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Abstract: TLR4/NF-κB is a key inflammatory signaling transduction pathway, closely involved
in cell differentiation, proliferation, apoptosis, and pro-inflammatory response. Toll like receptor
4 (TLR4), the first mammalian TLR to be characterized, is the innate immune receptor that plays a key
role in inflammatory signal transductions. Nuclear factor kappa B (NF-κB), the TLR4 downstream,
is the key to accounting for the expression of multiple genes involved in inflammatory responses,
such as pro-inflammatory cytokines. Inflammatory bowel disease (IBD) in humans is a chronic
inflammatory disease with high incidence and prevalence worldwide. Targeting the TLR4/NF-κB
signaling pathway might be an effective strategy to alleviate intestinal inflammation. Polyphenol
phytochemicals have shown noticeable alleviative effects by acting on the TLR4/NF-κB signaling
pathway in intestinal inflammation. This review summarizes the pharmacological effects of more
than 20 kinds of polyphenols on intestinal inflammation via targeting the TLR4/NF-κB signaling
pathway. We expected that polyphenol phytochemicals targeting the TLR4/NF-κB signaling pathway
might be an effective approach to treat IBD in future clinical research applications.

Keywords: polyphenols; TLR4/NF-κB signaling pathway; intestinal inflammation

1. Introduction

Inflammatory bowel disease (IBD), including mainly Crohn’s disease and ulcerative
colitis (UC), is a chronic intestinal inflammation characterized by bellyache, malabsorption,
diarrhea, general malaise, etc. [1]. The incidence areas of CD can occur throughout the
gastrointestinal tract, whereas the main incidence area of UC is the colon and rectum [2].
Approximately 3 million adults in the United States were diagnosed with IBD in 2015,
and the incidence rate in 2030 is predicted to increase to 4–6 times that [3]. The incidence
rate of IBD in China is 3.44%, ranking the highest in Asia [4]. To date, preclinical models
of IBD are widely established to explore the pathogenesis and therapy. Furthermore,
2,4,6-trinitrobenzene sulfonic acid (TNBS) and dextran sulfate sodium (DSS) models have
been largely employed.

Inflammatory signaling pathways play a crucial role in the treatment of inflammatory
disease. Several external stimuli can activate toll-like receptor 4 (TLR4) and downstream
nuclear factor kappa B (NF-κB) pathway, also promoting the production of inflammatory
cytokines, subsequently provoking the inflammatory response [5]. As shown, there is
strong evidence of the upregulation of TLR4/NF-κB and MAPK signaling in IBD [6,7].
IBD patients are commonly treated with medicine therapy but this gives rise to a lot of
side effects. Therefore, there are well recognized requirements for new and safe strategies
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for IBD treatment. On that basis, accumulating studies demonstrated the pharmaceuti-
cal effects of polyphenols on the IBD. Polyphenols are secondary metabolites of plants
that normally contain at least one or more hydroxyl group-linked benzene rings [8]. In
the past, accumulating evidences suggested that polyphenols are potential sources of
alternative medications to treat the oxidative stress and inflammation associated with
degenerative diseases, such as diabetes mellitus (DM), rheumatoid arthritis (RA), and car-
diovascular disease [9]. More importantly, a recent study showed that polyphenol extract of
Moringa oleifera containing astragalin, chlorogenic acid, isoquercitrin, kaempferitrin, lute-
olin, quercetin, and rutin could alleviate colonic inflammation in DSS-treated mice associ-
ated with the NF-κB signaling pathway [10], indicating the anti-inflammatory potential
of polyphenols on intestinal diseases. The small intestine plays a key role in the digestion
and absorption of nutrients, including carbohydrates, proteins, and lipids. To date, the
gastrointestinal tract has been considered as a potential research hotspot that is associated
with inflammation induced by pathogens, toxins, and external stimulus [11]. Increased
attention has been paid to the link between the polyphenols and intestinal inflammation.
Increased intestinal inflammation is largely driven by activation of the TLR4/NF-κB sig-
naling pathway [6]. It is worth noting that numerous studies have been conducted to
date on the anti-inflammatory effects of polyphenols, in both in vitro and in vivo multiple
inflammatory models, but few studies have addressed the specific effect and mechanisms
of polyphenols on intestinal inflammation. However, although various models of severe
intestinal inflammation were used, these pathologies share common inflammatory pro-
cesses and mechanisms. In this regard, the present review will focus on recent advances in
the intestinal anti-inflammatory properties of polyphenols which link the TLR4/NF-κB-
mediated signaling pathways in both in vitro and in vivo intestinal inflammatory models.
Polyphenols could contribute, as adjuvant, or preventive approaches, to the treatment of
chronic inflammatory diseases.

2. TLR4 Signaling Pathways

The innate immune system constitutes the first line of host defense against extraneous
pathogen invasion, including bacteria, viruses, yeasts, and fungi. Transmembrane receptors
designated toll-like receptors (TLRs) belonging to members of pattern recognition receptors
(PRRs) play a key role in recognizing invading microbial pathogens and inducing innate
immune responses for the host defense [12]. They are expressed on multiple immune
cells, including B cells, dendritic cells, macrophages, specific types of T cells, and even
on non-immune cells such as intestinal epithelial cells [13]. TLRs are type I transmem-
brane glycoproteins constituted by an extracellular N-terminal domain of leucine-rich
repeats and an intracellular C-terminal domain similar to that of the interleukin 1 receptor
(IL-1R), thus designated as toll/interleukin 1 receptor (TIR) domain, which is responsible
for downstream signal transduction [13,14].

TLR4, one class of TLRs, is thought to play a crucial role in intestinal inflammatory
diseases [6]. It can lead to the maturation of dendritic cells and differentiation of helper
T cell (Th) 1 and Th2 [7]. Moreover, it can induce the differentiation of macrophages to an
M1 phenotype, thereby producing pro-inflammatory cytokines [15]. Upon activation, TLR4
dimerizes and triggers two major signaling cascades, myeloid differential factor 88 (MyD88)-
dependent and toll/interleukin 1 receptor domain-containing adaptor inducing interferon-
beta (TRIF)-dependent pathways, which result in the downstream activation of NF-κB and
mitogen-activated protein kinases (MAPKs) and induction of various pro-inflammatory
gene products, including cytokines and inflammation related enzymes [14,16].

The MyD88-dependent pathway begins with the cytoplasmic TIR domain [17]. Upon
MyD88 activation associated with TIR domain-containing adaptor protein (TIRAP), the
autophosphorylation of IL-1 receptor-associated kinase (IRAK), namely, IRAK1, and IRAK4
was subsequently triggered, and it further temporarily interacts with tumor necrosis
factor receptor-associated factor 6 (TRAF6). This activation of IRAK and TRAF6 even-
tually results in the phosphorylation and degradation of NF-kappa-B inhibitor alpha
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(IκBα), and the following translocation of NF-κB into the nucleus [14,18]. In addition,
TRAF6 can stimulate MAPKs, namely, p38, extracellular signal regulated kinase (ERK),
c-Jun N-terminal kinase (JNK), and the subsequent activation of the activator protein-1
(AP-1) [19]. Next, the activation of NF-κB and MAPK can induce inflammatory responses
through the activation of inflammation related enzymes, such as inducible nitric oxidase
synthase (iNOS), cyclooxygenase 2 (COX-2), and pro-inflammatory cytokines secretion,
such as interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), and others [19].
On the other hand, the TRIF-dependent pathway is also confirmed to trigger after TLR4
activation. It primarily recruits TRIF and leads to the ubiquitination of TRAF6, which
induces TANK-binding kinase 1 (TBK1) combining to I-kappa-B kinase epsilon (IKKε, the
inhibitor of NF-κB). Later, the transcription factor interferon regulatory factor 3 (IRF3) is
phosphorylated and activated by the TBK1-IKKε complex, finally driving the transcription
of interferon-alpha (IFN-α) and IFN-β [20,21].

