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This review discusses the wealth of information available for the N. crassa cell wall.
The basic organization and structure of the cell wall is presented and how the wall
changes during the N. crassa life cycle is discussed. Over forty cell wall glycoproteins
have been identified by proteomic analyses. Genetic and biochemical studies have
identified many of the key enzymes needed for cell wall biogenesis, and the roles
these enzymes play in cell wall biogenesis are discussed. The review includes a
discussion of how the major cell wall components (chitin, β-1,3-glucan, mixed β-1,3-/
β-1,4- glucans, glycoproteins, and melanin) are synthesized and incorporated into the
cell wall. We present a four-step model for how cell wall glycoproteins are covalently
incorporated into the cell wall. In N. crassa, the covalent incorporation of cell wall
glycoproteins into the wall occurs through a glycosidic linkage between lichenin (a mixed
β-1,3-/β-1,4- glucan) and a “processed” galactomannan that has been attached
to the glycoprotein N-linked oligosaccharides. The first step is the addition of the
galactomannan to the N-linked oligosaccharide. Mutants affected in galactomannan
formation are unable to incorporate glycoproteins into their cell walls. The second step
is carried out by the enzymes from the GH76 family of α-1,6-mannanases, which cleave
the galactomannan to generate a processed galactomannan. The model suggests
that the third and fourth steps are carried out by members of the GH72 family of
glucanosyltransferases. In the third step the glucanosyltransferases cleave lichenin and
generate enzyme/substrate intermediates in which the lichenin is covalently attached to
the active site of the glucanosyltransferases. In the final step, the glucanosyltransferases
attach the lichenin onto the processed galactomannans, which creates new glycosidic
bonds and effectively incorporates the glycoproteins into the cross-linked cell wall
glucan/chitin matrix.

Keywords: cell wall, filamentous fungi, Neurospora, glucan, galactomannan, mannanase, glucanosyltransferase,
melanin
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INTRODUCTION

The cell wall is a vital structure for virtually all fungal cells. The
wall provides protection from environmental stresses such as UV
light, desiccation, freezing, and attack from enzymes that might
otherwise cause cell lysis. It provides the tensile strength required
to protect the cell against cell lysis from osmotic pressure. It
facilitates adhesion to the substratum. Receptors in the cell
wall allow the fungus to assess a large variety of environmental
conditions and to activate cell signaling pathways. The cell wall is
also the major determinant of fungal cell morphology. Mutations
affecting cell wall synthesis affect the growth rate, morphology,
and viability of fungal cells.

The major cell wall components include glucans,
glycoproteins, and chitin (Klis et al., 2006; Latge, 2007;
Chaffin, 2008; Free, 2013; Gow et al., 2017). Almost all fungal
cell walls contain β-1,3-glucan (laminarin), chitin, and a variety
of glycoproteins that function in cell wall biogenesis, adhesion,
environmental sensing, and as cell wall structural elements.
In addition to these general components, fungal cell walls
often contain additional polysaccharides such as α-1,3-glucan,
β-1,6-glucan, mixed β-1,3-/β-1,4-glucans, galactomannans,
xylogalactomannans, and other less well-characterized glucans.
Many fungi incorporate melanin into their cell walls. While we
will address each of these various components individually, it is
important to recognize that they are all cross-linked together and
function as an assemblage.

Fungal cell walls are dynamic structures. Their composition is
responsive to environmental changes. The well-characterized cell
wall integrity signal transduction pathway is a signaling pathway
for modifying the cell wall under stress conditions. When
activated, the cell wall integrity pathway directs the synthesis of
addition cell wall glycoproteins and an increase in cell wall chitin
and glucans. The filamentous fungi have life cycles that include
a variety of different cell types. It is clear that the cell wall can
be dramatically changed as different types of cell are generated
during fungal life cycles and cell type-specific cell wall proteins
and glucans are expressed.

While a great deal of information is available on the cell
walls from a number of fungi, this review is focused on the
cell walls from the model filamentous fungus Neurospora crassa.
Pertinent information is available about N. crassa cell walls from
vegetative hyphae, from conidia (asexual spores), from cells in the
perithecium (female mating structure), and from the developing
ascospores (sexual spores) (Bowman et al., 2006; Maddi et al.,
2009; Ao et al., 2016). The fungus therefore presents a broad
overview of cell wall structures and serves as an excellent model
for the characterization of cell wall structure and biosynthesis.
Neurospora is particularly well suited for the study of the
fungal cell wall. N. crassa is a haploid fungus, which greatly
facilitates the isolation and characterization of mutants affected
in the generation of the cell wall. N. crassa is currently the only
filamentous fungus with a nearly complete single gene knockout
library, and mutants lacking almost any gene of interest are
readily available from the Fungal Genetics Stock Center (Colot
et al., 2006). The knockout library has proven to be a valuable
resource for the characterization of N. crassa cell walls. The

library allows an investigator to rapidly determine if a putative
cell wall protein or a polysaccharide synthase plays an important
role in generating the cell wall for all of the different cell types
in the N. crassa life cycle. The tools for the genetic manipulation
of N. crassa are well developed and have been immensely
valuable in the characterization of cell wall glycoproteins. With
all these advantages, N. crassa cell walls are among the best-
characterized cell walls among the filamentous fungi. While this
review concentrates on the genetics and biochemistry of N. crassa
cell walls, some comparisons and contrasts with the cell walls of
other fungi are included to illustrate elements that are in common
among all cell walls and to point out features that may be unique
to N. crassa and closely related fungal species.

In addition to the genetics and biochemistry of N. crassa
cell wall biogenesis described in this article, a great deal is
known about how chitin synthase, glucan synthase, and cell
wall enzymes are being targeted to the hyphal tip, the locale
where the cell wall is produced. The polysaccharide synthases and
cell wall glycoproteins are trafficked through the Spitzenkorper,
a densely packed region of intracellular vesicles that acts as a
vesicle supply center to provide secretory vesicle to the hyphal
tip. The Spitzenkorper has been shown to contain an inner area
of chitin synthase-containing small microvesicles (chitosomes)
at its core and a ring of larger macrovesicles surrounding the
chitosome core. These macrovesicles have been shown to contain
glucan synthase and cell wall enzymes. Both microvesicles and
macrovesicles are targeted for fusion at the hyphal tip where
cell wall formation occurs. An excellent review article detailing
these aspects of N. crassa cell wall biogenesis has recently
been published (Verdin et al., 2019). The reader is referred
to that review article for more detailed information on vesicle
trafficking of polysaccharide synthases to the plasma membrane
and secretion of cell wall glycoproteins to the cell wall space.

THE STRUCTURES, SYNTHESIS AND
FUNCTIONS OF N. crassa CELL WALL
COMPONENTS

The N. crassa cell wall has been shown the contain β-1,3-glucan,
mixed β-1,3-/β-1,4- glucans, α-1,3-glucan, chitin, melanin, and
over forty different glycoproteins. We will discuss the structure
and location of these N. crassa cell wall components within the
cell wall structure. We also discuss how these components are
made and incorporated into the cell wall. A representation of the
N. crassa vegetative hyphal cell wall is shown in Figure 1.

CHITIN

Chitin is an important cell wall polysaccharide and is found
in almost all fungal cell walls with the exception of the cell
walls from Schizosaccharomyces pombe and Pneumocystis species
(Magnelli et al., 2005; de Groot et al., 2007; Klis et al., 2010;
Lenardon et al., 2010; Ma et al., 2016). Chitin is a long
polysaccharide of repeating β-1,4-N-acetylglucosamine residues.
Chitin makes up approximately 4% of the vegetative N. crassa
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FIGURE 1 | The N. crassa vegetative hyphae cell wall. The locations of the various cell wall components and how they are cross-linked together in the vegetative cell
wall are depicted. Chitin is shown in purple and is located adjacent to the plasma membrane at the bottom of the diagram. The β-1,3-glucan is shown in black and
located in the middle of the cell wall. Cell wall glycoproteins are shown in red. GPI anchors are shown in red and extent into the plasma membrane. N-linked
oligosaccharides are shown with N-acetylglucosamine residues in green squares, mannoses from the N-linked oligosaccharide shown in orange circles, and
processed galactomannans shown in magenta circles. O-linked oligosaccharides are also shown in orange. Lichenin is shown in blue and is attached to the
processed galactomannan and to β-1,3-glucans. Note that the β-1,3-glucan, lichenin, and glycoproteins form a cross-linked cell wall matrix.

cell wall mass (Aranda-Martinez et al., 2016). It is thought
to be the major polysaccharide found in the N. crassa septae
(Hunsley and Gooday, 1974). Multiple chitin polymers form
interchain hydrogen bonds with each other and self-assemble
into microfibrils, in which the individual chitin molecules are
arranged in an antiparallel manner to create “crystalline” chitin
(Ruiz-Herrera et al., 2006). The chitin is vital for the strength and
integrity of the cell walls. It is localized in the membrane proximal
portion of the cell wall and is incorporated into the wall matrix by
being cross-linked to the glucans (Figure 1).

