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Abstract

The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a
broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or
several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of
reactive oxygen species (ROS) is the primary cause of genome instability of tsa1D cells. In searching for spontaneous
suppressors of synthetic lethality of tsa1D rad51D double mutants, we identified that the loss of thioredoxin reductase Trr1
rescues their viability. The trr1D mutant displayed a CanR mutation rate 5-fold lower than wild-type cells. Additional deletion
of TRR1 in tsa1D mutant reduced substantially the CanR mutation rate of tsa1D strain (33-fold), and to a lesser extent, of
rad51D strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxido-
reductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially
ROS-associated DNA damages. This trr1D -induced effect was largely thioredoxin-dependent, probably mediated by
oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly
oxidized in the absence of Trr1. In trx1D trx2D cells, Yap1 was only moderately activated; consistently, the trx1D trx2D
double deletion failed to efficiently rescue the viability of tsa1D rad51D. Finally, we showed that modulation of the dNTP
pool size also influences the formation of spontaneous mutation in trr1D and trx1D trx2D strains. We present a tentative
model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous
mutations.
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Introduction

Reactive oxygen species (ROS) are formed in all oxygen-

consuming organisms. ROS can attack almost all cell components

and can induce many types of DNA damage that can cause

mutations and genome rearrangements. Yeasts like Saccharomyces
cerevisiae, and other aerobic organisms, have acquired a wide

array of mechanisms, including pathways that repair the ROS-

induced DNA damage, to prevent the deleterious effects of ROS

[1]. Because redox communication occurs between the different

cellular compartments [2], the cytosol accumulates endogenous

oxidizing compounds arising as byproducts of mitochondrial,

peroxisomal and endoplasmic reticulum metabolism. However,

under normal growth conditions, steady state levels of ROS in the

S. cerevisiae cytoplasm are low [3]. Two main redox systems are

involved in reducing the level of ROS, the glutathione (GSH) and

thioredoxin (Trx) pathways. The GSH pathway involving

glutaredoxins is thought to provide a redox buffering function

and GSH is the reductant of the glutaredoxins. The thioredoxin

redox system comprising the thioredoxins (Trxs) and thioredoxin

reductase (Trr) plays a major role in H2O2 metabolism through

the peroxiredoxins [4]. The Trxs are the preferred reductants of

the ribonucleotide reductase (RNR) [5] and the 3’-phosphoade-

nylsulfate reductase (PAPS reductase) [6]. When S. cerevisiae cells

experience endogenous or exogenous stresses that disturb redox

homeostasis, they respond by altering their transcriptional

program [7]. Two transcription factors are mainly involved:

Yap1 and Skn7, which function in part cooperatively in the

peroxide response [8]. Yap1 is the main regulator that controls the

expression of S. cerevisiae genes encoding most antioxidants,

components of glutathione and carbohydrate metabolism, and

components of different metal and drug response pathways [8–10].
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S. cerevisiae possesses five peroxiredoxins, which have different

sub-cellular localizations. Among them, Tsa1 has the most potent

ability to scavenge H2O2 [11]. In addition to its role in peroxide

reduction, Tsa1 is also known to have chaperone activity [12].

Tsa1 is the only peroxiredoxin that causes an elevated CanR

mutation rate when individually removed, indicating that Tsa1 is

the most important peroxiredoxin for preventing ROS-induced

mutations [13]. DNA lesions resulting from oxygen metabolism

can lead to formation of mutations by action of replicative DNA

polymerases and translesion DNA polymerases. ROS-induced

DNA damage also activates checkpoint pathways which could

stimulate dNTP production [14]. This up-regulation of dNTP

synthesis facilitates the repair of DNA lesions but is associated with

higher mutation rates resulting in part from more efficient

translesion DNA synthesis [15]. Tang and collaborators [16] have

shown that the accumulation of ROS in tsa1D cells accumulate

DNA lesions which, by presumably activating the DNA damage

checkpoint, stimulate dNTP production. However, it is not

understood whether it is the accumulations of ROS and

consequently accumulations of mutagenic DNA lesions or the

overproduction of dNTPs that is the primary cause of the elevated

CanR mutation rate in tsa1 mutants.

Homologous recombination is involved in repair of many types

of DNA lesions. We have previously shown that combining a

tsa1D mutation with a rad51D mutation or mutations inactivating

other key genes that function in DNA double-strand break (DSB)

repair results in cell death [17]. Oxygen metabolism likely takes

part in the inviability of tsa1D rad51D double mutants since

anaerobic conditions were found to restore the viability of tsa1D
rad51D double mutants [18]. One explanation for this is that in

cells growing in aerobic conditions, the absence of Tsa1 results in a

high level of DNA damage that is lethal in the absence of key DNA

repair pathways such as DSB repair. To better understand the

cause of the elevated mutation rate of the tsa1D mutants and the

synthetic lethality of tsa1D rad51D double mutants, we screened

for spontaneous mutations that suppress synthetic lethality of

tsa1D rad51D double mutants. We found that mutations in

TRR1, which encodes the cytosolic thioredoxin reductase, are able

to rescue the growth of tsa1D rad51D double mutant and suppress

the genomic instability phenotype of tsa1D mutants. Our results

support a model in which the majority of spontaneous mutations

that occur in wild-type strains are formed from lesions generated

by ROS.

Results

ROS are the primary cause of genome instability in tsa1D
cells

Tsa1 plays a key role in preventing mutations and genome

rearrangements [13]. The mutator phenotype of tsa1D cells might

be primarily due to their inability to reduce H2O2. The

endogenous concentrations of H2O2 and alkyl hydroperoxides in

wild-type and tsa1D strains have so far not been precisely

determined, because available ROS sensors were not selective or

sensitive enough [19]. However, several laboratories have detected

a significant increased intracellular ROS levels in tsa1D strains

[16,20–23]. The conversion of this excess of endogenous H2O2 to

hydroxyl radical through the Fenton reaction, believed to occur at

or near DNA, could induce a variety of types of DNA damage

[24]. Yet the increase of intracellular H2O2 in tsa1D cells versus

wild-type cells was not high enough to change the nuclear and

cytoplasmic GSH/GSSG redox state detectable by the genetically

encoded redox sensor rxYFP [25] (Figure S1). It is generally

accepted that the CanR mutation rate in cells is indicative of the

level of DNA damage, which itself follows the variations of ROS

concentration. One way to decrease endogenous ROS concen-

trations is to grow yeast cells under anaerobiosis. The CanR

mutation rates of wild-type and tsa1D strains, grown in aerobic or

anaerobic conditions, were measured by fluctuation analysis [26].

As shown in Table 1, the CanR mutation rates were similar for

wild-type cells grown under both conditions. An identical

observation was published by Northam et al. [27]. In contrast,

the CanR mutation rate of the tsa1D strain decreased substantially

under anaerobiosis and was the same as the CanR mutation rate of

the wild-type strain. This observation supports the view that

scavenging intracellular H2O2 is one of the major cellular

functions of Tsa1 that protects the nuclear genome from damage

by ROS. These results suggest that ROS in tsa1D mutant grown

under aerobic conditions is a major source of DNA damage

underlying the formation of CanR mutations. It may be not so

surprising that the anaerobiosis does not reduce the basal level of

CanR mutation rate in the wild-type strain. In fact, anaerobiosis

was shown to invoke a stress response in yeast cells [28,29]. In

addition, osmotic and DNA replication stress elicit mutagenesis

[27,30,31]. Although the level of ROS is greatly reduced in

anaerobic conditions and consequently the level of DNA damage

generated, wild-type cells (as well as tsa1D cells) could sense and

respond to anoxia. Indeed, hypoxia constitutes a profound cellular

stress for mammalian cells that can promote genetic instability

[32].