3. TLR4 and NF-κB in the Development of Inflammatory Bowel Disease

As mentioned earlier, IBD is a chronic, relapsing, and lifelong disease that has been a
worldwide threat to healthcare with increasing incidence and prevalence. More importantly,
there is strong evidence that TLRs, and TLR-activated signaling pathways, are involved in
the pathogenesis of IBD [7,22]. TLRs not only play a crucial role in innate immunity, but also
critically modulate adaptive immunity, such as T cell activation. There is disequilibrium
between T regulatory cells (Tregs) and effector T cells in patients with IBD. This implies
that when Tregs’ function of inhibiting effector T cells, such as Th1, Th2, Th17, and NKT
cells, is suppressed due to TLR-induced over immune responses, IBD will become out of
control [23,24]. In addition, TLRs act as the bridge between immune response to microbes
in the gut, thus giving rise to IBD [7]. That is, the innate inflammatory response can result in
dysbiosis of the intestinal microbiota, leading to host metabolic dysfunction. In this respect,
TLRs can mediate the interactions between the host immunity and intestinal microbiota.
Taken together, TLRs are a potential molecular mechanism in the development of IBD due
to controlling the immune response and disordering the intestinal microbiome.

Among all TLRs, the TLR4 is the first verified TLR in the mammalian system and the
receptor of lipopolysaccharide (LPS) in Gram-negative bacteria. Under normal physiologi-
cal conditions, TLR4 is expressed at a low level in intestinal epithelial cells [25]. However,
the TLR4 is expressed at high levels in the intestinal epithelium of patients with active
UC, indicating that TLR4 might be involved in the development of UC. NF-κB is the final
transcription factor of the TLR4 signaling pathway. The NF-κB signaling pathway plays a
pivotal role in promoting the development of intestinal diseases via regulation of transcrip-
tion and translation of inflammatory mediators, such as pro-inflammatory cytokines [26].
NF-κB is formed by five important proteins, including p65 (RelA), p50, p52, c-Rel, and RelB,
which exist in cytoplasm as inactive heterodimeric complexes by binding to its inhibitory
protein, I kappa B (IκB). P65 is the most representative protein for the regulation and func-
tion of NF-κB. Upon activation by various inflammatory stimuli, such as LPS, the activation
of the IκB kinase (IkkB) triggers the phosphorylation and degradation of IκBα. Afterwards,
nuclear translocation of NF-κB occurs after NF-κB phosphorylation. Upon entering the
nucleus, NF-κB binds to DNA and activates the expression of pro-inflammatory genes
including cytokines (IL and TNF-α), adhesion molecules, and inducible enzymes (iNOS
and COX-2) [27]. Previous study has demonstrated that inflammatory cytokines can induce
disturbances in intestinal barrier function, thereby causing intestinal mucosal barrier dam-
age and inflammatory response [22,28]. On the other hand, the high expression of iNOS
can lead to high NO production, which participates in the pathology of chronic IBD [29,30].
Cyclo-oxygenases are enzymes that influence many biological processes, ranging from
homeostasis to inflammation [31]. There are two cyclo-oxygenases isoforms: the constitu-
tive COX-1 isoform and the inducible COX-2 isoform. Among them, COX-2 induction can
be reflected by increased prostaglandin E2 (PGE2) levels at the site of inflammation [31,32].
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Taken together, regulation of the TLR4/NF-κB-mediated signaling pathway could be novel
potential therapeutic strategies against IBD.

4. Polyphenols Alleviate Intestinal Inflammation via Modulating the TLR4/NF-κB
Signaling Pathway

Polyphenols, widely known as secondary metabolites, are plant-synthesized com-
pounds possessing various biological activities [33,34]. Polyphenols can be classified into
flavonoids and tannins, alkaloids, terpenoids, and phenylpropanoid [35]. The chemical
structures of some of the polyphenolic compounds are depicted in Figure 1. There are
enormous structural variations among these compounds. However, the anti-inflammatory
effects of these compounds are consistent in both in vitro and in vivo inflammatory disease
models. They become involved in multiple biological processes inside the body, such as
radical scavenging and anti-inflammatory processes, as well as cell signaling [9,36,37]. Cur-
rently, numerous studies have indicated that phytochemicals may be promising candidates
for the treatment of several inflammatory diseases. However, there is a gap in the knowl-
edge of in vitro and in vivo effects although the pharmacokinetics of polyphenols have
improved a lot in the last decade [38]. Interestingly, the predominant anti-inflammatory
mechanism is attributed to an inhibition of TLR4/NF-κB-mediated signaling pathways
and the downregulation of expression of pro-inflammatory mediators [38,39]. Another
point worth noting is the evidence that many polyphenols, especially flavonoids, have
been studied for their intestinal anti-inflammatory activity associated with inhibition of
inflammatory signaling pathways, pro-inflammatory genes expression, and promotion of
anti-inflammatory genes expression. In this section, we will discuss, in detail, how polyphe-
nols exert their intestinal anti-inflammatory properties linked with TLR4/NF-κB-mediated
signaling pathways in both in vitro and in vivo intestinal inflammatory models (Table 1,
Figures 2 and 3).



Int. J. Mol. Sci. 2022, 23, 6939 5 of 26Int. J. Mol. Sci. 2022, 23, 6939 5 of 29 
 

 

 
Figure 1. Chemical structure of some of the flavonoids and other polyphenolic compounds fea-
tured in this review. Polyphenols can be classified into flavonoids and tannins, alkaloids, terpe-
noids, and phenylpropanoid. Substantial variation is intuitively observed by distinct chemical 
substitutions, especially hydroxylation and glycosylation.  

Figure 1. Chemical structure of some of the flavonoids and other polyphenolic compounds featured
in this review. Polyphenols can be classified into flavonoids and tannins, alkaloids, terpenoids, and
phenylpropanoid. Substantial variation is intuitively observed by distinct chemical substitutions,
especially hydroxylation and glycosylation.
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Table 1. Summary of polyphenols’ effects on intestinal inflammatory diseases along the TLR4/NF-
κB-mediated signaling pathway in vitro and in vivo.

