNPs), defined as the allele that in-
creased the risk of cancer in the initial GWAS publication. Models were adjusted for age (all
studies) and sex (EAGLE-BioVU and MEC only). In NHS and HPFS, models were also adjust-
ed for each study’s five most-significant GWAS-derived eigenvectors, using EIGENSTRAT
[23], to account for population substructure. The three PAGE studies used ancestry informa-
tive markers to identify continental genetic ancestry of participants [24]. Since participants
were already restricted to those of European ancestry, and GWAS-derived markers were not
available, we did not adjust for principal components in these three studies.

Study-specific regression estimates were combined across studies using inverse-variance
weighted fixed-effect meta-analysis. We calculated the heterogeneity p-values based on
Cochran’s Q statistic. Analyses were performed using Stata version 12 [25]. Because of multiple
testing, we used a Bonferroni-corrected p-value threshold to determine the statistical signifi-
cance of the overall association for each SNP with melanoma (p<0.05/181 = 2.8x10-4). In
order to evaluate for potential sex-specific genetic effects, we also evaluated the association be-
tween each SNP and melanoma risk stratified by sex. We performed meta-regression to obtain
p-heterogeneity values for the difference between sex-specific regression estimates, using a sig-
nificance threshold of p-heterogeneity<0.05.
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Results
Demographic and epidemiologic characteristics of the study populations are provided in
Table 1. Since NHS and WHI are female-only studies, the overall analysis included roughly
twice as many females as males. Melanoma cases were generally of similar age as controls
(overall mean age of 65 in cases vs. 63 in controls).

In total we evaluated 181 cancer GWAS SNPs for an association with melanoma (Fig. 1).
Two SNPs were statistically significantly associated with melanoma: rs4975616 and rs401681,
both in the TERT/CLPTM1L locus (Odds Ratio (OR) = 0.87, 95% Confidence Interval (CI):
0.81–0.93, p-values< 3.7x10-5, Table 2a). Both of these SNPs were originally identified in
GWAS of lung cancer, and then later additionally associated with melanoma [8, 26]. Of note,
our results are consistent with previous studies showing that these SNPs have pleiotropic

Table 1. Demographic characteristics of the five studies contributing to this analysis.

Study EAGLE-BioVU HPFS MEC NHS WHI Total

Characteristic Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls

# Participants 742 8,063 177 2,251 240 2,032 317 3,377 655 4,630 2,131 20,353

Sex Males 445 4,351 177 2,251 149 1,059 0 0 0 0 771 7,661

Females 297 3,712 0 0 91 973 317 3,377 655 4,630 1,360 12,692

Age Mean 64 56 61 61 67 69 57 57 69 77 65 63

SD 12.4 15.6 9.3 8.5 9.5 8.5 6.8 6.7 7.1 7.1 11.0 14.4

doi:10.1371/journal.pone.0120491.t001

Fig 1. Pleiotropy-colored Manhattan plot. This plot shows the inverse log of the P-value for the association
between melanoma and SNPs previously associated with cancer. The solid line represents the Bonferroni-
corrected significance threshold for this analysis (0.05/181 = 2.8x10-4). Each association is colored according
to the cancer for which the SNP was originally reported, and placed on the x-axis according to its
genomic position.

doi:10.1371/journal.pone.0120491.g001
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effects in opposite directions for different cancer types. Specifically, for both SNPs the allele as-
sociated with an increased risk of lung cancer appears to also be associated with a decreased
risk of melanoma.

No other SNP was associated with melanoma below our Bonferroni-corrected statistical sig-
nificance threshold of p<2.8x10-4, though 10 additional SNPs had p-values below 0.05
(Table 2b). These SNPs were previously associated with seven different cancers. Seven of these
ten SNPs showed an increased risk for melanoma in the same direction as the previously asso-
ciated cancer (OR = 1.10–1.23). The other three of these SNPs showed a decreased risk of mela-
noma: two TERT/CLPTM1L SNPs previously associated with lung cancer (rs402710, OR =
0.87; rs31489, OR = 0.89) and one ABO SNP previously associated with pancreatic cancer
(rs505922, OR = 0.89). Due to multiple testing, some (or all) of these marginal findings could
be due to chance (expect 0.05�181 = 9.05), though correlated SNPs may not represent indepen-
dent tests. Results for all 181 SNPs are provided in S2 Table.