Yap1 is not activated in tsa1D mutant
Yap1 is a redox sensitive transcription factor, considered as a

central node in the oxidative stress response network [33]. Yap1

regulates the expression of several hundreds of genes (http://www.

yeastgenome.org) among which are genes coding for enzymes with

antioxidant properties, numerous oxido-reductases and transcrip-

tion factors. In non-stressed wild-type cells, Yap1 exists mainly in

its reduced form and is distributed equally throughout the

cytoplasm and nucleus [34]. In response to oxidative stress,

Yap1 rapidly forms two disulfide bonds, resulting in the inhibition

of the Yap1 interaction with the nuclear export protein Crm1, and

consequently its accumulation within the nucleus [34]. Thus, an

excess of H2O2 in tsa1D cells may increase endogenous oxidative

stress, and Yap1 should be oxidized. Published results have proven

the difficulties to distinguish by Western blotting oxidized and

reduced forms of Yap1 in W303 derived strains [35,36]. As an

alternative approach, we followed by qRT-PCR analysis the

expression levels of several Yap1-target genes [8–10] in wild-type

cells and in cells harbouring deletions tsa1D, yap1D or both

(Table 2). Yap1 was found not activated in the tsa1D strain, as

only small variations were observed between wild-type and tsa1D
strains. These variations are in no way comparable to those

produced by exogenous oxidative stress [37].

What could be the cause of the non- or weak activation of Yap1

in tsa1D cells? It has been proposed that the Gpx3 sensor regulates

the cellular H2O2 homeostasis in S. cerevisiae and is necessary for

Yap1 activation. Gpx3 senses H2O2 and converts this signal into a

cysteine-based redox cascade that culminates in oxidation of Yap1

[38,39]. A third component, Ybp1 seems to be crucial for H2O2-

induced Yap1 activation. Ybp1 forms an H2O2-induced complex

with Yap1 and the transient Yap1-Gpx3 intermediate cannot be

formed in the absence of Ybp1 [40,41], although this mechanism

is not fully understood. Strains harboring the W303 genetic

background contain a mutated YBP1 gene. In this context, Yap1

activation appears to be Gpx3-independent but requires Tsa1

[35]. The yeast strains used in this study are derived in part from

W303 strain. We sequenced YBP1 gene of GF4729 strain and
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identified all the mutations previously described in allele ybp1–2
[35] (data not shown). Thus the absence of a functional Ybp1

protein might be responsible for the absence of Yap1 activation in

the tsa1D strain. To test this hypothesis, we replaced the ybp1–2
allele by the YBP1 gene isolated from an S288c strain that is free

of any mutation. We monitored by qRT-PCR analysis the

expression level of six Yap1-target genes in GF4729 (wild-type,

ybp1–2), GF5652 (wild-type, YBP1), GF5270 (tsa1D ybp1–2) and

GF5606 (tsa1D, YBP1) strains. As shown in Figure 1, the

expressions of these target genes were very similar between

GF4729 (wild-type, ybp1–2) and GF5270 (tsa1D ybp1–2) strains.

The expression of target genes changed within 2-fold between

GF4729 (wild-type, ybp1–2) and GF5652 (wild-type, YBP1)

strains, and between GF5270 (tsa1D ybp1–2) and GF5606 (tsa1D,

YBP1) strains. Yet, these small variations did not affect signifi-

cantly the CanR mutations rates (Table 3). However, as shown by

Okazaki and coworkers [35], it remains possible that a strain like

GF5606 (tsa1D YBP1) can use preferentially the Ybp1/Gpx3

pathway to activate Yap1 in response to a strong exogenous

oxidative stress.

Thioredoxins are thought to be the physiological reducing

agents and are responsible for the negative regulation of the Yap1

transcriptional activity [42–44]. In non-stressed wild-type cells,

Trxs are kept almost exclusively in their reduced forms [42,45,46].

An increase of endogenous H2O2 concentration leads to the

oxidation of Tsa1 that will be reduced in turn at the expense of

reduced Trxs [4]. We estimated the redox state of Trxs in tsa1D
cells using rabbit anti-Trx1 and Trx2 antibodies and found that

both Trxs were in a reduced state in tsa1D cells as in wild type cells

(Figure 2A, lanes 1, 2; Figure 2B, lanes 8, 9). Taken together, we

propose that an increased endogenous concentration of H2O2 in

tsa1D cells could result from the combined effect of the absence of

Tsa1 itself and the inhibition of Yap1 activation by the reduced

Trxs.

Identification of a suppressor of the lethality of tsa1D
rad51D double mutants

We previously observed that tsa1D rad51D double mutants

were inviable under aerobic conditions but viable under anaerobic

conditions [17,18]. To screen for spontaneous mutations that

rescue the viability of tsa1D rad51D double mutants under aerobic

conditions, tsa1D rad51D cells were grown under anaerobic

conditions, harvested and about 46106 cells were plated under

aerobic conditions. Incubation under aerobic conditions resulted

in massive cell death and the appearance of a small number of

viable colonies. One viable colony from each of 20 independent

experiments was selected and further characterized. These 20

strains each containing a potential suppressor mutation were then

crossed with a tsa1D strain. Analysis of the meiotic segregants

showed that the putative suppressor mutations (named sup1 to

sup20) were all single mutations, recessive and mapped at loci that

were not linked to the starting rad51D mutation.

We used a cloning scheme employing the red/white sectored

colony method described by Zhao and co-workers [47] to identify

the suppressor genes. Briefly, ADE2 and ADE3 were disrupted in

the tsa1D rad51D sup1 strain and the plasmid p1591 (CEN,

URA3, TSA1, ADE3) was introduced, yielding the strain GF5377.

The presence of this plasmid, which is not needed for cell viability,

confers a red color to the colonies on selective medium (SC-uracil).

Cells growing in the absence of selection for this plasmid can

spontaneously lose it and form red/white sectored or white

colonies. As the sup1 mutation was recessive, we expected that the

introduction of a plasmid harboring the SUP1 wild-type gene into

strain GF5377 would result in red colonies since the resident

plasmid p1591 (CEN, URA3, TSA1, ADE3) would now be

required for growth. After transformation of strain GF5377 with a

CEN-LEU2 plasmid-based genomic library, candidate SUP1
transformants were identified as solid red colonies on plates

lacking leucine. After retesting 137 red colonies and then screening

the resulting 21 strains for lack of growth on media containing 5-

FOA, 7 plasmid-containing strains were obtained. Plasmids were

rescued from these strains and sequenced which revealed that they

each contained an ,10 kb-long insert with an overlapping region

of chromosome IV containing two full-length ORFs, YDR352w
and TRR1. Subcloning of these two ORFs and further analysis

showed that only TRR1 could complement the sup1 mutation in

the GF5377 strain. We then determined the DNA sequence of the

TRR1 gene from each of the 20 independently isolated suppressor

strains as well as that of the wild-type strain GF4729 revealing that

each of the suppressor strains contained a mutation in TRR1
(Table S4). To further confirm that inactivation of TRR1
suppresses the inviability of the tsa1D rad51D double mutant,

we deleted TRR1 in a tsa1D/TSA1 rad51D/RAD51 diploid

strain and showed by tetrad analysis that the TRR1 deletion

restored the viability of double-mutant tsa1D rad51D in aerobic

conditions (Table 4).