Polyphenol Cell Type or
Animal Model

Induction of Intestinal
Inflammation Anti-Inflammatory Mechanism References

Apigenin Swiss albino mice Radiation-induced
gastrointestinal damages It inhibited NF-κB expression Begum et al. [40]

HCT-116 human colonic
epithelial cancer cells 5 µg/mL LPS

It downregulated NF-κB and STAT3
expression, as well as IL-6 and IL-10

secretion in a dose dependent manner
Ai et al. [41]

C57BL/6J mice Oral administration of 1%
DSS for 21 d

It reduced the severity of colitis by
decreasing TNF-α, IL-1β, IL-6, and

COX-2 levels
Ai et al. [41]

Luteolin Human Caco-2 cells
5 µmol/L

decabromodiphenyl ether
(BDE-209) for 12 h

It inhibited ERK and NF-κB p50
expression and IκBα phosphorylation,

as well as secretion of TNF-α,
IL-6, IL-1β

Yuan et al. [42]

C57BL/6J mice Drinking water containing
3.0% DSS

It decreased the levels of IL-6, IL-1β,
and TNF-α in the serum and colon,

and the protein levels of TLR4, MyD88,
and NF-κB p65, and phosphorylation

of NF-κB p65

Zuo et al. [43]

Caco-2/RAW264.7
co-culture model LPS stimulation

It suppressed NF-κB nuclear
translocation, and mRNA expression

of IL-8 and TNF-α
Nishitani et al. [44]

Baicalein Female Balb/c mice 2 mg of TNBS

It reduced TNF-α and IL-1β, and
phosphorylation of NF-κB p65 and

IκBα, and protein expression of TLR4
and MyD88

Luo et al. [45]

Sprague-Dawley rats Ulcerative colitis
It inhibited NF-κB and MAPK

expression, as well as IL-1β, IL-6,
and IL-17

Liang et al. [46]

Quercetin IEC-6 cells 300 µmol/L indomethacin
for 24 h

It suppressed calcium-mediated JNK
and Src activation Fan et al. [47]

Human intestinal
epithelial cell line Int407 Vibrio cholerae

Pretreatment with it reduced the IL-8
secretion and NF-κB translocation into

the nucleus
Das et al. [48]

Male Sprague-Dawley rats

Acute necrotizing
pancreatitis induced by

3.5% sodium taurocholate
solution

It downregulated intestinal protein
expression of TLR4 and MyD88, and

phosphorylation of p38 MAPK
Zheng et al. [49]

Sprague-Dawley rats
Indomethacin dissolved in
5% NaHCO3, at 40 mg/kg

body weight

Its oxidation metabolite prevented
NF-κB activation and IL-8 secretion Fuentes et al. [50]

Kaempferol
Rat intestinal

microvascular endothelial
cells

10 µg/mL LPS for 12 h

It inhibited LPS-induced NF-κB, I-κB
and STAT phosphorylation, decreased
TLR4 overexpression, and LPS-induced

IL-1β, IL-6 and TNF-α upregulation

Bian et al. [51]

C57BL/6J male mice High fat diet
It reduced the protein expression of

TLR4, MyD88 and NF-κB, and mRNA
expression of TNF-α in the colon

Bian et al. [52]

Rutin Rag1 −/−mice CD4+ CD62L+ T cells
transfer model of colitis

It inhibited STAT4 and
IκBαphosphorylation, as well as IL-1β
and IFN-γ expression in CD4+ spleen

cells of the mice

Mascaraque et al. [1]

Female Wistar rats 10 mg of TNBS induced
ileitis and colitis

Intragastric rutin resulted in reduced
IL-1β and IL-17 mRNA expression in
the treatment of ileitis rats, while just
tended to decrease levels of IL-17 and

IFN-γ in the colitis rats

Mascaraque et al. [53]

Myricetin IEC-6 cells 300 µmol/L indomethacin
for 24 h

It increased the expression of tight
junction proteins, and reduced

JNK/Src phosphorylation
Fan et al. [47]

Male Kunming mice Oral administration of 3%
DSS solution for 2 weeks

It suppressed TNF-α, NF-κB and
COX-2 expression, and increased tight

junction proteins expression
Li et al. [54]
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Table 1. Cont.

Polyphenol Cell Type or
Animal Model

Induction of Intestinal
Inflammation Anti-Inflammatory Mechanism References

Myricetin-3-O-
b-D-lactose
sodium salt

Male C57BL/6 mice Oral water containing
1.0% DSS

It reduced the protein expression of
IL-6, and the phosphorylation of JAK2,

STAT3 and NF-κB, as well as TNF-α
pathway, increased IL-4 and

IL-10 secretion

Zhou et al. [55]

Hesperidin Wistar albino male rats TNBS-induced colitis It reduced the colonic levels of NF-κB,
TNF-α and IL-6 Polat et al. [56]

Hesperidin
methyl chalcone Male Swiss mice Acetic acid-induced colitis

It reduced acetic acid-induced TNF-α,
IL-6, IL-1β, and IL-33 production and

inhibited NF-κB activation by
blocking Ser276

Guazelli et al. [57]

Naringin Mice
Cecal ligation and
puncture-induced

intestinal sepsis

It inhibited the release of TNF-α and
IL-6, increased IL-10, inhibited NF-κB

expression
Li et al. [58]

RAW 264.7 macrophages LPS (1 µg/mL /mL)
stimulation for 24 h

It reduced NF-κB translocation and
phosphorylation of p38, ERK, and JNK,

as well as the expressions of COX-2,
IL-1β and TNF-α

Ha et al. [59]

EGCG Male C57BL/6J mice High fat diet
It protected against gut barrier

dysfunction, and decreased ileal and
colonic mRNA expression of TNF-α

Dey et al. [60]

Rat intestinal epithelial
cells

LPS (1 µg/mL)
stimulation for 24 h

It blocked NF-κB signaling via
degradation of IκBα and inhibition of
NF-κB nuclear translocation, thereby

suppressed the expression of adhesion
molecules ICAM-1 and VCAM-1

Myung et al. [61]

Bone marrow-derived
macrophages

LPS (1 µg/mL) incubation
for 0–1 h

It prevented LPS-induced
inflammation through inhibiting IκBα
phosphorylation/degradation, NF-κB

RelA nuclear translocation, and
phosphorylation of ERK1/2, JNK and

p38 expression

Joo et al. [62]

Genistein Male Arbor Acre broilers Escherichia coli O78
It improves intestinal mucosa barrier

function by modulating apoptosis and
secretion of TNF-α and IL-6

Zhang et al. [63]

Caco-2 cells 3% DSS for 7 d It reduced nuclear NF-κB p65 and
upstream TLR4 expression Zhang et al. [64]

RAW 264.7 macrophage
cells LPS stimulation

It down-regulated TLR4 and NF-κB
expression, IκBα degradation and

phosphorylation of ERK1/2 and p38,
as well as COX-2, TNF-α, IL-6 and

IL-1β expression

Byun et al. [65]

Cyanidin-3-
glucoside Caco-2 cells Exposed for 3 h to 50

ng/mL TNF-α

It inhibited NF-κB translocation into
the nucleus, and IκBα degradation, as

well as IL-6 and COX-2 expression
Ferrari et al. [66]

Caco-2-HUVECs coculture
model

Exposed for 1 h to 50
ng/mL TNF-α

It prevented translocation of NF-κB
into the nucleus and inhibited
leukocyte adhesion in a dose

dependent manner

Ferrari et al. [67]

Balbc mice Drinking water containing
2.5% DSS

It suppressed NF-κB phosphorylation,
thereby inhibited IL-1β, IL-6, IL-8,

COX-2 and TNF-α mRNA expression
Tan et al. [68]

Malvidin
3-glucoside HUVECs TNF-α (10 µg/L)

stimulation for 6 h

It suppressed IκBα degradation and
blocked the nuclear translocation of

NF-κB p65
Huang et al. [69]

Male Wistar rats TNBS-induced colitis
It reduced leukocyte infiltration,

downregulated iNOS and
COX-2 expression

Pereira et al. [70]

Caco-2-HUVECs coculture
model

TNF-α (1 ng/mL)
stimulation for 3h

It reduced NF-κB mRNA expression,
and IL-8 and IL-6 secretion Kuntz et al. [71]
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Table 1. Cont.