Fungi generally contain several genes encoding chitin
synthases and vegetative hyphae express multiple chitin synthase
genes. In the filamentous fungi, these chitin synthase genes are
organized into seven different groups or classes, with the fungi
having one or more genes from each of these seven classes
(Choquer et al., 2004). It is thought that these chitin synthases
may be producing chitin polymers of different lengths, at different
cellular locations, and at different points in time across the
fungal life cycles. Some chitin synthases have been shown to
deposit chitin in the cell wall at the growing hyphal tip while
other function to deposit chitin into the growing septum cell
wall during septum formation (Roncero, 2002; Lee et al., 2004;
Fukuda et al., 2009; Fajardo-Somera et al., 2015). All of the
chitin synthases are thought to extrude chitin monomers into
the cell wall space through a pore formed by their multiple
transmembrane domains, and the formation of chitin fibrils
occurs in situ in the cell wall space.

The N. crassa genome contains 7 chitin synthase genes, chs-
1/ncu03611, chs-2/ncu05239, chs-3/ncu04251, chs-4/ncu09324,
chs-5/ncu04352, chs-6/ncu05268, and chs-7/ncu04350, one from
each of the seven groups commonly found in filamentous fungi
(Fajardo-Somera et al., 2015). CHS-1, CHS-3, and CHS-4 were
identified as being involved in cell wall synthesis by more classical

genetic studies (Yarden and Yanofsky, 1991; Din and Yarden,
1994; Din et al., 1996). CHS-1, a class III chitin synthase,
was found to be required for cell wall formation (Yarden and
Yanofsky, 1991) and CHS-3, a class I chitin synthase, played
an important role during vegetative growth. More recently, the
cellular locations for all of these chitin synthases have been
characterized and deletion mutants lacking each of these chitin
synthases have been analyzed (Sanchez-Leon et al., 2011; Fajardo-
Somera et al., 2015). Two of these chitin synthases, CHS-5
and CHS-7, contain a myosin-motor domain (MMD) and play
important roles in apical growth, conidia development, and
perithecia formation. All of the chitin synthases were shown
to be localized in small vesicles, termed chitosomes, found in
the Spitzenkorper, a region of vesicles just behind the growing
hyphal tip that supplies vesicle for fusion at the hyphal tip.
Slight differences in their locations suggests that they be located
in different subpopulations of chitosomes. The chitin synthases
were also found in association with developing septa, where cell
wall is also being deposited. The septa are particularly well stained
with Calcoflour white, a chitin staining reagent. The chitin
synthases are also localized at the cross-walls between developing
conidia, indicating a role in asexual development (Fajardo-
Somera et al., 2015). Analysis of the chitin synthase deletion
mutants showed that some of the chitin synthases were required
for sexual development and loss of some of the chitin synthases
affected vegetative growth and/or the production of conidia.

Many fungi contain chitin deacetylase enzymes which
deacetylate chitin to form chitosan, which is much more soluble
than chitin. Chitin deacetylases have been shown to generate
chitosan during sporulation in S. cerevisiae (Christodoulidou
et al., 1996). Chitosan formation has also been shown to be
necessary for pathogenicity in C. neoformans (Baker et al.,
2011). N. crassa has two chitin deacetylase genes, ncu09508
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and ncu09582, which may be more highly expressed during
perithecium development (Lehr et al., 2014; Wang et al., 2014;
Liu et al., 2017). No information is available about whether the
perithecium contains chitosan or how the loss of the two chitin
deacetylase genes affects female development.

β-1,3-GLUCAN

β-1,3-glucan is a long unbranched polysaccharide consisting
of repeating β-1,3-glucose residues. It is the most abundant
component of the vegetative cell wall, making up approximately
35% of the N. crassa cell wall mass (Kar et al., 2019). It
is the major component of the cell walls found in almost
all fungi. β-1,3-glucan is well suited for its role as a major
component of the fungal cell wall. The polymer has been shown
to have a helical three-dimensional structure that allows for some
limited stretching while retaining its structural integrity and its
tensile strength (Bohn and Bemiller, 1995). The β-1,3-glucans
are cross-linked together to form the basic three dimensional
matrix structure of the wall. As such, β-1,3-glucans are found
throughout the middle portion of the cell wall (Figure 1). The
three dimensional β-1,3-glucan matrix would allow for a limited
amount of cell wall stretching in all dimensions in response
to the cell wall turgor pressure from within the cell. Direct
measurements of the turgor pressure in N. crassa hyphae give
values in the range of 500 pKa (70 psi) indicating that the hyphal
cell wall is exposed to a significant amount of pressure (Lew,
2011). Sugar linkage analyses of the monosaccharides released
from the N. crassa cell wall has failed to identify significant
amounts of glucose with 1,6 linkages, while glucoses with 1,3 and
1,4 linkages are abundant (Maddi et al., 2009, 2012; Maddi and
Free, 2010; Ao et al., 2016). This indicates that N. crassa does not
make a β-1,6- polymer. The situation in N. crassa clearly differs
from that found in the S. cerevisiae and C. albicans cell walls,
where the β-1,6-glucan are used to cross-link the β-1,3-glucans
together (Lu et al., 1995; Kollar et al., 1997; Kapteyn et al., 2000).

The FKS-1 β-1,3-glucan synthase is responsible for the
synthesis of β-1,3-glucan, and the enzyme has been identified
as being critical for cell wall formation in a number of fungi
(Beauvais et al., 2001; Dichtl et al., 2015). An N. crassa mutant
having a single amino acid change in the β-1,3-glucan synthase
was isolated and the gene named do (doily) (McCluskey et al.,
2011). The doily mutant has a tight colonial morphology. The
N. crassa glucan synthase, FKS-1, is encoded by ncu06871 and the
glucan synthase has fourteen putative multiple transmembrane
domains and a glucan synthesis domain that attaches a single
glucose residue to the non-reducing end of a β-1,3-glucan
polymer (Sanchez-Leon and Riquelme, 2015). UDP-glucose
serves as the glucose donor, and the glucan is extruded through
the plasma membrane into the cell wall space via a pore
formed by the transmembrane domains. A β-1,3-glucan synthase
regulatory subunit, COT-2 or GS-1, is also highly conserved.
The N. crassa gs-1 gene (ncu04189) was initially defined
by mutants which lacked glucan synthase activity (Enderlin
and Selitrennikoff, 1994; Tentler et al., 1997) and the cot-2
mutation was isolated as a temperature sensitive colonial mutant

(Garnjobst and Tatum, 1967). The RHO-1 GTPase (NCU01484)
associates with FKS-1 and functions to regulate its activity
(Richthammer et al., 2012). FKS-1 and GS-1 have been localized
to the macrovesicle ring of the Spitzenkorper and to the plasma
membrane at the hyphal tip (Verdin et al., 2009; Sanchez-Leon
and Riquelme, 2015).

MIXED β-1,3/β-1,4 GLUCANS (LICHENIN)

The linkage analysis of the N. crassa vegetative cell wall shows
that between 15 and 20% of the glucoses in the wall have
a 1,4 linkage and lichenin has been shown to be present as
defined by a monoclonal antibody directed against lichenin
(Ao and Free, 2017; Kar et al., 2019). Lichenin is defined as
a polysaccharide with a repeating β-1,4-glucose-β-1,4-glucose-
β-1,3-glucose trisaccharide (Perlin and Suzuki, 1962). Lichenin
was initially identified in the lichen-forming ascomycete Cetraria
islandica (Icelandic moss) as a long linear polysaccharide.
Lichenin has been shown to be located in the fungal cell wall
and in the extracellular matrix formed by the ascomycete cells in
the lichen (Honegger and Haisch, 2001). Based on this structure
and assuming that all of the 1,4-linked glucose in the cell wall
linkage analysis come from lichenin, lichenin would represent
approximately 25% of the N. crassa vegetative cell wall mass
(Kar et al., 2019). It has been shown that lichenin functions
as the polysaccharide through which cell wall glycoproteins
are cross-linked into the cell wall (Kar et al., 2019). Lichenin
may also function to cross-link the β-1,3-glucan together into a
matrix structure, but this has not been experimentally verified.
In S. cerevisiae and C. albicans, β-1,6-glucan has been implicated
in cross-linking both the β-1,3-glucans and the cell wall proteins
into a cell wall matrix (Lu et al., 1995; Kollar et al., 1997;
Kapteyn et al., 2000). It is interesting to note that S. cerevisiae
and C. albicans lack lichenin and use β-1,6-glucan to cross-link
glycoproteins and β-1,3-glucan into the cell wall while N. crassa
lacks β-1,6-glucan and uses lichenin to cross-link glycoproteins
into the cell wall. As a cross-linking polymer, lichenin is present
throughout the middle portion of the cell wall (Figure 1).