In the sex-stratified analyses, one additional SNP, rs12418451 (near TPCN2), nearly reached
statistical significance in males (p = 7.96x10-4), but not in females or overall (p-heterogeneity =
0.04, Table 3a), and also showed a larger effect in males (OR = 1.22, 95% CI: 1.09–1.37) than fe-
males (OR = 1.05, 95% CI: 0.96–1.14). Four other nearby (40–60kb away) but uncorrelated (r2

with rs12418451< 0.2) SNPs in this region also showed a trend of stronger effects in males
than females, though none suggested a statistically significant difference (p-hetero-
geneity>0.05, Table 3b). In total, 12 additional SNPs (13 total including rs12418451) showed
between-sex heterogeneity p-values below 0.05, slightly more than we expected by chance
(0.05�181 = 9.05), but the association was not significant in either sex stratum. Sex-stratified re-
sults for all SNPs are provided in S3 Table.

Table 2. Association between cancer GWAS SNPs and melanoma.

Table 2a)

SNP Gene Chromosome / Risk allele Original cancer association n # Studies OR 95% CI p-value p-hetero-geneity

rs4975616 TERT/CLPTM1L 5 / A Lung cancer 22,135 5 0.87 (0.81–0.93) 2.30E-05 0.78

rs401681 TERT/CLPTM1L 5 / C Lung cancer 22,109 5 0.87 (0.81–0.93) 3.65E-05 0.70

Table 2b)

SNP Gene Chromosome /
Risk allele

Original cancer
association

n # Studies OR 95% CI p-value p-hetero-
geneity

rs7117034 TPCN2, MYEOV (near) 11 / T Prostate cancer 10,675 2 1.23 (1.10–1.37) 3.67E-04 0.55

rs402710 CLPTM1L (intronic) 5 / C Lung cancer 15,991 3 0.87 (0.81–0.94) 7.74E-04 0.04

rs12155172 ABCB5 (near) 7 / A Prostate cancer 10,703 2 1.19 (1.06–1.33) 3.38E-03 0.61

rs13281615 MYC, POU5F1B (near) 8 / T Breast cancer 22,138 5 1.11 (1.03–1.18) 3.44E-03 0.20

rs31489 CLPTM1L (intronic) 5 / C Lung cancer 14,004 2 0.89 (0.82–0.96) 4.18E-03 0.33

rs12418451 TPCN2, MYEOV (near) 11 / A Prostate cancer 22,053 5 1.11 (1.03–1.19) 5.03E-03 0.30

rs505922 ABO (intronic) 9 / C Pancreatic cancer 13,339 4 0.89 (0.82–0.98) 0.013 0.40

rs710521 LEPREL1, TP63 (near) 3 / A Urinary bladder cancer 9,608 3 1.13 (1.01–1.27) 0.028 0.55

rs7176508 RPLP1, GEMIN8P1 (near) 15 / A Chronic lymphocytic leukemia 11,395 3 1.10 (1.00–1.21) 0.039 0.78

rs10411210 RHPN2 (intronic) 19 / C Colorectal cancer 15,971 3 1.14 (1.00–1.30) 0.046 0.68

2a) SNPs showing a statistically significant association with melanoma at a Bonferroni-corrected threshold of 0.05/181 = 2.8x10-4.