Polyphenol Cell Type or
Animal Model

Induction of Intestinal
Inflammation Anti-Inflammatory Mechanism References

Pelargonidin Balb/c mice TNBS-induced colitis
It decreased the colonic expression of
IL-6, TNF-α, IL-1β, and IFN-γ, and

increased IL-10 expression
Biagioli et al. [72]

Female C57BL/6 mice Drinking water containing
2.5% DSS for 8 d

It inhibited the activation of NF-κB p65
and IκBα degradation, as well as

reduced the serum level of IL-6, IFN-γ
and TNF-α

Zhang et al. [73]

Myofibroblasts-like cell
line

1 ng/mL IL-1β
stimulation for 24 h

It reduced the IL-8 and
COX-2 expression Zielińska et al. [74]

Pelargonidin-3-
O-glucoside RAW 264.7 Macrophages 1 µg/mL LPS stimulation

for 24 h

It inhibited nuclear translocation of
NF-κB p65, phosphorylation and
degradation of IκBα, as well as

phosphorylation of JNK, thereby
reduced the expression of

pro-inflammatory cytokines, including
IL-1α, TNF-α, IL-27, and IL-6, and

enzymes related to inflammation, such
as COX-2 and iNOS

Zhang et al. [75]

RAW 264.7 Macrophages 1 µg/mL LPS stimulation
for 24 h

It suppressed phosphorylation of JNK,
p38 MAPK, IκBα and NF-κB p65, and
reduced TNF-α and IL-6 production

Duarte et al. [76]

Caffeic acid
phenethyl ester Male Sprague-Dawley rats X-ray irradiation (9 Gy) It reduced the plasma level of TNF-α,

and phosphorylation of p38MAPK Jin et al. [77]

Male Balb/c mice Drinking water containing
3.5% DSS for 7 d

It reduced the production of key
cytokines and expression of NF-κB p65 Pandurangan et al. [78]

Chlorogenic
acid IPEC-J2 cells 50 ng/mL TNF- α for 3 h It inhibited the phosphorylation of

NF-κB p65 and IκBα Chen et al. [79]

Caco-2 cells LPS (0.1 mg/mL)
stimulation for 24 h

It blocked nuclear translocation of
NF-κB p65, and suppressed TNF-α,

IL-1β and IL-6 production
Yu et al. [80]

Ellagic acid C57BL/6 mice Drinking water containing
5% DSS for 7 d

It reduced the protein expression and
phosphorylation of ERK1/2,

p38, and JNK
Gao et al. [81]

Wistar Albino rats
3% acetic acid (2

mLintrarectal) induced
colitis

It decreased the protein levels of
TNF-α, COX-2, and NF-κB Yipel et al. [82]

Female Balb/C mice Drinking water containing
5% DSS for 7 d

It reduced the production of IL-6,
TNF-α, and IFN-γ Marín et al. [83]

Female C57BL/6 mice Four week-long cycles of
DSS (1% and 2%)

It inhibited p38 MAPK and STAT3
phosphorylation, IκBα degradation,
NF-κB p65 activation, as well as IL-6,

COX-2 and iNOS expression

Marín et al. [83]

Four-week-old male
Wistar rats TNBS-induced colitis

It decreased the expression of TNF-α,
COX-2, and iNOS, and p38 MAPK,

p-JNK and p-ERK1/2, as well as the
nuclear translocation of NF-κB p65

Rosillo et al. [84]

Resveratrol Black-boned chickens Circular heat stress
It reduced the jejunal protein

expression of NF-κB Liu et al. [85]

Weaned piglets Weaning stress

It downregulated MAPK pathway and
reduced the levels of intestinal

pro-inflammatory cytokines including
IL-1β, IL-6, and TNF-α Meng et al. [86]

50 eligible patients Ulcerative colitis

It reduced plasma levels of TNF-α and
activity of NF-κB in peripheral blood

mononuclear cells (PBMC) Samsami-kor et al. [87]
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Table 1. Cont.

Polyphenol Cell Type or
Animal Model

Induction of Intestinal
Inflammation Anti-Inflammatory Mechanism References

Curcumin Male Sprague-Dawley rats

Diarrhea and constipation
induced by intracolonic
acetic acid instillation or

cold water gavage It inhibited IκBα degradation and
NF-κB phosphorylation, as well as

IL-1β and TNF-α

Yao et al. [88]

Male Sprague-Dawley rats

Experimental colitis
induced by intra-rectal
administration of TNBS It Inhibited TLR4, MyD88 and NF-κB

protein expression
Lubbad et al. [89]

Emodin IEC-6 cells TNF-α (50 ng/mL)
stimulation

It inhibited the expression of TLR4,
NF-κB and NLRP3, also the production

of IL-1β and IL-6 Zhuang et al. [90]

HT-29 cells Flagellin (500 mg/L)
stimulation for 24 h

It increased the expression of IκB, but
inhibited the expression of TLR5 and

MyD88, nuclear translocation of NF-κB
p65, as well as the IL-8 production in

flagellin-stimulated HT-29 cells Luo et al. [91]

Male Wistar rats
Cecal ligation and
puncture induced

jejunal sepsis

It decreased the levels of IL-6 and
TNF-α, and increased the
phosphorylated levels of

JAK1 and STAT3

Chen et al. [92]Int. J. Mol. Sci. 2022, 23, 6939 6 of 29 
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4.1. Flavonoids

Flavonoids are bioactive substances belonging to a family of polyphenolic compounds
which exist in natural plants, vegetables, and fruits and consumed in significant amounts
as part of the human diet [38]. Flavonoids are recognized as compounds consisting of
3-ring core connected with phenolic hydroxyl groups through three central carbon atoms
(Figure 1). According to the connection position of the B-ring (2- or 3-position) and the
level of oxidation of the C-ring, flavonoids can be divided into the following six categories:
flavonols, flavones, flavanones, anthocyanidins, flavanols, and isoflavones [93]. In addi-
tion, there are some flavonoids with unique molecular structure, such as dihydroflavonol
and biflavones. The flavone, flavanol, flavanonol, and flavanone families were identified
depending on the presence of a 3-OH group and a double bond at 2-position. Compounds
with a B ring in the 3-position instead of 2 are isoflavones, of which genistein is the most
known substance. Anthocyanidins have a fully aromatized C ring while chalcones are
related aryl kenotic compounds with a C opening ring [38,94]. Flavonoids are found in
natural plants mainly in glycosylated form. As exhibited in Figure 1, there are substantial
structural variations in these compounds, which must affect their biological profile. How-
ever, numerous studies provided evidence that there is consistency in the anti-inflammatory
effects of these compounds in spite of the structure variations [38]. It has become a re-
search hotspot due to their widely reported bioactive functions and low toxicity, thus they
have also become potential therapeutic drugs. González et al. [38] summarized recent
advances in the favorable effects of these flavonoids on the treatment of inflammatory
diseases, such as rheumatoid arthritis, inflammatory bowel disease, asthma, atherosclerosis,
ischaemia-reperfusion, and so on, indicating their outstanding pharmaceutical value with
multiple bioactivities. It should be noted that flavonoids have exhibited favorable effects on
intestinal tight junction proteins [95,96]. In this regard, accumulating studies have indicated
that flavonoids can alleviate intestinal inflammation through inhibiting the activation of
the TLR4/NF-κB signaling pathway.
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4.1.1. Flavones
Apigenin

Apigenin (4′,5,7-trihydroxyflavone) is found in many fruits, herbs, and vegetables,
such as celery, parsley, thyme, basil, coriander, and licorice [97]. This flavone has attracted
more and more attention due to its anti-inflammatory activities [98–100]. Apigenin pre-
treatment can ameliorate intestinal damages and restore intestinal barrier integrity in
radiation-induced Swiss albino mice, and prevent activation of NF-κB and NF-κB-mediated
apoptotic signaling [40]. Apigenin downregulated NF-κB and signal transducer and acti-
vator of transcription 3 (STAT3) expression in the LPS-induced colonic epithelial cancer
cell [41]. Going downstream, apigenin supplementation exerted protective effects in DSS-
induced chronic colitis in mice associated with downregulation of colonic COX-2 and
iNOS expression, and IL-1β and TNF-α proinflammatory cytokine [101]. In addition, the
intestinal anti-inflammatory effects of apigenin in the treatment of colitis were widely
reported [97,102,103].