Mixed β-1,3-/β-1,4- glucans have been found in several
filamentous fungi but the proteins involved in their synthesis
have not been defined. There are two plausible ways that mixed
polymers could be produced. One possibility would be to have
a plasma membrane localized glucan synthase, similar to the
chitin and β-1,3-glucan synthases that synthesizes their polymers
and extrude them through the plasma membrane. A second
possibility would be to have two or three glycosyltransferases
produce the polymer by the reiterative addition of glucose
residues. In this scenario, the mixed β-1,3-/β-1,4- glucan could
be produced in the Golgi apparatus and be secreted through the
canonical secretory pathway.

Glycosyltransferase type 2 enzymes function to make
polymers having β-1,4-glucose bonds (cellulose synthase type
enzymes) and would therefore be considered as likely candidates
for lichenin synthases. The N. crassa genome contains 7 genes
(cps-1/ncu00911, ncu09875, ncu08226, ncu04223, ncu03240,
ncu09906, and ncu04167) that might be considered as plausible
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glycosyltransferase type 2 enzymes. The information available
on the expression of these genes shows that cps-1/ncu00911
and ncu03240 are highly expressed in the vegetative hyphae,
and the other genes are highly upregulated during perithecium
development, suggesting that they might play roles in cell wall
formation during female development (Liu et al., 2017). Based
on their expression in vegetative hyphae, where lichenin has
been shown to be present in the cell wall, CPS-1 and NCU03240
would be considered as the most likely candidates for being
lichenin synthases.

CPS-1 contains 510 amino acids and has a signal peptide,
a glycosyltransferase domain and two transmembrane domains
near its carboxyl terminus. Deletion of cps-1 (ncu00911) gives
rise to a cell wall defect that affects all aspects of the N. crassa
life cycle (Fu et al., 2014a). The rate of vegetative growth is
dramatically reduced in the mutant and the mutant is unable to
produce aerial hyphae and conidia. The mutant is also unable
to form perithecia. When grown in liquid medium the 1cps-1
mutant grows in a tight colonial form and releases large amounts
of cell wall proteins into the medium (Fu et al., 2014a). Since
lichenin is needed for the cross-linking of cell wall proteins into
the cell wall (Ao and Free, 2017), the release of cell wall proteins
into the medium suggests that cps-1 might encode a lichenin
synthase. However, sugar linkage analysis of the glucan remaining
in the mutant cell wall shows the presence of 1-4 linked glucose
residues, indicating that some mixed β-1,3/β-1,4-glucan is still
present in the 1cps-1 mutant (Fu et al., 2014a).

The second likely potential lichenin synthase, NCU03240, is
a 651 amino acid protein with five transmembrane domains
and a centrally located glycosyltransferase domain. The ncu03240
deletion mutant is found in the Neurospora deletion library
as a heterokaryon (a cell with a mixture of wild type and
mutant nuclei) and efforts to isolate the homokaryon mutant (cell
containing only mutant nuclei) have not been successful. This
suggests that the deletion mutant is inviable, a phenotype that
would be consistent with the loss of a major cell wall component.

The current available information leaves open several
possibilities, including: (1) that cps-1/ncu00911 and ncu03240
encode two lichenin synthases and they have overlapping,
partially redundant activities, (2) that CPS-1/NCU00911 and
NCU03240 synthesize two different glucans, one of which might
be lichenin, and (3) that neither cps-1 nor ncu03240 encode
a lichenin synthase, but encode other cell wall polysaccharide
synthases. Although the data doesn’t definitely identify either
CPS-1 or NCU03240 as being a lichenin synthase, it clearly
demonstrates that both of these glycosyltransferases plays critical
roles in the synthesis of the N. crassa vegetative hyphal cell wall.
Clearly, there is still much to be learned about the synthesis of
mixed β-1,3-/β-1,4-glucans and the roles they play in N. crassa
cell wall formation.

α-1,3-GLUCANS

α-1,3-glucans have been identified in a variety of fungal cell walls,
including S. pombe, C. neoformans, A. fumigatus, and N. crassa
(Hochstenbach et al., 1998; Beauvais et al., 2005; Grun et al., 2005;

Maubon et al., 2006; Reese et al., 2007; Fontaine et al., 2010; Fu
et al., 2014b). The α-1,3-glucan has been shown to be localized
in the outer layers of the Histoplasma capsulatum yeast cell
wall, where it functions to shield the underlying β-1,3-glucan
from the host immune system (Rappleye et al., 2007). In the
Aspergillus nidulans cell wall the α-1,3-glucan is in the outer
layer of the cell wall, where it facilitates hyphal cell aggregation
(Miyazawa et al., 2018). In addition to being produced in these
fungi, α-1,3-glucan synthase genes are found in a number of
additional fungal genomes suggesting that the glucan is made
by a wide variety of fungi. In some cases, multiple α-1,3-glucan
synthase paralogs are encoded in the genome. The α-1,3-glucan
synthases have multiple transmembrane domains and a synthase
domain located on the cytosolic face of the plasma membrane.
Like the β-1,3-glucan synthases, the synthase domain is thought
to utilize UDP-glucose as a substrate and attaches a glucose
residue to the non-reducing end of an elongating α-1,3-glucan
polymer. The elongating α-1,3-glucan is thought to be extruded
though a pore formed by the transmembrane domains. No
information is available about the three-dimensional structure of
the α-1,3-glucan.

The N. crassa genome contains two α-1,3-glucan synthase
genes, ags-1 (ncu08132) and ags-2 (ncu02478). The ags-1 gene
is responsible for the production of the α-1,3-glucan and is
expressed in the aerial hyphae and conidia. AGS-1 is a large
protein containing 2374 amino acids. In addition to a glucan
synthase domain located on the cytosolic side of the plasma
membrane, AGS-1 contains multiple transmembrane domains
and an N-terminal putative glucanosyltransferase domain that
might attach the α-glucan to the cell wall matrix. Mutants lacking
AGS-1 have been extensively characterized (Fu et al., 2014b). The
ags-1 promoter has been used to drive expression of RFP and
shown to be direct gene expression in developing aerial hyphae
and conidia (Fu et al., 2014b). Antibodies directed against α-1,3-
glucan demonstrate that the polymer is located in the cell wall
and accessible to the antibody. The production of conidia in the
ags-1 deletion mutants was shown to be reduced by 95% and the
conidia that were produced were shown to have a reduced level
of viability and to be sensitive to a heat and freezing (Fu et al.,
2014b). Clearly the synthesis of the cell type-specific α-1,3-glucan
is important for the development and viability of the conidia. The
results further demonstrate that the glucan portion of the cell wall
can vary dramatically during the N. crassa life cycle. No role has
been defined for the ags-2 gene, which is more highly expressed
during perithecium development (Liu et al., 2017).

MELANIN

Many fungi produce melanin as one of their cell wall components.
Melanin is a large amorphous polymer of phenolic compounds
and is generated by a free-radical reaction in which the phenolics
are randomly cross-linked together. Cell wall melanin plays a
number of very important roles. It provides protection from UV
light, desiccation, freezing, and digestion from cell wall digestive
enzymes produced by other microbes (Rehnstrom and Free,
1996; Eisenman and Casadevall, 2012; Nosanchuk et al., 2015).
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Melanized fungal cells have been shown to be capable of
survival in the soil for decades (Davis and DeSerres, 1970). Most
pathogenic fungi have melanized cell walls, and the melanin has
been shown to be an important virulence factor (Chumley and
Valent, 1990; Langfelder et al., 2003; Talbot, 2003; Pihet et al.,
2009; Eisenman and Casadevall, 2012).