2b) SNPs showing a marginal association with melanoma at p<0.05.

doi:10.1371/journal.pone.0120491.t002
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Discussion
We replicated previously reported associations with melanoma for two SNPs in the TERT-
CLPTM1L region. These SNPs were previously shown to demonstrate pleiotropic effects in op-
posing directions, with decreased risk for melanoma but increased risk for lung and other can-
cers. We also observed a marginally significant association with melanoma in TPCN2,
suggesting a potential male-specific pleiotropic association with both melanoma and prostate
cancer. Notably, none of the other cancer susceptibility SNPs evaluated showed evidence for a
pleiotropic association with melanoma.

The two SNPs demonstrating a significant association with melanoma (rs401681 and
rs4975616) are located in the TERT-CLPTM1L locus, which contains variants associated with a
number of different cancers. The pleiotropic effects of variants in this region have been well es-
tablished [8–10], and our findings are consistent with previous reports associating cancer risk
variants in this region with decreased risk of melanoma [8, 26, 27]. Specifically, the C allele of
rs401681 has been associated with an increased risk of lung cancer [28], basal cell carcinoma
[27], bladder cancer, prostate cancer, and cervical cancer [8]. This same allele has also been as-
sociated with a decreased risk of melanoma [8, 27] and pancreatic cancer [29]. The other SNP
in this region that was statistically significant in our study, rs4975616 (A allele), has also been
previously associated with an increased risk of lung cancer [28, 30] and a decreased risk of mel-
anoma [26]. While not reaching our Bonferroni cutoff, two other SNPs in this region were
also marginally associated with decreased risk of melanoma in our study: rs402710 (C allele,
p = 7.74x10-4) and rs31489 (C allele, p = 4.18x10-3). These alleles have also been previously as-
sociated with increased risk of lung cancer [9], as well as increased risk of bladder cancer
(rs402710) and decreased risk of testicular or pancreatic cancer (rs31489) [10]. These four
SNPs are all located within the CLPTM1L gene and are in relatively high linkage disequilibrium
with each other (r2>0.57; from 1000 Genomes Project pilot CEU data using SNAP [22]). Two
nearby SNPs within the TERT gene were not associated with melanoma (p>0.39), and were
not correlated with any of the four CLPTM1L SNPs (r2<0.07). Taken together, our findings
provide further evidence of pleiotropic effects in opposite directions in the TERT-CLPTM1L
region, where variants associated with increased risk for lung and other cancers are simulta-
neously associated with reduced melanoma risk.

In our sex-stratified analyses, we identified one SNP (rs12418451) that demonstrated a mar-
ginally significant association with melanoma in males, but not in either the female or overall
analyses. Previously associated with prostate cancer [31], this SNP is located ~77kb down-
stream of TPCN2 and ~126kb upstream ofMYEOV. The proximity of this SNP to these other
genes provides biological plausibility for an association with melanoma. The nearby TPCN2
(two-pore segment channel 2) encodes a putative cation-selective ion channel that releases
Ca2+ from acidic organelles [32]. Similarly to other ion transport genes associated with melano-
ma, such as SLC45A2, variants in TPCN2may impact melanogenesis through pH regulation
[33]. Indeed, two coding variants in TPCN2 have been associated with pigmentation traits
(blond versus brown hair color [34]), though neither are highly correlated with rs12418451
(r2<0.07). A later study did not find either of these two TPCN2 SNPs to be associated with mel-
anoma (p>0.12), though they did not stratify by sex [35].

SNP rs12418451 is also ~126 kb upstream ofMYEOV, an oncogene that includes variants
implicated for multiple cancers, including multiple myeloma, breast cancer, colon cancer, and
esophageal squamous cell carcinoma [36]. A proxy of rs12418451 is also one of three indepen-
dent loci in this region associated with prostate cancer [37]. Another study evaluating this re-
gion for prostate cancer identified an interaction between rs12418451 and rs784411 in
CEP152, a centrosomal protein shown to function as a regulator of genomic integrity and
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cellular response to DNA damage [36]. In our study, a second SNP in this region (rs7117034,
~117kb downstream of TPCN2) was also marginally associated with melanoma risk overall
(p = 3.7x10-4). While this SNP also suggested a stronger effect in males than females (OR =
1.26 and 1.18, respectively), this difference was not statistically significant (p-heterogeneity =
0.62). Together, our findings identify a potentially novel pleiotropic finding for a sex-specific
association between rs12418452 and melanoma, and highlight a new locus for melanoma with
plausible biologic function.