Luteolin

Luteolin (3′,4′,5,7-tetrahydroxy flavonoids) is present in vegetables (carrots, celery, bell
peppers), fruits (apple), and herbs (honeysuckle, chrysanthemum, perilla), which has favorable
effects on intestinal barrier function. More specifically, luteolin can attenuate ulcerative colitis,
suppress rectal cancer, and prevent irinotecan-induced mucositis [104–107]. From another
perspective, luteolin had a notably alleviative effect on intestinal barrier damage induced by
decabromodiphenyl ether (BDE-209) in a Caco-2 cell monolayer model through suppressing
the phosphorylation of IκBα and the accumulation of NF-κB p50 and ERK expression [42].
Luteolin also relieved DSS-induced colitis in mice, and the mechanism by which is due to
the suppression of high mobility group box chromosomal 1 (HMGB1), TLR4, and NF-κB
p65 protein levels in the colon [43]. In a co-culture model consisting of intestinal epithelial
Caco-2 and macrophage RAW264.7 cells, stimulated with LPS, the addition of luteolin
suppressed NF-κB nuclear translocation, followed by reduction of TNF-α and IL-8 mRNA
expression, indicating the positive effects of luteolin on gut inflammation [44].

Baicalein

Baicalein (5,6,7-trihydroxyflavonoid) is a flavonoid isolated from Scutellaria baicalensis
Georgi with a variety of pharmacological effects, such as anti-inflammation, anti-oxidative
stress, anti-infection, and so on [108]. Radiation-induced enteritis may be an ideal model of
gastrointestinal inflammation. Some research revealed that baicalein has a therapeutic effect
on radiation-induced intestinal inflammation by accelerating crypt regeneration, attenuating
endothelial damage, rebalancing gut microbiota, and inhibiting apoptosis [108,109]. In addi-
tion, baicalein administration remarkably suppressed the phosphorylation of NF-κB p65
and IκBα in the colon of TNBS-colitis mice, which was in accordance with the inhibitory
effects on the protein expression of TLR4 and MyD88 [45]. In a UC rat model, baicalein can
suppress the NF-κB and MAPK pathways to achieve anti-inflammatory effects [46].

4.1.2. Flavonols
Quercetin

A plant flavonol, quercetin (3,3′,4′,5,7-pentahydroxyflvanone), present in tea, onions,
apples, and red wine, has approved antioxidant, anti-inflammatory, anti-allergic, and
anti-virus properties [110], indicating its potential therapeutic application. It was reported
that intestinal epithelial (IEC-6) cells pretreated with 5 µmol/L quercetin could resist
intestinal barrier dysfunction injury by indomethacin via reducing the JNK phosphorylation
and subsequent activation [47]. Pretreatment of quercetin decreased the expression of
IL-8 and suppressed the translocation of the p50 subunit of NF-κB into the nucleus in
Vibrio cholerae induced intestinal epithelial cells [48]. In acute necrotizing pancreatitis disease
induced by sodium taurocholate in rats, quercetin blocked intestinal TLR4/MyD88/p38
MAPK pathway and inhibited endoplasmic reticulum stress, thereby ameliorating intestinal
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barrier disruption and inflammation [49]. A quercetin oxidation metabolite present in
onion peel showed protective effects against indomethacin-induced intestinal epithelial
barrier dysfunction accompanied by an inhibitory effect on the NF-κB activation and
IL-8 secretion [50]. Interestingly, quercetin exhibited a protective effect on mitochondrial
dysfunction in intestinal Caco-2 cells [111]. Furthermore, it attenuated intestinal mucosal
damage from ischemia-reperfusion injury by inhibiting COX-2 and myeloperoxidase (MPO)
expression [112]. Moreover, quercetin was found to be the main active ingredient in a
traditional Chinese medicine widely used for UC treatment [113].

Kaempferol

Kaempferol, a natural flavonol component isolated from Cudrania tricuspidata, is
known to have multiple bioactivities, such as anti-inflammatory, anti-oxidant, anti-apopt
otic, and anti-cancer effects [114]. Pharmacologically, increasing evidences suggest that
kaempferol is an anti-inflammatory compound with activity inhibiting NF-κB, AP-1, and
Janus kinase (JAK)/STAT pathways in vitro [115,116]. Lee et al. [115] and Fan et al. [117]
revealed that kaempferol can improve barrier function in rat intestinal epithelial cells. A
later study also demonstrated that kaempferol can attenuate diquat-induced intestinal
dysfunction in intestinal porcine epithelial cells, indicating a functional role of kaempferol
in the intestinal barrier [118]. More specifically, kaempferol may be an effective therapeutic
agent for IBD treatment reflected by its inhibitory activity on multiple inflammatory path-
ways and evidenced by blocking NF-κB, I-κB, and STAT phosphorylation, and reducing
TLR4 expression, as well as IL-1β, IL-6 and TNF-α secretion induced by LPS in rat intestinal
microvascular endothelial cells [51]. Afterwards, the author further demonstrated that
kaempferol protected mice from high-fat diet-induced obesity and intestinal inflammation
by reducing the activation of the TLR4/NF-κB pathway [52].

Rutin

Rutin, quercetin-3-rhamnosyl glucoside, possess a variety of pharmacological effects,
such as antioxidant, anti-inflammatory, antibacterial, and radioresistant effects [119]. More
importantly, rutin has long been elucidated as the intestinal anti-inflammatory property in
acetic acid [120], TNBS [121], and DSS induced rat colitis [122]. Profoundly, rutin inhibited
the STAT4-IFN-γ pathway in splenic CD4+ cells of mice with CD4+CD62L+T cells transfer
colitis [1]. Afterwards, the author conducted a profound trial to explore whether rutin and
its closely related flavonol quercetin can protect against TNBS-induced ileitis and colitis.
The results found that intragastric rutin could protect mice against TNBS-induced ileitis,
as evidenced by amelioration of anorexia, damage score, body weight loss, and reduction
of IL-1β and IL-17 mRNA levels. Colitis induced by TNBS was also ameliorated by rutin
which was evidenced by reducing colon thickening, damage score, and the expression of
IL-17 and IFN-γ [53].

Myricetin and Myricetin-3-O-b-D-Lactose Sodium Salt

Myricetin can be found in many edible plants, such as medicinal herbs, teas, and many
fruits, possessing antioxidative, anticarcinogenic, and anti-inflammatory properties [123–125].
Myricetin has been proven to improve the intestinal barrier-promoting efficiency in rat
IEC-6 cells evidenced by enhanced transepithelial electrical resistance and anti-bacterial
effect [126]. Based on that, myricetin further exhibited protective effects on the IEC-6 cells
against indomethacin-induced injury by increasing the expression of the tight junction
proteins, and reducing JNK/Src phosphorylation [47]. Not surprisingly, it was reported that
myricetin could alleviate DSS induced colitis via suppressing the TNF-α/NF-κB pathway,
thereby increasing tight junction protein expression compared to colitis mice [54]. In
addition, oral administration of myricetin-3-O-b-D-lactose sodium salt (M10), a derivative
of myricetin, also exhibited preventive effect against ulcerative colitis through inhibiting
the activation of IL-6 and TNF-α pathway, and phosphorylation of JAK2, STAT3, and
NF-κB [55]. Herein, the results also indicated that M10 had higher efficacy than myricetin



Int. J. Mol. Sci. 2022, 23, 6939 13 of 26

in the treatment of DSS-induced ulcerative colitis. Prior to that, Zhu et al. [127] also revealed
similar results that M10 showed higher activities in preventing UC than myricetin.