There are two pathways that can function for the synthesis
of fungal melanins, the dihydroxynaphthalene (DHN) pathway
and the dihydroxyphenylalanine (DOPA) pathway, and N. crassa
encodes the proteins for both pathways. The DOPA pathway
seems to function for the melanization of the vegetative cell
wall under stress conditions. The DOPA pathway requires a
single copper-containing enzyme, tyrosinase, which converts
tyrosine to dihydroxyphenylalanine (DOPA), which is unstable
and spontaneously forms melanin granules. N. crassa tyrosinase
has been purified, and its activity as a copper-containing enzyme
characterized (Lerch, 1982; Kupper et al., 1989). The enzyme
requires a proteolytic activation step to become enzymatically
active. N. crassa vegetative hyphae that are exposed to stress
agents produce tyrosinase and become melanized. N. crassa
tyrosinase mutants have been isolated and characterized (Fuentes
et al., 1994). Interestingly, these mutants are unable to form
perithecia, the female mating structures. When used as a
male parent in a mating, the tyrosinaseless mutant progeny
have melanized cell walls, which demonstrates that the DOPA
pathway is not used for ascospore melanization. Currently we
have no explanation for why tyrosinase would be required for
perithecium formation.

In N. crassa, the DHN pathway functions in the formation
of melanin for the ascospore and for the peridium cell walls.
The DHN melanin pathway has been well-characterized in
A. fumigatus (Langfelder et al., 1998, 2003; Eisenman and
Casadevall, 2012). The pathway for DHN synthesis was worked
out and includes a polyketide synthase that uses acetyl-CoA
and malonyl-CoA as substrates and makes a large heptameric
polyketide (Langfelder et al., 1998; Tsai et al., 2001). The
heptameric polyketide is then acted on by a hydrolase to
generate pentameric tetrahydroxylnapthalene (THN) (Tsai et al.,
2001). A THN reductase and a scytalone hydratase act on
the THN to remove two of the hydroxyl groups and produce
dihydroxynapthalene (DHN). A laccase then acts on the DHN
to generate a free-radical form of DHN, which spontaneously
reacts with other DHN molecules in a chain reaction manner to
create large, amorphous melanin granules (Sugareva et al., 2006).
In A. fumigatus, Upadhyay et al. (2016a,b) showed that all of
the enzymes involved in the synthesis of the DHN are found
associated with intracellular vesicles.

All of the enzymes involved in the synthesis of DHN are
found encoded in the N. crassa genome. Mutants affected in the
ability to produce DHN are unable to melanize their ascospores
and perithecia, demonstrating that the pathway is responsible
for melanizing these structures (Howe and Benson, 1974; Howe,
1976; Johnson, 1977; McCluskey et al., 2011; Ao et al., 2019).
The genome has two paralogs for the heptaketide hydrolase and
the THN reductase steps in the pathway, and a single gene for
the other steps. The expression of the heptaketide hydrolases
and the THN reductases occur in a tissue-type specific manner

such that a single hydrolase and reductase are expressed in the
ascospores, while both paralogs are expressed in the peridium
(Ao et al., 2019). Experiments using enzymes tagged with GFP
and RFP markers demonstrated that all of the DHN biosynthetic
enzymes are found associated with intracellular vesicles (Ao et al.,
2019). The laccase needed for the final step in the process was
also identified. Experiments tagging the laccase with GFP and
RFP markers demonstrated that the laccase has been secreted
and localized to the cell wall space at the point in time when the
peridium becomes melanized (Ao et al., 2019). It was concluded
that melanin formation in N. crassa occurs “in situ” within the
cell wall space and that the forming melanin granules encase the
other cell wall components within the forming melanin.

GLYCOPROTEINS

Glycoproteins are found as a major component in all fungal
cell walls. Some of these glycoproteins are covalently attached
to the cell wall matrix and are considered as integral cell wall
components, while other cell wall proteins are incorporated into
the wall via non-covalent bonds and can be released from the
wall by SDS treatment. Glycoproteins that are released by SDS
treatment are considered as cell wall-associated glycoproteins.

Cell wall-associated glycoproteins as well as integral cell wall
glycoproteins can function in a wide variety of functions (De
Groot et al., 2005; Latge, 2007; Chaffin, 2008; Klis et al., 2010;
Free, 2013). Some of the integral cell wall proteins function in
the cross-linking reactions described below to generate a three
dimensional chitin/glucan/glycoprotein matrix. Other cell wall
glycoproteins have been shown to function as adherins and help
anchor the fungal cell to the substratum. Cell wall glycoproteins
function as receptors for signal transduction pathways that allow
the fungus to assess environmental conditions. Many cell wall
glycoproteins have hydrolase activities. Some of these hydrolases
may function in the remodeling of the cell wall structure to
allow for modification of the cell wall and for the formation of
new hyphal branches. Other cell wall hydrolases may function
in nutrient acquisition by releasing sugars, amino acids, or lipids
from their substrates. Cell wall glycoproteins may also play roles
in protecting the fungus from other microbes. In the case of plant
and animal pathogenic fungi, cell wall glycoproteins can play
important roles in the infection of the host and be considered
as virulence factors. Major cell wall proteins lacking enzymatic
or other known functions have been ascribed a structural role,
but some of these “structural proteins” may have functions that
remain to be elucidated. Conversely, all of the integral cell wall
proteins might be considered to have a “structural role” in that
they become part of the cell wall matrix.

Proteins identified in proteomic analyses of purified cell walls
have been divided into two groups, referred to as “classical” and
“non-classical” cell wall proteins. Classical cell wall glycoproteins
have a typical N-terminal signal sequence and are translated
by ribosomes associated with the endoplasmic reticulum (ER).
These proteins travel through the canonical secretory pathway,
and typically have both N-linked and O-linked oligosaccharides
attached to them. Proteins identified in cell wall preparations
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which lack a signal peptide are referred to as “non-classical” cell
wall proteins. Most of these “non-classical” cell wall proteins
have well-defined cytosolic functions. For example, chaperone
proteins and some proteins that function in glycolysis are
often found among the “non-classical” cell wall proteins that
are identified in cell wall proteomic analyses. The question
of whether these proteins are normal components of the cell
wall or are contaminants in purified cell wall preparations
remains controversial. The questions of how such proteins
might be released into the cell wall space, what functions they
might perform in the cell wall space, and how they might be
incorporated into the cell wall haven’t been elucidated. For the
purposes of this review, these “non-classical” cell wall proteins
will not be further considered.

In N. crassa cell walls, 41 “classical cell wall proteins” have
been identified by proteomic analyses. The glycoproteins present
in other fungal cell walls were identified by proteomic analyses
after the cell wall proteins are released from the wall by
alkaline treatment, released into the medium by regenerating
spheroplasts, or by having peptides released from purified cell
walls by trypsin digestion. In N. crassa, the cell wall proteins
were identified by treating purified cell wall samples with
trifluoromethanesulfonic acid, which hydrolyses the glycosidic
linkages in the cell wall glucans and chitin and releases free
deglycosylated cell wall proteins (Bowman et al., 2006; Maddi
et al., 2009). One advantage of this approach are that because of
the removal of the N-linked and O-linked glycosylation, tryptic
fragments that would otherwise not be able to be identified
because they are glycosylated become available for identification.
For highly glycosylated cell wall glycoproteins, a large fraction
of the tryptic peptides are glycosylated. A second advantage of
the approach is that the N-acetylglucosamine that is attached
to the asparagine in N-linked oligosaccharides is retained,
and by including asparagine-N-acetylglucosamine as a possible
“amino acid” in the proteomic analysis, the sites of N-linked
oligosaccharide addition are easily identified (Maddi et al., 2009).
The identified N. crassa cell wall proteins are typical of those
found in other fungi. They include a number of “cell wall cross-
linking” enzymes, a variety of glycosylhydrolases that could be
involved in cell wall remodeling or in nutrient acquisition, and a
number of cell wall “structural” proteins.

Classical cell wall proteins contain a signal peptide at their
N-terminus and are translocated into the ER lumen during their
synthesis. As the growing polypeptides are translocated into
the lumen of the ER, N-linked oligosaccharides are added. As
in other eukaryotic organisms, the N-linked oligosaccharides
play an important role in the assessment of protein folding
and quality control. The N-linked oligosaccharide is synthesized
as a 2 N-acetylglucosame:9 Mannose:3 Glucose structure
that is attached to a dolichol phosphate moiety. The entire
oligosaccharide is transferred “en bloc” to asparagine residues in
the context of asparagine–X-serine or asparagine-X-threonine,
where X can be any amino acid except proline. The glucoses
on the transferred N-linked oligosaccharide function in the
assessment of protein folding status and in mediating the
unfolded protein response. These glucoses are trimmed in
correctly folded glycoproteins.