TRR1 encodes the cytosolic thioredoxin reductase, whose

known major function is to reduce the oxidized forms of Trx1 and

Trx2. Thioredoxin reductase and thioredoxins act as a disulfide

reductase system and protect cells against both oxidative and

reductive stress [4,48]. Our results therefore suggest that

deregulation of the thioredoxin redox system resulting from the

trr1 mutation may promote the mechanism suppressing lethality

of tsa1D rad51D double mutants.

The oxidized thioredoxins in trr1D mutants contribute to
Yap1 activation

It was previously reported that Yap1 is constitutively and

partially oxidized and that the basal expression of Yap1 targets is

elevated in trr1D mutants in absence of external stress [42,49].

Besides, Trr1 inactivation enhances Msn2 response to H2O2 [50].

Table 1. CanR mutation rates of wild-type and tsa1D strains grown in aerobic and anaerobic conditions.

Mutation rates (61027)

Strain Genotype Aerobic growth Anaerobic growth

GF4729 wild-type 2.13 (1.63–3.17) 3.03 (2.67–4.27)

GF5270 tsa1D 33.07 (25.16–64.02) 2.72 (2.43–4.24)

Mutation rates were determined as described in Material and Methods and were calculated each from 19 parallel cultures, using fluctuation analysis. 95% confidence
intervals are indicated.
doi:10.1371/journal.pone.0108123.t001
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In fact, the transcriptional response to oxidative stress is known to

depend on several transcription factors, including Yap1, Skn7,

Msn2 and Msn4. Yap1 and Skn7 control independent but

overlapping responses [8]; Msn2 and Msn4 mediate a transcrip-

tional response which is common to many stress including

oxidative stress [51]. We investigated whether a specific set of

genes is transcriptionally regulated by Yap1/Skn7 and/or Msn2/

Msn4 in trr1D mutants. The expressions of 13 genes encoding

oxido-reductases were monitored by quantitative RT-PCR (Ta-

ble 5). These genes include TSA2 and AHP1 whose expression is

regulated by Yap1/Skn7 and Msn2/Msn4; GLR1, GSH1, CCP1,

YKL071w, TSA1, TRR1 and TRX2 regulated by Yap1 or Yap1/

Skn7; CTT1, GRX1 and GRX2 regulated by Msn2/Msn4, and

finally TRX1 which is not regulated by any of these transcription

factors (http://www.yeastgenome.org). YKL071w is a gene of

unknown function encoding a member of the dehydrogenase/

reductase family [52]. Remarkably, the genes containing one or

more Yap1 response elements (YRE) in their promoters were

highly induced in the trr1D strain compared to the wild-type

strain, especially TSA2 (.600-fold), TRX2 (30-fold), CCP1 (30-

fold) and YKL071w (.70-fold). As expected, TRX1 was not up-

regulated in trr1D strains. Interestingly, CTT1 which is a typical

target of Msn2/Msn4 transcription factor [50] was not induced in

trr1D strains. Taken together, these results suggest that the over-

expression of the oxido-reductases tested is mainly due to the

activation of Yap1. Consistently, we observed that Yap1 accumu-

lated in the nucleus of trr1D cells (Figure 3).

To address the question of how trr1 mutations trigger the

activation of Yap1, we investigated the involvement of the

thioredoxins Trx1 and Trx2 in this process. Thioredoxins are

the primary substrates of Trr1 and are thought to be the

physiological reducing agents responsible for negatively regulating

Yap1 activity [42–44]. In unstressed wild-type cells, Trxs are

found almost exclusively in their reduced form [42,45,46]. We

therefore used quantitative RT-PCR to monitor the expression

level of the above defined 13 genes coding for oxido-reductases in

a set of strains containing different combinations of trr1D, trx1D
and trx2D deletion mutations (Table 5, Figure 4). Globally, the

tested genes were not over-expressed in strains harboring either

trx1D or trx2D individual deletion, they were moderately over-

expressed in strains harboring the trx1D trx2D double deletion

with or without trr1D, and they were highly over-expressed in

strains harboring the trr1D deletion with either trx1D or trx2D.

The double deletion trr1D trx1D or trr1D trx2D induced higher

expression than trr1D with the highest effect in trr1D trx2D
(Table 5, Figure 4). Different extents of Yap1 activation were most

visible when comparing expression levels of genes TSA2, AHP1,

CCP1 and YKL071w among these mutants. The fact that the

tested genes were significantly more activated in a trr1D, trr1D
trx1D, or trr1D trx2D strain than in trr1D trx1D trx2D strain

suggest that the presence of Trx1 or Trx2 largely contributes to the

strong over-expression of the tested genes in trr1D cells. On the

other hand, the moderate Yap1 activation in trx1D trx2D suggests

the existence of some Trx1/Trx2-independent mechanisms.

We then analyzed the oxidation state of Trx1 and Trx2 in the

wild-type, trx1D, trx2D, trr1D, trr1D trx1D and trr1D trx2D
contexts using anti-Trx1 and anti-Trx2 antibodies. The anti-Trx1

antibody (kind gift from Dr. Grant) was prepared against Trx1

while slightly cross-reacting with Trx2 [45,53]. The anti-Trx2

antibody was prepared against Trx2 (see Materials and Methods).

Western blots using anti-Trx1 antibody revealed that Trx1 was.

90% reduced in wild-type and trx2D strains whereas no visible

signal was observed with cell extracts from trx1D strains

(Figure 2B, lanes 1, 4 and 3) (NB: The expression levels of
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TRX2 and TRX1 in trx1D and trx2D strains respectively, were

similar to that in wild-type (Table 5)). The same anti-Trx1

antibody revealed that Trx1 is.90% oxidized in trr1D trx2D cell

extracts (Figure 2B, lane 6) whereas oxidized (70–75%) and

reduced (25–30%) forms were detected in trr1D and trr1D trx1D
extracts (Figure 2B, lanes 2 and 5), which indicates that anti-Trx1

antibody cross-reacts with Trx2 when Trx2 is over-expressed

(Table 5). Using anti-Trx2 antibody, western blots of trr1D trx2D
cell extracts yielded no signal, (Figure 2A, lane 4) whereas in trr1D
and trr1D trx1D cell extracts, Trx2 was at least 10-times more

expressed than in the wild type strain and 40–50% Trx2 was in its

oxidized form (Figure 2A, lanes 3 and 5). The fact that Trx2 is not

completely oxidized in trr1D cells implies existence of an

alternative electron donor. Indeed, recent data suggest that

Figure 1. Quantitative RT-PCR analysis for indicated genes in GF4729 (wild-type ybp1–2), GF5652 (wild-type YBP1), GF5270 (tsa1D
ybp1–2) and GF5606 (tsa1 YBP1). Quantitative RT-PCR analysis was performed as described in Materials and Methods. mRNA levels of each gene
were calculated as ratios relative to that of the wild-type ybp1–2 strain (set as 1). The reported values are the mean of three independent experiments
and the error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0108123.g001

Table 3. CanR mutation rates of different mutant strains.