4.1.3. Flavanones
Hesperidin

Hesperidin (5,7,3′-trihydroxy-4′-methoxy-flavanone-7-rhamnoglucoside), belonging
to the flavanone family, exists widely in citrus fruits and juices [128]. It was demon-
strated that hesperidin had favorable effects on the intestine due to its antioxidant and
anti-inflammatory activities [56,129,130]. For instance, hesperidin treatment ameliorates
DSS-induced colitis and protects against intestinal inflammation through activating the
nuclear factor E2-related factor 2 (Nrf2) antioxidant pathway and restoring intestinal bar-
rier function [131]. A study conducted by Polat et al. [56] demonstrated that hesperetin
administration significantly reduced colonic levels of NF-κB, TNF-α, and IL-6, thereby pro-
tecting the mice against TNBS-induced colitis. Alternatively, hesperidin methyl chalcone,
the methylation process of hesperidin with higher water solubility, significantly reduced
TNF-α, IL-6, IL-1β, and IL-33 production and inhibited NF-κB activation as observed by an
increase in the total p65/phosphorylated-p65 ratio in a mouse model of acetic acid-induced
colitis [57].

Naringenin

Naringin (4′,5,7-trihydroxyflavanone) extracted from citrus peels and grapefruit has been
reported to exhibit various biological effects. Therein, some pieces of evidence show that
naringin had beneficial effects on the intestinal barrier and amelioration of colitis [132–134]. In
detail, naringin improved impaired intestinal permeability, inhibited the release of TNF-α
and IL-6, and the expression of NF-κB, and thereby alleviated sepsis-induced intestinal
mucosal injury [58]. Naringin supplementation reduced the development of colitis induced
by DSS in mice through suppression of epithelial TNF-α production [133]. Moreover,
a study performed by Ha et al. [59] also demonstrated that naringin inhibited the LPS-
mediated activation of NF-κB and MAPKs pathways, and downstream COX-2, IL-1β, and
TNF-α expression in macrophages.

4.1.4. Flavanols
Epigallocatechin-3-Gallate (EGCG)

Tea, derived from the leaves of Camellia sinensis, is one of the most widely consumed
beverages worldwide. EGCG, a predominant component of green tea polyphenols, is
indicated to be primarily responsible for the anti-inflammatory and antioxidant effects of
green tea [135]. Previously, a study conducted by Navarro-Perán et al. [136] demonstrated
that EGCG could suppress TNF-α-induced NF-κB activation in colon cancer cells. In a high-
fat diet-induced nonalcoholic steatohepatitis model in mice, EGCG significantly attenuated
intestinal inflammation by decreasing ileal and colonic TNF-α expression and preventing
the loss in expression of intestinal tight junction proteins [60]. EGCG inhibited LPS-induced
IκBα degradation and NF-κB nuclear translocation in rat intestinal epithelial cells, thus
suppressing adhesion molecules expression, indicating the therapeutic potential of EGCG
on intestinal inflammatory diseases [61]. Moreover, EGCG prevented LPS-induced pro-
inflammatory gene expression through blocking NF-κB and MAPK signaling pathways in
bone marrow-derived macrophages [62].

4.1.5. Isoflavones
Genistein

Genistein (4′,5,7-trihydroxyisoflavone) is a kind of natural phytoestrogens and isofla
vones richly found in soybeans. Numerous in vitro and in vivo studies provided evidence
that genistein plays an important role in the prevention and treatment of intestinal in-
flammation [63,137–139]. A study performed by Lv et al. [140] demonstrated that adding
genistein into the diet of chicks can ameliorate LPS-induced intestinal injury via altering the
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RNA expression profile. More specifically, genistein inhibited I-κB kinase/NF-κB signal-
ing, MAPK cascade, and JAK-STAT pathway, thereby improving the growth performance
of chicks. Not surprisingly, genistein reduced DSS-induced inflammation response via
suppressing the activation of TLR4/NF-κB signaling in Caco-2 cells [64]. In addition,
in LPS-induced macrophages, gamma-irradiated genistein exerted an anti-inflammatory
property associated with inhibition of TLR4-mediated NF-κB and MAPK pathways [65].

4.1.6. Anthocyanins
Cyanidin-3-glucoside (C3G)

Anthocyanin-rich extracts have exhibited anti-inflammatory activity in mouse colitis
models [141]. Cyanidin-3-glucoside (C3G) is a kind of natural anthocyanin originated
from Aronia melanocarpa berries belonging to the Rosaceae family, Queen Garnet plums
(Prunus salicina Lindl.), and purple carrots, which has been proven to provide anti-inflamm
atory potential in TNBS-induced colitis mice, LPS-stimulated Caco-2 cellular monolayer
inflammation [141], and DSS-induced inflammatory bowel disease in rats [142]. Tan
et al. [143] summarized the potential mechanism of C3G against intestinal injury, indicating
its important role in the TLR4/NF-κB mediated pathway. More specifically, pretreatment
with C3G dose-dependently prevented TNF-α-induced NF-κB pathway activation, thereby
inhibiting IL-6 and COX-2 expression [66]. Moreover, in TNF-α induced Caco-2 and human
umbilical endothelial cells (HUVECs) coculture model, C3G prevented the translocation
of NF-κB into the nucleus and inhibited leukocyte adhesion in a dose-dependent manner,
which suggested that anthocyanins may contribute to the treatment of chronic gut inflam-
matory diseases [67]. Not surprisingly, C3G inhibited NF-κB phosphorylation, reduced
mRNA expression of pro-inflammatory cytokines including IL-1β, IL-6, IL-8, COX-2, and
TNF-α, and protein levels of apoptosis related genes in DSS-induced colitis mice, providing
new ideas for using C3G as adjuvant agent for treating UC [68].

Malvidin 3-glucoside (MV3G)

Malvidin 3-glucoside, one of the major anthocyanins present in blueberries, has
been proven to possess antioxidant and anti-inflammatory function [69,144]. A study
conducted by Liu et al. [145] demonstrated the favorable effects and mechanism of malvidin
3-glucoside (MV3G) in alleviating gut dysfunction using a murine colitis model induced by
DSS, and the results showed that MV3G could attenuate intestinal inflammation through
increasing IL-10 expression, and modulating gut microbiome and metabolome, indicating
the beneficial effects of MV3G in promoting intestinal homeostasis and health. In a TNF-
α-induced inflammatory model in HUVECs, MV3G suppressed IκBα degradation and
blocked the nuclear translocation of NF-κB p65 [69].

Furthermore, MV3G downregulated the expression of iNOS and COX-2 in a TNBS-
induced colitis rat model [70]. Moreover, in an in vitro epithelial-endothelial co-culture
model, MV3G suppressed TNF-α stimulated expression of adhesion molecules, leukocyte
adhesion, NF-κB mRNA expression, and secretion of IL-8 and IL-6, indicating the potential
anti-inflammatory activity for the management of chronic intestinal diseases [71].