The major elements of the glycoprotein synthesis in N. crassa
follow those outlined above. All of the enzymes involved in
the synthesis of the N-linked oligosaccharide are encoded in
the N. crassa genome (Galagan et al., 2003; Colot et al., 2006;
Deshpande et al., 2008). Deletion mutants for the several of
the steps in N-linked oligosaccharide formation and transfer to
nascent polypeptides are available in the knockout library as
heterokaryons (isolates having wild type nuclei as well as knock
out mutant nuclei in a common cytoplasm) which suggests the
knockout mutations are lethal under normal growth conditions
in homokaryons (cells having only knockout mutant nuclei).
Classical mutations in two of the subunits of the oligosaccharide
transferase have been isolated as “tiny” mutants with slow-
growing, tight colonial phenotypes (McCluskey et al., 2011). This
demonstrates the important roles that N-linked oligosaccharides
play in the process of protein folding, protein stability, and in the
incorporation of glycoproteins into the cell wall. Glycan profiling
and glycan linkage analysis of the N-linked glycans present on
cell wall glycoproteins in the 1och-1 mutant (which lacks the
N-linked oligosaccharide-associated galactomannan described
below) demonstrates that N. crassa glycoproteins have a typical
2 N-acetylglucosamine:9 mannose N-linked oligosaccharide
(Deshpande et al., 2008; Kar et al., 2019). Trimming of some
of the terminal mannoses occurs on most of the N-linked
oligosaccharides and contributes to the heterogeneity seen in
N-linked oligosaccharides (Kar et al., 2019).

Approximately half of the integral cell wall proteins have an
attached glycosylphosphatidylinositol (GPI) anchor attached to
their carboxyl terminus. GPI anchored proteins contain a typical
signal peptide at their N-terminus and also contain a well-defined
amino acid signal sequence at their carboxyl terminus that acts
as a signal for the addition of the GPI anchor. The signal for
GPI-anchor addition (the “GPI signal”) consists of a carboxyl-
terminal hydrophobic domain separated by a short stretch of
hydrophilic amino acids from an attachment site termed the
omega site, where the protein is cleaved and the GPI anchor
is added (Ferguson, 1999; Eisenhaber et al., 2003). The GPI
anchor is added in the ER immediately after protein synthesis is
completed. The GPI anchor plays an important role in trafficking
these proteins to the cell wall. The GPI anchor contains two or
three attached lipids and functions to tether or anchor the protein
in the lumen leaflet of the secretory pathway organelles and to the
outer leaflet of the plasma membrane. In the fungi, virtually all
GPI anchored proteins are integral cell wall glycoproteins.

The pathway for the synthesis of the GPI anchor was originally
elucidated using S. cerevisiae temperature-sensitive mutants,
Trypanosomes, and mutant cultured vertebrate cells (Ferguson,
1999; Eisenhaber et al., 2003). TheN. crassa pathway has also been
examined (Bowman et al., 2006, 2009). Mutations affecting most
of the steps in the N. crassa GPI anchor biosynthetic pathway
have been characterized and the major GPI-anchored cell wall
proteins have been identified and characterized (Bowman et al.,
2006). Deletions for the steps in GPI anchor biosynthesis are
lethal in S. cerevisiae, and the pathway was characterized using
temperature-sensitive mutants, but the equivalent N. crassa
deletion mutants are viable and grow with an extremely tight
colonial morphology.
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As the protein passes through the secretory pathway,
further post-translational modifications occur. O-linked
oligosaccharides are added to multiple serine and threonine sites
in the glycoproteins. In fungi, these O-linked oligosaccharides
usually have a mannose attached to the serine or threonine
and contain additional mannose and/or galactose residues.
O-linked glycosylation is important for the stability and folding
of fungal glycoproteins (Shental-Bechor and Levy, 2008; Prates
et al., 2018). S. cerevisiae contains a number of well-characterized
protein:mannosyl transferases (PMT enzymes) that add the initial
mannose residue to serine and threonine sites. These various
PMT enzymes have differing specificities for their glycoprotein
substrates (Girrbach and Strahl, 2003). Additional mannose
and/or galactose residues are added by mannosyltransferases
and/or galactosyltransferases in the ER and Golgi apparatus. In
S. cerevisiae, the Mnt-1p mannosyltransferase adds the second
mannose to the O-linked oligosaccharides (Hausler et al., 1992).
These same steps in generating O-linked oligosaccharides
occur in N. crassa. The N. crassa genome contains 3 genes
encoding PMT enzymes (ncu01912, ncu01648, and ncu09332).
Knockout mutations for ncu01912 and ncu09332, are found in
the deletion library as heterokaryons and there is no deletion
mutant available for ncu01648. This strongly suggests that
the addition of O-linked oligosaccharides is important for
glycoprotein function and stability. N. crassa mnt-1 mutants

have been isolated and characterized (Bowman et al., 2005). The
mutants grow with a tight colonial morphology and are unable
produce conidia and perithecia, demonstrating the importance
of O-linked glycosylation (Bowman et al., 2005). The severe
growth phenotype of the mnt-1 mutants is best understood from
the viewpoint that the formation of the O-linked oligosaccharide
is affected on all of the cell wall and secreted proteins. As a
result, many of the cell wall proteins are being degraded. The
mnt-1 mutant cell wall is therefore deficient in several cell wall
glycoproteins and is severely compromised.

Yet another important post-translational modification found
on fungal cell wall glycoproteins is the generation of a
galactomannan structure (in filamentous fungi) or an outer
chain mannan structure (in S. cerevisiae and C. albicans)
associated with the N-linked oligosaccharide. The synthesis of
these oligosaccharide structures begins with the addition of a
mannose to a particular site on the N-linked oligosaccharide
by the OCH-1 mannosyltransferase (Nakayama et al., 1992)
(Figure 2). Additional mannoses are then added by a complex
of enzymes to create an α-1,6-mannose chain (Hall and Gow,
2013). In the creation of the yeast outer chain mannan, the
α-1,6-mannose chain can be well over 100 residues in length,
while the a-1,6-mannose chain is much shorter for the N. crassa
galactomannan (Ao and Free, 2017; Kar et al., 2019). Side chains
are then added to the α-1,6-mannose backbone to create the

FIGURE 2 | Structures of N. crassa N-linked oligosaccharides as determined by glycan profiling experiments. The N-linked oligosaccharide (left) was isolated from
cell wall glycoproteins synthesized by the 1och-1 mutant, which is unable to elaborate the galactomannan. The full length galacatomannan (middle) was isolated
from cell wall glycoproteins synthesized by the 1dfg-5,1dcw-1 mutant, which lacks the α-1,6-mannanases needed to process the galactomannan. The processed
galactomannan (right) was isolated from cell wall glycoproteins synthesized by the 1gel-1,1gel-2,1gel-5 mutant, which is unable to incorporate the processed
galactomannan into the cell wall.
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outer chain mannans or galactomannans. Multiple variations
of the side chains have been seen in outer chain mannans. In
S. cerevisiae and C. albicans, many of the side chains have an
α-1,2-mannose-α-1,3-mannose structure but other side chains
have been identified (Hall and Gow, 2013). In the filamentous
fungi, galactofuranose residues are found in the side chains of
the galactomannan. The N. crassa galactomannan structure has
been characterized for galactomannans released from the cell wall
and for galactomannans released from cell wall glycoproteins
in glycan profiling experiments (Leal et al., 1996; Kar et al.,
2019). The structure of the N. crassa full length galactomannan
is shown in Figure 2. It consists of a short chain of 1,6-linked
mannose residues with a single galactofuranose side chain that
is attached to the mannose residues at their C2 position The
galactofuranosyltransferase responsible for the addition of the
galactofuranose side chain to the mannose backbone has not
been identified.

In N. crassa, mutants affected in the formation of the
galactomannan have been identified. The 1och-1 mutant
(ncu00609) has a severe tight colonial morphology and has been
carefully characterized (Maddi and Free, 2010). The mutant is
unable to produce conidia and perithecia. During growth in a
liquid medium, the 1och-1 mutant releases large amounts of cell
wall proteins into the growth medium and analysis of the cell
wall shows that the wall is deficient in cell wall proteins (Maddi
and Free, 2010). This demonstrates that the galactomannan is
required for the incorporation of cell wall proteins into the wall
and suggests that the cell wall proteins are attached to the wall
through the galactomannan. Glucan profiling of the N-linked
oligosaccharides present on glycoproteins from the 1och-1
mutant, shows that the largest N-linked oligosaccharide present
on the glycoproteins has a 2 N-acetylglucosamine: mannose
9 structure (Figure 2). Most of the N-linked oligosaccharides
present on N-linked oligosaccharides from the 1och-1 mutant
contain between 4 and 6 mannose residues, which indicates that
mannoses are being removed from the N-linked oligosaccharides
after they are transferred onto target glycoproteins.