Strain Genotype Mutation rate 61027 95% confidence interval

GF4729 wild-type 4.20 3.98–4.82

GF5652 wild-type YBP1 3.76 3.44–4.40

GF5270 tsa1D 70.7 61.60–101.50

GF5606 tsa1DYBP1 65.57 52.76–77.23

GF5968 tsa2D 3.60 3.03–4.41

GF5965 tsa1D tsa2D 70.61 57.13–96.93

GF5505 trr1D 0.84 0.55–1.05

GF5499 trr1D tsa1D 2.15 1.88–2.78

GF6054 trr1D tsa2D 1.05 0.62–1.45

GF5967 trr1D tsa1D tsa2D 3.28 2.71–3.58

GF5668 trx1D trx2D 2.11 1.74–2.42

GF5898 trr1D trx1D trx2D 2.71 2.26–2.98

GF5674 trx1D trx2D tsa1D 5.75 5.21–7.05

GF6067 trx1D trx2D tsa1D tsa2D 5.87 4.94–7.25

GF5675 rad51D 38.26 30.50–46.42

GF5506 trr1D rad51D 9.41 7.30–12.35

GF6020 trx1D trx2D rad51D 80.54 65.35–97.57

GF5494 trr1D tsa1D rad51D 25.53 20.89–35.09

GF5959 trr1D tsa1D tsa2D rad51D 73.43 67.41–77.85

Each mutation rate was calculated from 19 to 57 independent cultures.
doi:10.1371/journal.pone.0108123.t003
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GSH, directly or indirectly, is able to reduce oxidized Trxs

[54,55].

These results raise the question of whether the over-expression

of the Yap1-targeted genes in trr1D cells is due to a high

concentration of oxidized Trxs or conversely the decreased level of

reduced Trxs, since the latter form may impede Yap1 activation. If

thioredoxins regulate Yap1 activity by the inhibitory effect of their

reduced forms, then Yap1 activity in trx1D trx2D mutant should

be at least similar, if not higher, than in trr1D mutants, which was

not the case (Table 5). Hence we conclude that, very probably, the

Figure 2. Oxidation state of Trx1 and Trx2 in different strains defective in maintaining redox homeostasis. Wild-type and mutated cells
were processed for western blotting as described in Materials and Methods. Proteins were detected with rabbit polyclonal anti-Trx2 (A, C) and anti-
Trx1 (B) antibodies. Extracts from wild-type cells, treated with 0.5 mM H2O2 for 5 min in YPG, was loaded as a control (B, lane 7).
doi:10.1371/journal.pone.0108123.g002

Table 4. trr1D deletion suppresses the lethality of tsa1D rad51D.

Segregant genotype Number observed Colony size

tsa1D rad51D trr1D 17 m

tsa1D rad51DTRR1 0

tsa1D RAD51 trr1D 22 m

tsa1DRAD51 TRR1 18 G

TSA1 rad51D trr1D 11 p

TSA1rad51D TRR1 23 G

TSA1RAD51trr1D 15 p

TSA1 RAD51TRR1 17 G

Tetrad analysis of meiotic products of diploid strain tsa1D/TSA1 rad51D/RAD51 trr1D/TRR1. These three loci are unlinked. 40 tetrads were dissected. 20 segregants of
each type were expected. Colony size: p ,m ,G.
doi:10.1371/journal.pone.0108123.t004
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oxidized thioredoxins intervene in Yap1 activation in trr1D trr1D
trx1D or trr1D trx2D cells, directly or indirectly. Consistently,

Yap1 activation is the strongest in GF5899 strain (trr1D trx2D)

(Table 5) in which Trx1 is more than 90% oxidized (Figure 2). In

trr1D tsa1D cells, Yap1 is about 40% less activated than in trr1D
cells (Table 5) suggesting that Tsa1 might play a role in Yap1

oxidation [36].

The absence of Trr1 suppresses mutagenesis in tsa1D
and rad51D strains

Loss of Trr1 can fully rescue the viability of tsa1D rad51D
double mutants and is associated with over-expression of Yap1-

controlled oxido-reductases. We reasoned that over-expression of

oxido-reductases may reduce significantly intracellular ROS level

and therefore suppress genomic instability of tsa1D and/or

rad51D strains. As previously reported, TSA1 deletion resulted

in significant increase in CanR mutation rate, 70.7061027,

compared to the wild-type strain that was 4.2061027 (Table 3).

CanR mutation rate for a rad51D was 38.2661027. The synthetic

lethality between tsa1D and rad51D may mean that cells cannot

cope with toxic levels of DNA damage in a tsa1D rad51D haploid

strain grown in aerobic conditions. Furthermore, the CanR rate in

a trr1D tsa1D strain was 2.1561027 that is a 33-fold reduction

compared to a tsa1D single mutant and is lower than the CanR

mutation rate of the wild-type strain. Similarly but to a lesser

extent, CanR mutation rate for a rad51D trr1D mutant was

9.4161027 that is a 4-fold reduction compared to rad51D single

mutant. These different effects of trr1D on tsa1D and rad51D may

suggest that tsa1D -induced increased mutagenesis results from

increased ROS accumulation and can be efficiently attenuated by

over-expression of oxido-reductases while rad51D -induced

mutagenesis may be only partially linked to ROS accumulation.

The CanR mutation rate in tsa1D rad51D trr1D strain was

25.5361027, corresponding to a multiplicative effect of mutations

of tsa1D trr1D and rad51D trr1D (2.1569.41). Taken together,

our results suggest that trr1D rescues the viability of tsa1D rad51D
double mutants through suppression of tsa1D and rad51D -

induced mutagenesis that is achieved by redox regulated over-

expression of oxido-reductases.

Interestingly, the CanR mutation rate in a trr1D strain was

0.8461027, 5-fold lower than in a wild-type strain. Due to the

over-expression of oxido-reductases, the ROS level in trr1D cells

should be very low. We can estimate the respective contribution of

Tsa1 and Tsa2 in ROS reduction in the trr1D context by

comparing the CanR mutations rates. The mutation rates of trr1D
tsa1D, trr1D tsa2D and trr1D tsa1D tsa2D strains were

2.1561027, 1.0561027 and 3.2861027, respectively. These data

suggest that the over-expression of Tsa1 and Tsa2 in trr1D cells

plays a role in reducing ROS level, but others oxido-reductases are

also involved.