Pelargonidin and Pelargonidin-3-O-glucoside (P3G)

Pelargonidin-3-O-glucoside (P3G) is a major anthocyanin isolated from raspberries
and strawberries, thought to be beneficial for human health [146,147]. Some pieces of
evidence indicated that administration of pelargonidin attenuated TNBS-induced colitis in
a dose-dependent manner [72]. To be specific, treating mice with TNBS increased the colonic
expression of IL-6, TNF-α, IL-1β, and IFN-γ, colitis score, and intestinal permeability; this
was fully reversed by pelargonidin administration [72]. In the study performed by [75], LPS
stimulation for 1 h markedly promoted phosphorylation and degradation of IκBα, nuclear
translocation of NF-κB p65, and phosphorylation of JNK, but this pattern was suppressed
when macrophages were pretreated with P3G. Pretreatment with P3G also reduced 11 pro-
inflammatory cytokines’ secretion, including IL-1α, TNF-α, IL-27, and IL-6, and enzymes
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(COX-2 and iNOS) related to inflammation in LPS-induced macrophages [75]. Similarly,
P3G exhibited anti-inflammatory effects in LPS induced macrophages on account of arrest of
the IκBα and NF-κB activation and reduction in JNK and p38 MAPK phosphorylation [76].

4.2. Phenolic Acids
4.2.1. Caffeic Acid and Caffeic acid Phenethyl Ester (CAPE)

Caffeic acid is one of the most abundant hydroxycinnamic acids widely distributed
in vegetables, fruits, and some beverages, such as potatoes, gooseberries, artichokes, and
coffee [148]. It was indicated that caffeic acid can reach appropriate concentration in the
colon where it could act on the intestinal cells and achieve its anti-inflammatory effects [74].
More than a decade ago, mice consuming caffeic-acid-enriched diets exhibited attenua-
tion of DSS-induced colitis [149]. Correspondingly, caffeic acid exerted anti-inflammatory
effects in DSS colitis mice associated with the inhibition of the NF-κB signaling pathway
and suppression of the secretion of IL-6, TNF-α, and IFN-γ [73], which is similar with the
results of [150]. In the study conducted by Zielińska et al. [74], IL-1β-stimulated myofibrob-
lasts of the colon were employed as a human intestinal inflammation model. The results
found that caffeic acid could reduce the expression of COX-2 and IL-8. In addition, CAPE,
a biologically active ingredient of honeybee propolis, showed protective effects in treat-
ment of DSS-induced colonic fibrosis [151] and intestinal ischemia-reperfusion injury [152].
In an ionized radiation-induced intestinal injury model in rats, pretreatment of CAPE
reduced intestinal epithelial cell apoptosis, plasma TNF-α level, and phosphorylation of
p38MAPK [77]. Recently, in a DSS-induced UC in a mouse model, administration of CAPE
protected against colon damage by decreasing the expression of NF-κB and production of
key cytokines [78].

4.2.2. Chlorogenic Acid (CGA)

Chlorogenic acid (CGA) is a polyphenol compound present in various fruits, veg-
etables, and plants, such as honeysuckle, Eucommia ulmoides, coffee, and tea [153,154].
CGA has shown many biological effects including antioxidation, anti-inflammatory, anti-
cancer, and antibacterial action [155,156]. Many in vitro and in vivo investigations reported
that CGA can alleviate intestinal injury and inflammation [157–159]. For instance, CGA
was shown to attenuate DSS-induced colitis in mice through the MAPK/ERK/JNK path-
way [81]. Moreover, Vukelić et al. [160] also found that CGA can suppress the expression
of ERK1/2, JNK1/2, STAT3, and nuclear translocation of NF-κB p65 for the purpose of
ameliorating DSS-induced colitis. A study performed by Chen et al. [79] revealed that
chlorogenic acid attenuated diquat-induced intestinal injury in weaned pigs associated
with reduction in inflammatory cytokine secretion, and suppressed TNF-α-induced in-
flammation in IPEC-J2 cells via decreasing the phosphorylation of NF-κB and IκBα. CGA
blocked the NF-κB pathway by preventing phospho-p65 translocation into cell nuclei, and
suppressed TNF-α, IL-1β, and IL-6 production, and thereby restored intestinal epithelial
tight-junction integrity [80]. It was also demonstrated that CGA could attenuate colonic bar-
rier damage and promote dynamic distribution of tight junction proteins in TNBS-induced
colitic rats [161]. CGA could be a promising medical countermeasure for the alleviation of
intestinal inflammation.

4.2.3. Ellagic Acid (EA)

Ellagic acid (EA), found in pomegranate (Punica granatum L.), has shown to exert
anti-inflammatory and antioxidant properties. In this context, EA-enriched pomegranate
extract markedly decreased COX-2 and iNOS overexpression, reduced MAPKs phospho-
rylation, and prevented nuclear NF-κB translocation, thereby attenuated chronic colonic
inflammation [84]. In an ulcerative colitis model induced by acetic acid in rats, EA admin-
istration decreased the protein levels of TNF-α, COX-2, and NF-κB, and thereby exerted
protective effects on colonic inflammation [82]. In the acute DSS-induced mice colitis model,
EA attenuated colitis severity slightly through the reduction of inflammatory mediators
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(IL-6, TNF-α, and IFN-γ) [83]. Moreover, EA inhibited the NF-κB, p38 MAPK, and STAT3
signaling pathway, and enzymes related to inflammation, such as COX-2 and iNOS [83].
This pattern provides evidences that EA could be used in the dietary prevention of intesti-
nal inflammation. Furthermore, urolithins, which are microbial metabolites of ellagic acid,
have been widely reported in intestinal anti-inflammatory activity. In the DSS-induced rat
colitis model, the author reported that urolithin-A decreased inflammation markers (iNOS
and COX-2) and positively modulated the gut microbiota [162]. A study conducted by
González-Sarrías et al. [163] revealed that urolithin-A is the main compound responsible
for the EA anti-inflammatory properties, which is evidenced by its inhibitory effects on
the activation of NF-κB and MAPK, and COX-2 expression in IL-1β-treated human colonic
fibroblasts. Similarly, urolithin-A ameliorated cytokine-induced inflammation in human
colon fibroblasts via downregulation of the levels of IL-8 and phenyl glycidyl ether E2
(PGE2), as well as cell migration and adhesion [164]. Some studies also revealed the protec-
tive effects of urolithin-A on gut barrier integrity [165,166]. Taken together, whether the
intestinal inflammatory effects of EA are due to its microbiota-derived urolithins requires
further characterization.

4.3. Stilbenes
Resveratrol

Resveratrol (3,5,4-trihydroxy-trans-stilbene) is a polyphenolic compound found in
peanuts, grape skins, and red wine [167]. Due to its multiple pharmacological activities,
such as anti-inflammatory, antioxidant, and antitumor properties, it has been proven to be
effective in a variety of inflammatory diseases, such as arthritis [168], pancreatitis [169], and
UC [170,171]. Multiple lines of evidence indicate that resveratrol could alleviate intestinal
injury and inflammation [85–87]. Additionally, an earlier study demonstrated that resvera-
trol could inhibit TLR4-mediated NF-κB activation through inhibiting TRAF6, and thus
inhibiting JNK and p38 MAPK activation [172]. With our current knowledge, resveratrol
could inhibit NF-κB activation and COX-2 expression in RAW264.7 cells following TLR4
stimulation [173]. Under circular heat stress, resveratrol reduced the protein expression
of NF-κB and heat shock proteins (HSPs) in the jejunal villi, thereby alleviating jejunum
mucosa injuries [174]. Resveratrol also reduced intestinal pro-inflammatory cytokine
production including IL-1β, IL-6, and TNF-α, and downregulated the MAPK signaling
pathway in post-weaning piglets [175]. More importantly, 6 weeks supplementation with
500 mg resveratrol can alleviate UC in patients associated with reduction in plasma levels
of TNF-α and activity of NF-κB in peripheral blood mononuclear cells (PBMC) [176].