BIOGENESIS OF THE CELL WALL AS A
THREE-DIMENSIONAL MATRIX

Glucanosyltransferases carry out the key reactions needed to
cross-link the cell wall glucans and chitins together. The genes
encoding these enzymes are found as multigene families and
are restricted to fungal genomes. Multiple members of these
multigene families are expressed in a single cell type, which
creates a situation of redundancy in their cross-linking activities.
This redundancy is thought to help insure that a well-formed
cell wall is generated across the spectrum of environmental
conditions in which the fungus can grow, with different family
members being optimally active in different environments
(Fonzi, 1999; Calderon et al., 2010). Different combinations of
these genes are also expressed in the various cell types generated
during the fungal life cycle. The glucanosyltransferases carry out
two closely related reactions. They first function as a glucan
hydrolase to cleave a cell wall glucan near the reducing end of

the glucan. These enzymes contain a characteristic arrangement
of glutamate or aspartate residues that participate in the cleavage
reaction. During the reaction, the newly generated reducing end
of the cleaved glucan becomes covalently attached to a glutamate
or aspartate in the active site. The reaction releases a small
oligosaccharide from the reducing end of the glucan (Mouyna
et al., 1998). In a second reaction, the enzymes function as
glucanosyltransferases. The enzymes bind a second glucan and
transfer the cleaved glucan from their active site to the second
glucan. These transferase reactions can occur in such a way
as to transfer the cleaved glucan onto the middle of a second
polymer to create a cross-linked matrix with the branch points
in the matrix having been created by transferase reactions. These
glucanosyltransferases have specificity for both the donor glucan
and the acceptor glucan. For example, members of the GH16
family of glycosylhydrolases/glycosyltransferases have been
shown to function in cross-linking β-1,3-glucan and β-1,6-glucan
(donors) to chitin (receptor) polymers (Pardini et al., 2006; Cabib
et al., 2007; Hartl et al., 2011). In S. cerevisiae, members of
the GH17 family of glucosylhydrolases/glycosyltransferases have
been shown to have specificity for cross-linking β-1,3-glucan to
β-1,3-glucans (Goldman et al., 1995; Gastebois et al., 2010b). In
S. cerevisiae, C. albicans, and A. fumigatus, members of the GH72
family of glucanosyltransferases have also been demonstrated
to be able to cross-link β-1,3-glucans together (Hartland et al.,
1996; Hurtado-Guerrero et al., 2009; Mazan et al., 2011). A three-
dimensional cell wall matrix of chitin and glucan is generated
as these different glucanosyltransferases cross-link the cell wall
chitin and glucan molecules together. The GH16, GH17, and
GH72 families of glycosylhydrolases are common to virtually all
fungal cells walls, and have been shown to be important for cross-
linking cell wall components. Members of the GH76 family of
α-1,6-mannanases are also found in all fungal cell walls. We will
discuss each of these families of enzymes and how each of them
is thought to function in the formation of N. crassa cell walls.
Our research focus has been on how the cell wall glycoproteins
are incorporated into the cell wall and the information available
about the N. crassa cross-linking enzymes reflects this bias.

THE GH16 FAMILY OF
GLUCANOSYLHYDROLASES/
GLUCANOYSLTRANSFERASES

In S. cerevisiae and C. albicans, mutational analysis shows that
GH16 enzymes function in cross-linking β-1,6-glucan to the
cell wall chitin (Pardini et al., 2006; Cabib et al., 2007). In
S. cerevisiae, there are three GH16 enzymes, Crh1p, Crh2p, and
Crr1p. Deletion of Crh1p and Crh2p is needed to create a cell wall
defect, indicating that the two enzymes function in a redundant
manner to attach β-1,6-glucan to the cell wall chitin. Similarly,
C. albicans contains three GH16 enzymes, Crh11p, Crh12p,
and Utr2p. The proteins function in a redundant manner and
deletion of all three genes generates a cell wall defect (Pardini
et al., 2006). A GH16 enzyme, Eng2p, has been characterized
in A. fumigatus and shown to have β-1,3-glucanase and β-1,3-
glucanosyltransferase activities (Hartl et al., 2011). These results
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demonstrate the importance of the GH16 family of enzymes for
the formation of a functional cell wall in yeast, and that the yeast
GH16 enzymes function in a redundant manner to cross-link
β-1,6-glucans to the cell wall chitin polymers. The results also
suggest that there are substrate specificity differences between the
A. fumigatus enzyme and the yeast enzymes.

The N. crassa genome encodes 15 GH16 family
glucanosyltransferases (NCU01353, NCU04168, NCU04431,
NCU4959, NCU5686, NCU05789, NCU05974, NCU06504,
NCU07134, NCU08072, NCU09117, NCU09904, NCU00061,
NCU00233, and NCU09672). Different combinations of these
GH16 glucanosyltransferases are expressed in the different cell
types found in the N. crassa life cycle (Lehr et al., 2014; Wang
et al., 2014; Liu et al., 2017). Deletion mutants for the GH16
genes are available in the deletion library and all of these deletion
mutants have a wild type growth morphology.

THE GH17 FAMILY OF
GLUCANOSYLHYDROLASES/
GLUCANOSYLTRANSFERASES

The GH17 family of enzymes have been extensively studied in
S. cerevisiae, C. albicans, and A. fumigatus. The enzymatic activity
of purified Bgl2p, a GH17 enzyme from S. cerevisiae, has been
characterized (Klebl and Tanner, 1989; Goldman et al., 1995;
Gastebois et al., 2010b). In in vitro reactions, the enzyme was
shown to be able to cleave a disaccharide from the reducing end
of a β-1,3-glucan and to transfer the glucan to the 6 position
at the non-reducing end of a second β-1,3-glucan to generate a
“kinked” polymer. Two GH17 enzymes, AfBgt1p and AfBgt2p,
have been characterized from A. fumigatus (Gastebois et al.,
2009, 2010a,b). AfBgt1p, like the S. cerevisiae Bgl2p, was able to
generate a “kinked” glucan by transferring a β-1,3-glucan to the
6 position at the non-reducing terminus of a second β-1,3-glucan
in an in vitro reaction. AfBgt2p had a slightly different activity.
In the in vitro assay, the enzyme was able to transfer a β-1,3-
glucan to the 6 position on a glucose residue in the middle of
an acceptor β-1,3-glucan to generate a branched glucan molecule
(Gastebois et al., 2010a,b). The A. fumigatus AfBGT1, AfBGT2
double mutant does not have an obvious cell wall defect, which
suggests there are other enzymes that also act in cross-linking
the β-1,3-glucans together and that the wall has a redundancy
of β-1,3-glucan cross-linking enzymes (Gastebois et al., 2009).
In A. fumigatus, the GH72 family is an obvious possibility for
additional β-1,3-glucan cross-linking activity.

The N. crassa genome encodes 3 members of the GH17 family
of β-1,3-glucan cross-linking enzymes, BGT-1 (NCU06381),
BGT-2 (NCU09175), and BGT-3 (NCU09326). Deletion mutants
for all three genes are available in the deletion library and these
mutants have a wild type growth morphology. BGT-1 and BGT-
2 are GPI-anchored proteins and their location on the cell wall
and in secretory vesicles in vegetative hyphae and in conidia has
been characterized by Martinez-Nunez and Riquelme (2015). Liu
et al. (2017) found that BGT-1 and BGT-2 are expressed at high
levels in the developing ascospores, while BGT-3, which does not
have a GPI anchor, is expressed at high levels during vegetative

growth. Martinez-Nunez and Riquelme (2015) demonstrated that
the 1bgt-1, 1bgt-2 double mutant had a normal morphology, but
showed an increased resistance to calcofluor white and congo red,
suggesting that the cell wall was affected in the double mutant.
The data leaves open the possibility that the three N. crassa
GH17 glucanosyltransferases are redundant and a triple mutant
is needed to demonstrate the role the enzymes play in cell
wall formation. Another possibility is that the N. crassa GH17
enzymes, like the A. fumigatus GH17 enzymes, are not vital for
the formation of the cell wall. Further experiments are needed to
define the role of the GH17 family enzymes for the formation of
the N. crassa cell wall.