We analyzed the meiotic products of diploid strain trr1D/

TRR1 tsa1D/TSA1 rad51D/RAD51 tsa2D/TSA2. Tsa2 was not

essential for the viability of a mutant carrying the triple deletion

trr1D tsa1D rad51D Table 6. Nevertheless, Tsa1 and Tsa2

contributed to suppress the CanR mutation formation of trr1D
rad51D (9.4161027) since CanR mutation rate was 25.5361027

and 74.4561027 in trr1D tsa1D rad51D and trr1D tsa1D tsa2D
rad51D strains respectively. Viability of trr1D tsa1D tsa2D
rad51D could be attributed to the over-expression of other

oxido-reductases. To further clarify the relationship between

Tsa1/Tsa2 and thioredoxins, we analyzed the oxidation state of

Trx2 in trr1D, trr1D tsa1D, trr1D tsa2D and trr1D tsa1D tsa2D
strains using anti-Trx2 antibody. Constant ratios of the reduced

and oxidized forms of Trx2 were found in trr1D, trr1D tsa1D and

trr1D tsa2D cells (Figure 2C, lanes 2, 4, 5), whereas the ratio was

slightly increased in the trr1D tsa1D tsa2D strain (Figure 2C, lane

6), suggesting that the reduced form of Trx2 is not consumed more

by Tsa1 or Tsa2 in trr1D strains than in wild-type strains.

As trx1D trx2D double deletion exhibits only a moderate effect

in inducing overexpression of oxido-reductases, we determined

whether this double deletion has a significant effect on the

mutation formation in tsa1D and rad51D strains and is capable of

rescuing viability of tsa1D rad51D mutants. The CanR mutation

rate of a trx1D trx2D strain was 2.1161027 (Table 3), that is 2-fold

less than in a wild-type strain. The CanR rate in a trx1D trx2D
tsa1D strain was 5.7561027 that is a 12-fold reduction compared

to a tsa1D strain but is higher than that in trr1D tsa1D strain

(2.1561027). Surprisingly, the CanR mutation rate of the rad51D

Figure 3. Localization of Yap1-GFP in TRR1 and trr1D cells. Living cells in exponential phase expressing the Yap1-GFP fusion protein under the
control of native Yap1 promoter and stained by DAPI were analyzed by fluorescence microscopy. Overlay image of DAPI and GFP signal (merge) are
also shown.
doi:10.1371/journal.pone.0108123.g003
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trx1D trx2D strain, 80.5461027, is 2-fold higher compared to

rad51D strain. Therefore, the inactivation of TRR1 attenuates

deleterious mutagenic consequences of both tsa1D and rad51D
deletions, while the trx1D trx2D double deletion only reduces the

mutagenic effect linked to tsa1D but increases DNA damage in

rad51D. Consequently, the tsa1D rad51D trx1D trx2D cells may

not be able to cope with the high level of DNA damage still

formed. Indeed, we determined whether trx1D trx2D might rescue

the synthetic lethality of a strain bearing tsa1D rad51D We

analyzed the meiotic products of diploid strain tsa1D/TSA1
rad51D/RAD51 trx1D/TRX1 trx2D/TRX2 and obtained only 10

tsa1D rad51D trx1D trx2D segregants instead of the 35 expected

(Table 7). The severe slow growth of these segregants prevented us

to assess their CanR mutation rates. Therefore, the different effects

resulting from TRR1 deletion or TRX1 and TRX2 double

deletion seem related to the expression levels of oxido-reductases

in these different strains.

Impact of dNTP levels on the CanR mutation rates in
trr1D and trx1D trx2D cells

Thioredoxins are physiologically relevant electron donors for

ribonucleotide reductase (Rnr) during DNA precursor synthesis.

Yeast cells lacking both cytoplasmic thioredoxins (trx1D trx2D)

accumulate oxidized Rnr1, have a low dNTPs pool and a 3-fold

longer S phase than wild-type cells [5]. Trx1 and Trx2 was

constitutively strongly oxidized in the absence of Trr1. Further-

more, Trx2 expression was at least 10-times higher in the trr1D
mutants than in wild-type cells and about 40–50% of Trxs was in

oxidized form (Figure 2). These changes may directly or indirectly

interfere with the activity of ribonucleotide reductase and affect

dNTP synthesis. To estimate the impact of dNTP concentration

on the CanR mutation rates in the wild-type, trr1D and trx1D
trx2D contexts, we increased ribonucleotide reductase activity by

deleting SML1 gene whose product is an ribonucleotide reductase

inhibitor [56], and by placing RNR1 gene under the control of the

strong TEF1 promoter. As shown in Figure 5 and Table S5, the

dNTP levels of trr1D and trx1D trx2D were approximately 2-fold

lower than that of wild-type cells grown asynchronously in YPD

medium. SML1 deletion and RNR1 overexpression increased

dNTP level from 1 to 5.22 in the wild-type cells (basal dNTP level
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Figure 4. Correspondence analysis of qRT-PCR data. The
correspondence analysis was performed using the program StatEL
(Ad Science) and the quantitative RT-PCR data for genes TSA2, AHP1,
CTT1, GRX1, GRX2, GLR1, GSH1, CCP1 and YKL071w in 12 strains (Table 5).
The percentage of inertia on the different axes is as follows: axis 1:
84.8%, axis 2: 9.7%, axis 3: 3.6%, axis 4: 0.8%, axis 5: 0.8%. Only the
positions of the 12 yeast strains analysed are presented. They can be
grouped in three distinct sets named A, B and C.
doi:10.1371/journal.pone.0108123.g004
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in the wild type was set as 1), from 0.50 to 5.52 in the trr1D and

from 0.52 to 3.93 in the trx1D trx2D context. In the trr1D and

trx1D trx2D contexts, large increases of dNTP concentration

produced 2.8-fold and 5.5-fold increases in the CanR mutation

rate, respectively (Table 8). In contrast, the increase of dNTP

concentration had almost no effect in wild-type cells. In E. coli,
lower dNTP levels correlate with a decreased spontaneous point

mutation rate while higher dNTP levels correlate with an

increased rate [57,58]. In S. cerevisiae, such correlations were

also observed in mutants affecting DNA damage checkpoints,

RNR, replication factors or DNA repair components [14,59,60].

Taken together, dNTP fluctuations have more pronounced impact

on the mutation formation in mutant cells than in wild-type cells.

Table 6. Effect of tsa2D deletion on the lethality of tsa1D rad51D trr1D.

Segregant genotype Number observed

tsa1D tsa2D rad51D trr1D 47

tsa1D tsa2D rad51D TRR1 1

tsa1D tsa2D RAD51 trr1D 54

tsa1D tsa2D RAD51 TRR1 53

tsa1D TSA2 rad51D trr1D 42

tsa1D TSA2 rad51D TRR1 0

tsa1D TSA2 RAD51 trr1D 44

tsa1D TSA2 RAD51 TRR1 48

TSA1 tsa2D rad51D trr1D 37

TSA1 tsa2D rad51D TRR1 48

TSA1 tsa2D RAD51 trr1D 34

TSA1 tsa2D RAD51 TRR1 46

TSA1 RAD51 rad51D trr1D 34

TSA1 RAD51 rad51D TRR1 57

TSA1 RAD51 RAD51 trr1D 43

TSA1 RAD51 RAD51 TRR1 55

expected 55

Tetrad analysis of meiotic products of diploid strain tsa1D/TSA1 tsa2D/TSA2 rad51D/RAD51 trr1D/TRR1. These four loci are unlinked. 220 tetrads were dissected. 55
segregants of each genotype were expected.
doi:10.1371/journal.pone.0108123.t006

Table 7. Effect of trx1D trx2D double deletion on the lethality of tsa1D rad51D.