4.4. Other Polyphenols
4.4.1. Curcumin

Curcumin, a natural active component extracted from the root of turmeric, a rhizoma-
tous herbaceous perennial plant of the ginger family, is widely known to possess anti-
inflammatory and antioxidant effects [88]. Previously, numerous studies in both animals
and cell lines have demonstrated the inhibitory activity of curcumin on TLR4/MyD88/NF-
κB signaling [89,90,177,178]. In intracolonic acetic acid-induced intestinal diarrhea and cold
water induced constipation rat models, curcumin showed inhibitory effects on the NF-κB
pathway by suppressing IκBα degradation and NF-κB phosphorylation [91]. IκBα inhibits
NF-κB activation via forming an inactive NF-κB/IκBα complex [92]. It also attenuated
experimental colitis induced by intra-rectal administration of TNBS through inhibition of
TLR4 receptor, MyD88, and NF-κB protein expression [179].

4.4.2. Emodin/Rhein

Emodin/rhein (1,3,8-trihydroxy-6-methyl-9,10-anthraquinone) is a natural anthra
quinone compound that derives from many Polygonaceae plants, such as Rheum officinale
Baill. There has been growing evidence showing that emodin with multiple pharmaco-
logical effects may be a promising agent for UC treatment [180–182]. Chen et al. [183]
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conducted a trial to investigate whether emodin can protect the jejunum against sepsis
injury by inhibiting inflammation. As expected, the results found that emodin alleviated
jejunum injury and inflammation via activating the JAK1/STAT3 signaling pathway, and
decreasing the levels of IL-6 and TNF-α in septic rats. After that, it was observed that
emodin markedly downregulated the expression of TLR5 and NF-κB p65 in the colon of
DSS-induced colitis mice [182]. Besides, it also increased the expression of IκB, but inhibited
the expression of TLR5 and MyD88, nuclear translocation of NF-κB p65, as well as the IL-8
production in flagellin-stimulated HT-29 cells [182]. In vitro, emodin led to inactivation
of TLR4, NF-κB, and NLRP3, and also inhibition of IL-1β and IL-6 production, thereby
exerting protective effects against barrier disruption and inflammation in an IEC-6 cell
model with TNF-α stimulation, indicating potential therapeutic effects against intestinal
diseases [181].

5. Conclusions and Future Perspectives

Polyphenols are a huge and various group of natural compounds of which only a
few have been investigated regarding their alleviative effect on intestinal inflammation.
This review summarized the intestinal anti-inflammatory properties of more than 20 kinds
of polyphenols associated with modulation of the TLR4/NF-κB-mediated signaling path-
way. It should be noted that the mechanisms for ameliorating intestinal inflammation
are pleiotropic and usually target multiple sites of action in the TLR4/NF-κB signaling
pathway, some of them are common between different polyphenols. In this regard, the
listed polyphenols, collectively, inhibit the TLR4 receptor activation, and block the nuclear
translocation of NF-κB, thereby reducing the production of downstream pro-inflammatory
cytokines, such as IL-1β, IL-6, IL-8, TNF-α, and IFN-γ, and inflammation related enzymes,
such as COX-2 and iNOS. Moreover, besides their inhibitory effect on TLR4/NF-κB cas-
cade, these mentioned polyphenols also inhibit MAPK and JAK/STAT signaling pathways,
which further confirmed their intestinal anti-inflammatory properties. This review pro-
vides evidence that polyphenols targeting the TLR4/NF-κB signaling pathway might be an
effective approach or adjuvant agent to treat IBD in future clinical research implications.

Alterations in chromatin play a vital role in pathological processes via regulating gene
transcription [184]. Epigenetic processes with no changes to the DNA sequences mainly
include DNA modifications, histone post-translational modifications (PTMs), microRNAs
(miRNAs), and chromatin remodeling [185]. A recent review has summarized how polyphe-
nols ameliorate various inflammatory diseases via epigenetic modification [186]. Although
this review covered multiple polyphenols applied in various in vitro and in vivo inflamma-
tory models for investigating their epigenetic regulatory mechanisms, few studies have
focused on the epigenetic-mediated actions of these polyphenols to intestinal inflammatory
models. Hence, in-depth investigations to reveal these polyphenols attenuating IBD associ-
ated with epigenetic alterations may help in finding new therapeutic targets for treating
IBD. To the best of our knowledge, post-transcriptional modifications in RNA may have
regulatory effects on different signal transductions [184]. In this respect, it will be of great
benefit if further research is directed towards revealing how these polyphenols differentially
regulate inflammatory-related miRNAs, and how they finally ameliorate the development
of IBD. Furthermore, no studies report the effect of polyphenols on histone acylation. This
lack of information highlighted the necessity of investigating the mechanisms by which
polyphenols intervene in epigenetic modification. In addition to epigenetic regulations,
most of the polyphenols containing a number of phenolic hydroxyl groups present low
water solubility and are poorly absorbed in the small intestine, which may result in a great
deal of differences in the results of in vivo and in vitro models. Therefore, the poor bioavail-
ability of multiple polyphenols is another problem to be solved in further investigations.
In this context, exploring nano-emulsion and nanoparticles formulations for polyphenols
would be beneficial to improve the bioavailability of polyphenols [187]. More importantly,
the anti-inflammatory effects of polyphenols must depend greatly on pharmacokinetics
and cell access [38]. A substantial body of evidence has elucidated the pharmacokinetic
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profile of polyphenols. For example, quercetin glycosides are substrates of the intestinal
glucose transporter (SGLT-1) in the rat, which may promote their absorption in the small
intestine [188]. It was reported that flavanones, such as hesperidin and naringenin, can
be taken up by epithelial cells through a H+-linked transporter and transcellular passive
diffusion, thereby absorbed from the gastrointestinal tract [189–191]. Investigating pharma-
cokinetic variations between different polyphenols could help to further explore various
combinations of polyphenols with similar absorption rates and distribution sites, and ex-
amine any potentiation of intestinal anti-inflammatory effects resulting from such combina-
tions. On the other hand, it should be noted that polyphenols may exert anti-inflammatory
effects in a dose-dependent manner. That is, increasing evidences indicate that polyphenols
may show toxicity when used at higher concentrations [41,67,118]. Therefore, it is inevitable
to explore effective technologies for enhancing bioavailability of several polyphenols at
lower doses, such as solubilizers, targeted drug-delivery systems [192], and aforementioned
nanotechnology. Furthermore, the anti-inflammatory effects of polyphenols are also depen-
dent on the catabolites derived from the microbiota. From this perspective, the fermentation
of phenolic compounds is an important issue that might be taken into consideration when
investigating their beneficial effects. As stated in this review, numerous studies reported
the intestinal anti-inflammatory effects of a single phytochemical substance; few studies
investigated the interactions occurring between polyphenols [193]. Further work should
therefore be conducted to investigate the polyphenol-polyphenol interactions and the com-
bined effects of these interactions during intestinal inflammation. It has to be mentioned
that pharmacokinetics of polyphenols should be taken into account when addressing the
interactions due to the discrepancies in absorption, distribution, metabolism, and excretion
inside the body [194,195].
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