THE GH76 FAMILY OF
α-1,6-MANNANASES

The GH76 α-1,6-mannanases are found in virtually all fungal cell
walls. Two GH76 enzymes, Dfg5p and Dcw1p were shown to
be important for the formation of the S. cerevisiae cell wall and
the double mutant is inviable (Mosch and Fink, 1997; Kitagaki
et al., 2002; Kitagaki et al., 2004). A similar situation exists in the
diploid fungus, C. albicans, where the homozygous loss of both
CaDfg5p and CaDcw1p alleles is a lethal event (Spreghini et al.,
2003). Clearly the GH76 family of α-1,6-mannanases play a vital
role in the formation of the cell wall.

The N. crassa genome encodes 9 GH-76 α-1,6-mannanase
family members. As with the other families of cell wall cross-
linking enzymes, different combinations of the GH76 family
genes are expressed in the various cell types that define the
N. crassa life cycle. Two of the GH76 α-1,6-mannanases,
DFG-5 (NCU03770) and DCW-1 (NCU08127), are needed
for the formation of the cell wall of the vegetative hyphae
(Maddi et al., 2012).

The N. crassa GH76 enzymes, DFG-5 and DCW-1 have been
characterized (Maddi et al., 2012). Unlike the other enzymes
discussed in the section, the data strongly suggests that the
GH76 enzymes do not function as mannan transferases, but
rather function solely as α-1,6-mannan hydrolases. The 1dfg-
5 mutant has a restricted, semi-colonial pattern of vegetative
growth and the 1dcw-1 mutant has a subtle defect in vegetative
hyphal morphology. The 1dfg-51dcw-1 double mutant has a
tight colonial morphology, demonstrating that the two enzymes
have redundant, partially overlapping activities. The double
mutant has been shown to release large amounts of cell wall
proteins into the growth medium and to have a cell wall
that is deficient in glycoproteins (Maddi et al., 2012). This
strongly suggests that DFG-5 and DCW-1 function in the
incorporation of cell wall proteins into the cell wall. Glycan
profiling and sugar linkage analyses of the N-linked glycan found
on the glycoproteins of mutant isolates provides evidence that
DFG-5 and DCW-1 function as α-1,6-mannanases to cleave
the α-1,6-mannose backbone of the N-linked oligosaccharide-
associated galactomannans (Kar et al., 2019). The deduced
N-linked oligosaccharide-galactomannan structure from the
glycoproteins from the 1dfg-51dcw-1 mutant is shown in
Figure 2. It represents a “full length” galactomannan and
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has an α-1,6-mannan backbone containing approximately 7
mannose residues. The deduced structure for the N-linked
glycans that have been processed by DFG-5 and DCW-1 is
also shown in Figure 2. It is much smaller than the “full
length” galactomannan, and is only 2 sugars larger than the
N-linked oligosaccharide lacking the galactomannan. The results
indicated that DFG-5 and DCW-1 function in processing the
galactomannan and are needed for the incorporation of cell wall
proteins into the cell wall.

THE GH72 FAMILY OF
GLUCANOSYLTRANSFERASES

Members of the GH72 family of glucanosyltransferases have been
extensively studied in S. cerevisiae, C. albicans, A. fumigatus,
S. pombe, and N. crassa (Hartland et al., 1996; Ram et al.,
1998; Fonzi, 1999; Mouyna et al., 2000b, 2005; Caracuel et al.,
2005; Ragni et al., 2007a,b; Gastebois et al., 2009, 2010a,b;
Hurtado-Guerrero et al., 2009; de Medina-Redondo et al., 2010;
Mazan et al., 2011; Sillo et al., 2013; Popolo et al., 2017;
Samalova et al., 2017). The fungal GH72 glucanosyltransferases
can be subdivided into two groups, those with a carboxyl
terminal carbohydrate-binding domain and those that lack such
a domain (Ragni et al., 2007b). GH72 enzymes from S. cerevisiae
(Gas1p, Gas2p, Gas4p, and Gas5p), C. albicans (Phr1p and
Phr2p), A. fumigatus (Gel1p, Gel2p, and Gel4p), and S. pombe
(Gas1p, Gas2p, Gas4p, and Gas5p) have all been produced
by recombinant DNA technology, purified, and characterized
(Mouyna et al., 2000a,b; Carotti et al., 2004; Ragni et al., 2007b;
Hurtado-Guerrero et al., 2009; de Medina-Redondo et al., 2010;
Mazan et al., 2011; Kovacova et al., 2015; Raich et al., 2016).
These recombinant glucanosyltransferases have been shown to
be able to cleave a β-1,3-glucan and to transferase the β-1,3-
glucan to the non-reducing end of a second β-1,3-glucan. The
reaction can lengthen and shorten β-1,3-glucans and has been
proposed to function in generating glucans of the proper lengths
for incorporation into the cell wall. The enzyme-β-1,3-glucan
intermediate has been observed for Gas2p (Hurtado-Guerrero
et al., 2009; Raich et al., 2016). Recent evidence suggests that the
S. cerevisiae Gas1p and A. fumigatus Gel4p enzymes are capable
of transferring β-1,3-glucan to the 6 position of a glucose residue
in the middle of a second β-1,3-glucan to create a branched
structure appropriate for an interconnected β-1,3-glucan matrix
(Aimanianda et al., 2017).

The x-ray crystal structure of the purified recombinant
S. cerevisiae Gas2p glucanosyltransferase with an associated β-
1,3-glucan has been elucidated and is helpful in evaluating how
the enzyme might work (Hurtado-Guerrero et al., 2009; Raich
et al., 2016). The crystal structure contains a long cleft into which
the β-1,3-glucan fits and makes contacts with several amino acids.
The active site is defined by a pair of glutamate residues (E176
and E275), which function in cleaving the glucan and producing
an enzyme:glucan covalent intermediate. The glutamate residue
participates in the formation of the covalent bond. Based on
the data from the S. cerevisiae, C. albicans, and A. fumigatus
systems, it is clear that the GH72 glucanosyltransferases can

cleave β-1,3-glucan and participate in its transferase to a second
polysaccharide. The data has been interpreted as indicating that
the GH72 glucanosyltransferases function to cross-link β-1,3-
glucans together.

The studies on the N. crassa GH72 family of
glucanosyltransferases suggests that these glucanosyltransferases
may have a second, related enzymatic function – that of
cross-linking cell wall proteins into the cell wall. The N. crassa
genome encodes a family of five GH72 glucanosyltransferases
(GEL-1/NCU08909, GEL-2/NCU07253, GEL-3/NCU01162,
GEL-4/NCU06850, and GEL-5/NCU06781). Four of these were
found to be expressed in proteomic analyses, GEL-1, GEL-2,
GEL-3, and GEL-5 (Maddi et al., 2009, 2012; Maddi and Free,
2010; Ao et al., 2016). Deletion mutants for all of these are in
the Neurospora deletion library, and all of the single deletion
mutants have a wild type morphology. The deletion mutants
were shown to be less sensitive to Trichoderma cell wall lysing
suggested they had alterations in their cell wall structure (Kamei
et al., 2013). All possible combinations of single, double, triple
and quadruple deletion mutants have been generated and
characterized (Ao and Free, 2017). Triple mutants lacking
GEL-1, GEL-2 and GEL-3 grow poorly, are unable to form
conidia, and have a tight colonial morphology when grown in
liquid medium. The 1gel-11gel-21gel-5 triple mutant and the
quadruple mutant have an even more severe phenotype and grow
with a tight colonial morphology under all conditions. The 1gel-
11gel-21gel-5 mutant phenotype is indistinguishable from that
of the 1och-1 mutant and the 1dfg-51dcw-1 double mutant. The
1gel-11gel-21gel-3 and 1gel-11gel-21gel-5 mutants release
large amounts of cell wall proteins into the growth medium and
their cell walls are deficient in cell wall proteins (Ao and Free,
2017). In a series of experiments to elucidate the function(s)
of the GEL1, GEL-2 and GEL-5 glucanosyltransferases, the
cell wall proteins from the 1och-1 mutant, the 1dfg-51dcw-1
mutant, and the 1gel-11gel-21gel-5 mutant were assayed
for in vitro glucanosyltransferase activity. Using experiments
in which combinations of cell wall proteins were mixed with
β-1,3-glucan or lichenin, it was determined that lichenin (but
not β-1,3-glucan) was transferred to cell wall proteins when the
assays contained a source of glucanosyltransferase (from the
1och-1 mutant or from the 1dfg-51dcw-1 mutant) and source
of cell wall proteins containing the “processed” galactomannan
(from the 1gel-11gel-21gel-5 mutant). All three components
were needed for the transfer of lichenin to the cell wall proteins
(Kar et al., 2019). Cell wall proteins without a galactomannan
(from the 1och-1 mutant) and cell wall proteins with a full-
length unprocessed galactomannan (from the 1dfg-51dcw-1
mutant) are not able to act as lichenin acceptors in the assay.
It was concluded that GEL-1, GEL-2, and GEL-5 can function
as lichenin transferases to cross-link cell wall glycoproteins and
lichenin. The activity identified for the N. crassa GH72 family
glucanosyltransferases is similar to that ascribed for the enzymes
in S. cerevisiae, C. albicans, and A. fumigatus in that a β-glucan
is cleaved and transferred to as second polysaccharide, but the
specificities of both the donor and acceptor are different. The
family of GH72 glucanosyltransferases may have a much broader
range of substrate specificities than previously appreciated. It is
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interesting to note that the GH72 glucanosyltransferase genes
from Magnaporthe oryzae, Fusarium oxysporum, and Tuber
melanosporum, three filamentous fungi related to N. crassa, do
not complement the S. cerevisiae gas1 mutant (Caracuel et al.,
2005; Sillo et al., 2013; Samalova et al., 2017). This suggests that
the GH72 enzymes of these fungi may function in cross-linking
glycoproteins into their cell walls.