Segregant genotype Number observed Colony size

tsa1D rad51D trx1D trx2D 10 pp

tsa1D rad51D trx1D TRX2 1

tsa1D rad51D TRX1 trx2D 0

tsa1D rad51D TRX1 TRX2 0

tsa1D RAD51 trx1D trx2D 28 G

tsa1D RAD51 trx1D TRX2 29 G

tsa1D RAD51 TRX1 trx2D 39 G

tsa1D RAD51 TRX1 TRX2 38 G

TSA1 rad51D trx1D trx2D 28 p

TSA1 rad51D trx1D TRX2 32 m

TSA1 rad51D TRX1 trx2D 34 G–

TSA1 rad51D TRX1 TRX2 38 m

TSA1 RAD51 trx1D trx2D 45 m

TSA1 RAD51 trx1D TRX2 28 m+

TSA1 RAD51 TRX1 trx2D 31 G

TSA1 RAD51 TRX1 TRX2 31 G

Tetrad analysis of meiotic products of diploid strain tsa1D/TSA1 rad51D/RAD51 trx1D/TRX1 trx2D/TRX2. These four loci are unlinked. 140 tetrads were dissected. 35
segregants of each genotype were expected. Colony size: pp ,p ,m ,m+ ,G– ,G.
doi:10.1371/journal.pone.0108123.t007
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Low levels of dNTP in trr1D and trx1Dtrx2D mutants com-

pared to wild-type strains suggest that the decrease of CanR

mutation rate in these mutants may be due to the combined effects

of Yap1 activation and dNTP pool reduction. To estimate their

relative contributions, we propose a tentative model which links

the quantity of endogenous DNA lesion and the cellular dNTP

concentration to the production of CanR mutations (Text S1). This

model predicts that ROS level in trr1D is about 21 times lower

than that in trx1D trx2D cells. These estimations are consistent

with the observation above that the oxido-reductasesinvolved in

the reduction of ROS are more actively synthesized in trr1D than

in trx1D trx2D (Table 5, Table S6). On the other hand, the model

predicts that the impact of dNTP concentration on the CanR

mutation rate is dependent on the level of lesions produced by

ROS and processed by translesion polymerases. As more lesions

are present in trx1D trx2D cells than in trr1D cells, changes in

dNTP concentration will have more impact in the generation of

CanR mutations in trx1D trx2D than in trr1D cells. We note that

these proposals seem to contradict the fact that trr1D cells are

more sensitive to hydrogen peroxide than wild-type cells [45,49].

We compared the growth of wild-type, trr1D and trr1D trx1D
trx2D strains on SC plates containing 0.10 and 0.25 mM H2O2

(Figure 6). In these H2O2 concentration ranges, trr1D trx1D trx2D
strain was almost as resistant as the wild-type strain, pointing to

the possibility that the sensitivity of the trr1D cells is primarily due

Figure 5. dNTP concentrations in yeast strains. dNTP levels were measured in wild-type, trr1D trx1D trx2D, sml1D RNR1TEF1, trr1D sml1D
RNR1TEF1 and trx1D trx2D sml1D RNR1TEF1 strains. Values are the average of two experiments and error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0108123.g005

Table 8. Impact of dNTP levels on the CanR mutation rates.

Strain Genotype Yap1 activation dNTP concentration* CanR rate (61027)

GF4729 wild-type no 1 4.20 (3.98–4.82)

GF5270 tsa1D no 2.5** 70.70 (61.60–101.50)

GF5505 trr1D strong 0.50 0.84 (0.55–1.05)

GF5499 trr1D tsa1D strong ND 2.15 (1.88–2.78)

GF5668 trx1D trx2D moderate 0.52 2.11 (1.74–2.42)

GF5674 trx1D trx2D tsa1D moderate ND 5.75 (5.21–7.05)

GF6080 sml1D RNR1TEF1 ND 5.22 5.04 (4.34–6.13)

GF6084 trr1D sml1D RNR1TEF1 ND 5.52 2.35 (2.08–2.54)

GF6129 trx1D trx2D sml1D RNR1TEF1 ND 3.93 11.53 (9.55–12.25)

*dNTP concentration in mutant strains relative to wild-type cells (set to be 1).
** Davidson et al. 2012; ND, not determined.
doi:10.1371/journal.pone.0108123.t008
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to the accumulation of toxic oxidized thioredoxins which disturb

the cellular redox homeostasis, as previously suggested [4].

Discussion

Among the five S. cerevisiae genes encoding peroxiredoxins,

deletion of TSA1 causes the accumulation of a broad spectrum of

mutations. The mutator phenotype of tsa1D cells might be

primarily due to their inability to reduce H2O2. The endogenous

concentrations of H2O2 and alkyl hydroperoxides in wild-type and

tsa1D strains have so far not been precisely determined because of

the lack of the selective, quantitative and sensitive ROS probes

[19]. Nevertheless, several laboratories report an increased

intracellular ROS in tsa1D strains [16,20–23]. Importantly, CanR

mutation rate of a tsa1D strain decreases substantially under

anaerobiosis, further suggesting that the increase of intracellular

H2O2 concentration in tsa1D cells is the primary cause of the

genome instability of these cells under aerobiosis. In such

conditions, mitochondria and other sources of ROS (peroxisome

and endoplasmic reticulum) generate less ROS, due to the

restricted availability of O2 which is a substrate for electrons

[61,62]. Consistently, loss of Trr1 function reduces substantially

the CanR mutation rate of tsa1D strain, most probably through

over-expression of Yap1-regulated oxido-reductases that reduce

substantially ROS-associated DNA damages. On the other hand,

the associated expansion of the dNTP pool in tsa1D cells also

contributes to its mutator phenotype [16,60]. The excess of ROS

in tsa1D cells increases the level of DNA lesions that in turn

activates the DNA damage checkpoint pathway leading to the

induction of RNR and the consequent overproduction of dNTPs.

This double effect of increased ROS accumulation: elevation of

DNA lesions level and stimulation of ribonucleotide reductase

activity, may explain why the tsa1D mutant deviates from a

correlation linking the increased dNTP level with increased

spontaneous mutagenesis [60]. All these evidences support the

view that the increase of intracellular H2O2 concentration in tsa1D
cells is the primary cause of the genome instability of these cells

under aerobiosis.

The transcription factor Yap1 is a central regulator of the

response to oxidative stress in S. cerevisiae. In yeast cells with

functional Gpx3 and Ybp1 proteins, Gpx3 senses exogenous

added H2O2 and mediates H2O2 signal into a cysteine-based

redox cascade that culminates in the oxidation of Yap1 [38,39]. In

strains harboring the W303 genetic background, the YBP1 gene is

mutated and nonfunctional, and Yap1 activation appears to be

Gpx3-independent but requires Tsa1 [35]. Thioredoxins are

physiological reducing agents and are responsible for the negative

regulation of the Yap1 transcription factor activity [42–44].

Indeed, thioredoxins should be able to reduce the activated

disulfide form of Yap1, preventing its translocation to nucleus or

facilitating its exit to cytoplasm. In the present study, we have

shown that the loss of Trr1 induces Yap1 accumulation in nucleus

and over-expression of a set of Yap1-regulated oxido-reductases.