Our sex-specific finding for SNP rs12418451 also raises interesting questions regarding po-
tential sex differences in the relationships between ion transport, pigmentation, and melanoma.
We recently reported a sex difference in association with melanoma for rs16891982 in
SLC45A2, another SNP in a solute-carrier gene associated with pigmentation [20]. These and
other melanosome ion transporter proteins have demonstrated the functional importance of
ion and small molecule transport to melanogenesis and the pigmentation pathway [38, 39].
Though they transport different molecules, these SNPs in SLC45A2 and near TPCN2 both
demonstrated associations with melanoma that were larger in males than in females.

Previous evidence that skin pigmentation processes can be up- or down-regulated by sex
hormones provides biological plausibility for such a difference. Findings in a study of the hy-
perpigmentation condition melasma, for example, supported the role of several ion transport-
ers in the estrogen-induced expression of tyrosinase [40]. Another study found that androgens
can inhibit tyrosinase activity [41]. As the rate-limiting enzyme in melanin synthesis, the regu-
lation of tyrosinase activity impacts skin pigmentation through the levels of eumelanin and
pheomelanin produced [33]. As males and females differ in their circulating levels of sex hor-
mones, it is feasible that hormones impact ion exchange or tyrosinase activity in a way that
modifies the effect of these variants on melanoma risk, perhaps through alterations to melano-
genesis or skin pigmentation. As such, variants in other ion transport genes similar to TPCN2
and SLC45A2might also be expected to impact pigmentation and melanoma risk. Interestingly,
sex differences in the genetic effect of solute carrier genes have also been seen for other pheno-
types, such as LYPLAL1/SLC30A10 with waist-hip ratio [42]. While suggestive, further research
to evaluate these potential sex differences for melanoma risk is needed.

The strengths of this study stem from the collaboration of five large studies, which together
provide sizable samples to evaluate the association of melanoma with cancer GWAS SNPs. A
potential limitation is that three of these studies were conducted only in males (HPFS) or fe-
males (NHS, WHI). Since not all SNPs were available in all studies, sample sizes also varied by
SNP depending on which studies had that particular SNP available. These differences in sample
size may have reduced our ability to detect an association with melanoma for some SNPs.
However, 97% of SNPs were available in at least two studies (and 75% in at least three), and
most overall analyses were large (mean number of participants available per SNP 14,836, range
1,925–22,141). An additional limitation is that we were unable to test whether some of our
findings are independently associated with melanoma, or are due to an association with pig-
mentation characteristics. Unfortunately, data were not available to evaluate these associations
according to skin/hair pigmentation or anatomical location. Additional work will be needed to
explore the relationships between these genetic variants, pigmentation characteristics,
and melanoma.

Conclusions
In summary, we provided confirmatory evidence of pleiotropic associations with melanoma
for two SNPs in TERT-CLPTM1L and identified a potentially novel sex-specific association for
a SNP near TPCN2/MYEOV. Variants in the TERT-CLPTM1L locus demonstrated pleiotropic
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effects in opposite directions from other cancers, where the allele previously associated with in-
creased risk of lung and other cancers demonstrated an association with decreased risk of mela-
noma in our study. Additionally, we were able to provide some evidence of an association with
melanoma for one SNP near solute-carrier gene TPCN2 that showed potential differences in ef-
fect by sex, with a larger effect in males than females. Previously associated with increased risk
of prostate cancer, this SNP demonstrated a potentially pleiotropic effect of increased risk of
melanoma. While this latter finding did not reach statistical significance, it is a biologically
plausible candidate for follow-up studies.
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