Several evidence strongly suggest that oxidized thioredoxins are a

key activator of Yap1 in trr1D mutants. First, as thioredoxins

reduce the activated disulfide form of Yap1, highly oxidation of

thioredoxins in trr1D cells should prevent their capacity to reduce

oxidized Yap1 and facilitate its accumulation in nucleus. Secondly,

we observed that a set of Yap1-regulated genes is significantly

more over-expressed in a trr1D, trr1D trx1D, or trr1D trx2D strain

than in trr1D trx1D trx2D strain, suggesting that the presence of

Trx1 and/or Trx2 largely contributes to the strong activation of

the tested genes in trr1D cells. Furthermore, as Yap1 activity in

trx1D trx2D mutants is lower than in trr1D mutants, this suggests

that Yap1 activation in trr1D cells is due to a high concentration of

oxidized thioredoxins but not the decreased level of reduced

thioredoxins. In addition to the thioredoxins, Tsa1 contributes also

to the Yap1 activation, as expression levels of Yap1-regulated

genes are significantly lower in trr1D tsa1D than in trr1D mutants.

Finally, a moderate but significant Yap1 activation is noteworthy

in trx1D trx2D cells suggesting the existence of some Trx1/Trx2-

independent mechanisms. The precise mechanisms in which

oxidized thioredoxins and Tsa1 or other factors are involved in

Yap1 oxidation and activation remain to be determined in the

contexts of present mutant strains.

The tsa1D rad51D double mutant is not viable under aerobic

conditions but viable under anaerobic conditions [18]. This

observation suggests that a large excess of DNA lesions produced

by ROS are the cause of lethality in the absence of efficient

recombination repair. In searching for spontaneous suppressors of

synthetic lethality of the tsa1D rad51D double mutant, we

identified that loss of thioredoxin reductase Trr1 rescues their

viability. This unexpected effect seems to result from the strong

impact of TRR1 deletion on mutation formation. Additional

deletion of TRR1 in tsa1D mutants reduces substantially the CanR

mutation rate of tsa1D strain (33-fold), and to a less extend, of

rad51D strain (4-fold). We reason that the synthetic lethality of

tsa1D rad51D double mutant may result from excessive DNA

damage. Substantial reduction of tsa1D and rad51D mutation

rates in the trr1D context rescues the viability of the double

mutant.

In conclusion, we propose that the trr1D -induced mutation

suppression effect results from at least two distinct mechanisms

both mediated by oxidized thioredoxins (Figure 7). Constitutive

oxidation of thioredoxins strongly activates Yap1, induces over-

expression of a set of Yap1-regulated oxido-reductases with

antioxidant properties that ultimately reduces substantially intra-

cellular ROS concentration and consequently ROS associated

DNA damages. Besides, the oxidized thioredoxins may directly

interfere with the activity of ribonucleotide reductase, leading to a

reduction in the dNTPs synthesis and the translesion DNA

synthesis (TLS), further reducing the mutagenesis. Although Yap1

could regulate the expression of several chaperones and compo-

nents involved in post-replication repair (http://www.yeastract.

Figure 6. Sensitivity of wild-type, trr1D and trr1D trx1D trx2D strains to H2O2. Equal numbers of cells were serially diluted (10-fold dilution)
and spotted onto SC medium containing indicated concentrations of H2O2. Yeasts growth was assessed after 4 days at 30uC.
doi:10.1371/journal.pone.0108123.g006
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com), it remains to determine whether these elements could

contribute significantly to suppress the mutator phenotype of

tsa1D mutants. In combination with the model described in Text

S1, we strengthen the view that in yeast cells, the large majority of

spontaneous mutations originates from ROS-induced lesions.

Materials and Methods

Media
Complete medium (YPD) contained 1% (w/v) yeast extract, 1%

(w/v) bactopeptone, 2% (w/v) glucose. Synthetic complete

medium (SC) with 2% glucose was prepared as described by

Sherman [63]. SPO2 sporulation medium contained 0.5% yeast

extract, 0.5% bactopeptone, 2% potassium acetate. Canavanine-

resistant mutants (CanR) caused by inactivation of the CAN1 gene

were selected on SC-arginine dropout plates containing 60 mg/

liter canavanine. 5-fluoroorotic acid (5-FOA) was used at 1 g/liter

in SC medium.

Plasmid and strain constructions
The constructions of plasmids and strains used in this work are

described in Text S2 and Text S3. All yeast strains used in this

study are listed in Table S1. All oligonucleotides used for plasmid

and strain constructions are listed in Table S2.

Fluctuation analysis
The rate of accumulation of CanR mutations in cell populations

was determined by fluctuation analysis [26]. 2-ml cell cultures

were incubated under aerobic conditions at 30uC for 3 days with

agitation. The number of mutant cells per culture among 19–57

parallel cultures was calculated and the median of the distribution

was used to determine the mutation rate of a given strain. The

95% confidence intervals for a median rate were calculated

according to Huang and Kolodner [17].

Anaerobic growth conditions
YPD medium was supplemented with Tween 80 and ergosterol

to a final concentration of 1.32 g/liter and 6.75 mg/liter,

respectively. For determining mutations rates, 2-ml cell cultures

were placed in an 8-litre airtight jar containing 3 disposable

hydrogen- and carbon dioxide-generating envelopes (BD BBL

GasPak Plus, Becton Dickinson) and grown anaerobically at 30uC
for 5 days without agitation. Anaerobic conditions were monitored

with the redox indicators Anaerotest (Merck, Darmstadt) placed

inside the airtight jar. As controls, cell cultures were grown under

the same conditions except aerobically.

Quantitative RT-PCR
Wild-type and mutated strains were grown to mid-exponential

phase (OD 0.5, 600 nm) in YPD medium. Total RNA was

extracted according to a protocol previously described [64]. To

ensure the absence of trace DNA in the samples, extracted RNA

were treated with DNase and verified by conventional PCR, using

primers DAN2UP and DAN2DW. cDNA were generated using

an iScript cDNA synthesis Kit (Bio-Rad). Appropriately diluted

cDNA from each strain were amplified using iQ SYBR Green

Supermix (Bio-Rad) and a set of 13 primer pairs (Table S3) to

follow the expression of 13 oxido-reductases. Expression of ACT1,

CDC11 and LRE1 were used as internal controls. Quantitative

RT-PCR reactions were carried out in the CFX96 Bio-Rad

Thermal cycler. mRNA relative levels were calculated with Bio-

Rad CFX Manager software. The oxido-reductase mRNA levels

were normalized with respect to the ACT1, CDC11 and LRE1
mRNA levels. mRNA levels of oxido-reductase genes were

calculated as ratios relative to that of a wild-type strain (set as 1).

Trx2 polyclonal antibody
The BL21(DE3) E. coli strain (New England Biolabs) was

transformed with plasmid p1672 (TRX2). Transformed cells were

grown with shaking at 37uC in LB in the presence of kanamycin

(30 mg/liter). When the OD (580 nm) of the culture reached 0.6,

isopropyl-ß-D-thiogalactoside (IPTG) was added to a final

concentration of 0.8 mM and growth was continued overnight

at 18uC. Cell lysates were prepared using a French Press. Trx2-

6His was purified by affinity chromatography on a Ni-column

(Qiagen). Then, the 6-His tag was cleaved off with tobacco etch

virus protease (TEV) and the uncleaved material was purified by

passage through a Ni-column. The Trx2 lacking the His tag was

used for antibody production in rabbits by a commercial facility

(Agro-Bio).

Western blotting
5 ml of cell cultures at logarithmic phase in complete medium

were acid-quenched with 20% trichloroacetic acid (TCA, Sigma)

at 4uC. Cells were harvested, resuspended in 1 ml of 20% TCA

and pelleted by centrifugation. For protein extraction, the cell

pellet was resuspended in 400 ml of 20% TCA and lysed with glass

beads (200 ml) by vortexing for 5 min at 4uC. The lysed cells were

centrifuged and the pellet was washed with cold acetone. The dry

pellet was resuspended in 50 ml of TES buffer (100 mM Tris-Cl

pH 8.8, 10 mM EDTA, 1% SDS) containing 30 mM 4-acet-

amido-4’-maleimidylstilbene-2,2’ -disulfonic acid, disodium salt

(AMS, Molecular Probe) [38]. Following a 2 h incubation at 37uC
with agitation in the dark, insoluble protein was removed by

centrifugation. Each sample containing about 30 mg of protein was

prepared with NuPAGE LDS sample buffer and was separated on

a 12% NuPAGE Novex Bis-Tris gel with MES SDS buffer (Life

Technologies). Upon transferring to a nitrocellulose membrane,

Trx1 or Trx2 were probed with a rabbit anti-Trx1 antibody (a

generous gift of C. Grant) or rabbit anti-Trx2 antibody,

respectively and a secondary anti-rabbit IgG (IRDye, LI-COR)

Figure 7. Schematics for trr1D-mediated decrease of CanR mutation. Loss-of-function of thioredoxin reductase Trr1 results in constitutive
oxidation of thioredoxins, which leads to suppression of mutation formation through two distinct mechanisms. Yap1 activation and consequent over-
expression of Yap1-regulated oxido-reductases play a major role in reducing mutagenesis. TLS, translesion DNA synthesis.
doi:10.1371/journal.pone.0108123.g007
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and then analyzed by quantitative immunoblot using an Odyssey

Infrared Imaging System (LI-COR).

Isolation of suppressors
Strains GF5297 and GF5305 (Table S1) were streaked out on

YPD plates supplemented with Tween 80 and ergosterol and

incubated under anaerobic conditions at 30uC. Ten single colonies

from each strain were inoculated into YPD-Tween 80-ergosterol

and grown anaerobically for 4 days. 100 ml of each culture were

then plated onto YPD and incubated aerobically. About 3 to 40

colonies appeared on each plate after 3 days at 30uC. One colony

from each plate was retained and these were named GF5297-1 to

GF5297-10 and GF5305-1 to GF5305-10. To determine whether

suppression was due to single mutations, the suppressor strains

were crossed with strains GF5265 or GF5269 and the meiotic

products of the diploids obtained were analyzed. The proportions

of the three types of tetrads (tetratypes, parental ditypes and non-

parental ditypes) suggested that the putative suppressor mutations

were single mutations that were not linked to the RAD51 locus.

For determining whether the 20 suppressor mutations were

recessive or dominant, the suppressor strains were crossed

individually with strains GF5335 or GF5336. All diploids obtained

were unable to grow on 5-FOA plates, suggesting that the

suppressor mutations were recessive.

Identification of the suppressor mutation of strain
GF5305–6

To clone the sup gene from the suppressor-containing strain

GF5305-6, we used the red/white colony assay described by Zhao

et al [47]. We first disrupted genes ADE2 and ADE3 of strain

GF5305-6, yielding strain GF5374. Plasmid p1591 was introduced

by transformation, yielding strain GF5377. GF5377 colonies were

red on SC-uracil, 8% glucose medium but became white or

sectored on YPD, 8% glucose plates because plasmid p1591

(TSA1, ADE3) was easily lost without selection. Strain GF5377

was transformed with a CEN-LEU2 plasmid-based genomic

library (ATCC number 77162). Approximately 40,000 transfor-

mants were selected on SC-leucine, 8% glucose plates, of which

137 appeared red or pink. These 137 strains were restreaked on

SC-leucine, 8% glucose plates and 21 strains continued to appear

red or pink. These 21 strains were then tested for growth on SC-

leucine, 5-FOA plates. Plasmids from the seven strains that failed

to grow on SC-leucine, 5-FOA plates were recovered into E. coli
using standard methods for further analysis.

Fluorescence microscopy
Exponentially growing cells expressing Yap1-GFP under the

control of native Yap1 promoter were washed with PBS,

resuspended in mounting solution (75% glycerol in PBS)

containing 49,6-diamidino-2-phenylindole (DAPI) at concentration

of 50 mg/ml, and mounted on a glass slide covered with polylysine

(Sigma). Fluorescent images were captured with a Leica micro-

scope (DMRXA) equipped with a cooled CCD camera Micro-

MAX (Princeton Instruments) under control of the MetaMorph

software (Molecular Devices). Images obtained were processed

using ImageJ software.

Determination of dNTP levels
Approximately 3.76108 (as determined by the optical density at

600 nm [OD600]) cells were harvested by filtration through 25-mm

white AAWP nitrocellulose filters (0.8 mm; Millipore AB). The

filters were immersed in 700 ml of ice-cold extraction solution

(12% TCA, 15 mM MgCl2) in Eppendorf tubes and frozen in

liquid nitrogen. The following steps were carried out at 4uC. The

tubes were vortexed for 30 s, incubated for 15 min, and vortexed

again for 30 s. The filters were removed, and 700 ml supernatants

were collected after centrifugation at 20,0006g for 1 min and

added to 800 ml of ice-cold Freon-trioctylamine mixture (10 ml of

99% pure Freon [1,1,2-trichlorotrifluoroethane; Sigma-Aldrich]

and 2.8 ml of 98% pure trioctylamine [Sigma-Aldrich]). The

samples were vortexed and centrifuged for 1 min at 20,0006g.

The aqueous phase was collected and added to 700 ml of ice-cold

Freon-trioctylamine mixture. Volumes of 475 and 47.5 ml of the

aqueous phase were collected. The 475-ml aliquots of the aqueous

phase were pH adjusted with 1 M NH4HCO3 (pH 8.9), loaded on

boronate columns (Affi-Gel 601; Bio-Rad), and eluted with

50 mM NH4HCO3, pH 8.9, 15 mM MgCl2 to separate dNTPs

and NTPs. The eluates with purified dNTPs were adjusted to

pH 3.4 with 6 M HCl, separated on a Partisphere SAX HPLC

column (125 mm64.6 mm, Hichrome), under isocratic elution

with 0.35 M potassium phosphate buffer (pH 3.4; containing

2.5% [vol/vol] acetonitrile) and quantified using a LaChrom Elite

HPLC system (VWR International). The 47.5-ml aliquots of the

aqueous phase were adjusted to pH 3.4 and used to quantify NTPs

by HPLC in the same way.
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