SUMMARY OF HOW N. crassa
GENERATES A THREE-DIMENSIONAL
CELL WALL MATRIX

In generating the cell wall as a three-dimensional matrix,
the three major cell wall components, chitin, glucans and
glycoproteins, all need to be joined together. The cross-linking
of chitin, glucans, and glycoproteins is vital for the creation of
a functional cell wall. Although much remains to be elucidated,
it is clear that the cell wall biosynthetic enzymes we have
discussed above have the capacity to generate a cross-linked
chitin/glucan/glycoprotein matrix. In the N. crassa cell wall,
the β-1,3-glucans and lichenin are the most abundant glucan
component and represent approximately 65% of the total cell wall
mass (Maddi and Free, 2010; Maddi et al., 2012; Fu et al., 2014a;
Ao and Free, 2017). Chitin and the cell wall glycoproteins are
attached to the cell wall glucans in N. crassa and other fungi.
The GH16 family of glucanosyltransferases from S. cerevisiae,
C. albicans, and A. fumigatus have been shown to have the
capacity to cross-link glucan to chitin (Pardini et al., 2006;
Cabib et al., 2007; Hartl et al., 2011), and it is presumed
that they function in this capacity in N. crassa. Which of the
major glucan polymers, β-1,3-glucan or lichenin, is used in
cross-linking the N. crassa chitin to the matrix has not been
experimentally addressed. Cross-linking of the β-1,3-glucans and
lichenin together would be expected to be a critical step in the
formation of the cell wall. The S. cerevisiae GH17 family of
glucanosyltransferase Bgl2p has been shown to be able to cross-
link β-1,3-glucans together and the Neurospora GH17 enzymes
are likely to function in cross-linking the N. crassa cell wall
together. The question of how the α-1,3-glucan found in the
N. crassa aerial hyphae and conidia is cross-linked into the cell
wall has not been experimentally examined.

The incorporation of cell wall glycoproteins into the wall has
been extensively examined in N. crassa. As shown in Figure 2,
the N. crassa, cell wall glycoproteins are post-translationally
modified by the addition of a galactomannan to their N-linked
oligosaccharides (Maddi and Free, 2010). The galactomannan is
subsequently cleaved/processed by the α-1,6-mannanases DFG-5
and DCW-1 (Maddi et al., 2012; Kar et al., 2019). The processed
galactomannan is then used as the acceptor polysaccharide by
the GH72 family of glucanosyltransferases (lichenin transferases)
(Kar et al., 2019). These enzymes cleave lichenin and attach it
to the processed galactomannan, which effectively cross-links the
glycoproteins into the cell wall. The method of cross-linking the
glycoproteins into the wall is virtually identical to the process
used to cross-link the other cell wall components together. The
enzymes needed to cross-link the processed galactomannan into

TABLE 1 | Table of N. crassa cell wall proteins.

Protein name NCU# GPI
anchored

Total # of
peptides

Cell type
expression

GH17 (β-1,3-endoglucanase) 09175 Yes 20 V and C

GH16 (β-1,3-endoglucanase
transferase)

05974 Yes 23 V and C

GEL-1 (GH76 β-glucan
transferase)

08909 Yes 16 V and C

GEL-2 (GH76 β-glucan
transferase)

07253 Yes 14 V and C

GEL-5 (GH76 β-glucan
transferase)

06781 Yes 12 V and C

CHIT-1 (endochitinase) 02184 Yes 16 V and C

ACW-1 08936 Yes 18 V and C

ACW-2 00957 Yes 9 V and C

ACW-3 05667 Yes 17 V and C

ACW-5 07776 Yes 3 V and C

ACW-6 03530 Yes 3 V and C

ACW-7 09133 Yes 7 V and C

ACW-10 03013 Yes 3 V and C

GH17 (β-1,3-endoglucanase) 09326 No 8 V and C

GH3 (β-glucosidase) 08755 No 14 V and C

CAT-3 (catalase) 00355 No 10 V and C

NCW-3 07817 No 1 V and C

GH16 (β1,3-endoglucanase) 01353 Yes 9 V

ACW-8 07277 Yes 2 V

ACW-9 06185 Yes 2 V

ACW-11 02041 Yes 1 V

ACW-12 08171 Yes 12 V

NCW-1 05137 No 18 V

NCW-2 01752 No 7 V

GEL-3 (β-glucan transferase) 01162 Yes 5 C

GH64 (β-1,3-glucanase) 01080 Yes 1 C

ACW-4 09263 Yes 1 C

ACW-13 04493 Yes 1 C

NAG-1 (β-N-acetyl
hexosaminidase)

10852 No 10 C

CGL-1 (GH55)
(β-1,3-glucanase)

07523 No 8 C

GH55 (β-1,3-glucanase) 09791 No 5 C

GH71 (α-1,3-glucanase) 06010 No 1 C

GH31 (α-glucosidase) 09281 No 1 C

NCW-4 02948 No 2 C

NCW-5 00716 No 2 C

NCW-6 00586 No 5 C

NCW-7 08907 No 2 C

NCW-8 04605 No 2 C

NCW-9 03083 No 1 C

HET-C 03125 No 4 C

RDS-1 05143 No 1 C

The various cell wall glycoproteins that have been identified in N. crassa cell wall
preparations. The NCU # refers to the gene number assigned in the genome
sequence to the protein. The presence or absence of a GPI anchor is noted. The
number of unique tryptic peptides identified is also shown. The cell type(s) in which
the glycoproteins were found is given with V denoting vegetative hyphae (grown in
a liquid medium) and C denoting conidia.
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the wall could have easily evolved from glucan cross-linking
transferases through small changes in their donor-binding and
acceptor-binding clefts to accommodate a new set of donor
and acceptor polysaccharides. Although the general principles
defined in N. crassa for cross-linking glycoproteins into the cell
wall may be generally applicable, there will clearly be some
differences between different fungal species. For example, the
DFG-5 and DCW-1 enzymes are needed for incorporation of cell
wall proteins in C. albicans (Ao et al., 2015), but C. albicans lacks
lichenin. A different donor glucan would be needed to attach
cell wall proteins in C. albicans. The available evidence indicates
that β-1,6-glucans are used in attaching glycoproteins into the
cell wall in both C. albicans and S. cerevisiae (Lu et al., 1995;
Kollar et al., 1997; Kapteyn et al., 2000). It is also important
to recognize that other modes of attaching glycoprotein to the
cell wall have been observed. For example, in S. cerevisiae, the
attachment of a β-1,6-glucan to the GPI anchor present on
GPI-anchored cell wall glycoproteins has been observed, which
would tether GPI-anchored proteins into the cell wall structure
(Kollar et al., 1997; Kapteyn et al., 2000). While some fungi may
have multiple ways of attaching glycoproteins to the wall, the
incorporation of glycoproteins into the N. crassa cell wall seems
to be totally dependent upon the processed galactomannan route
described above.

The incorporation of melanin into the fungal cell wall is an
important process, and is vital to the survival of the melanized
cells. For N. crassa the question of how melanin is incorporated
into the cell wall has been answered by the demonstration that
LACM-1, the laccase needed for the final step in the process of
melanin formation is located in the cell wall space in developing
perithecia at the point in time when melanin is being formed
(Ao et al., 2019). At the same point in time, the enzymes
involved in the synthesis of DHN, the melanin precursor are

located on intracellular vesicles. The results indicate that DHN
is synthesized in intracellular vesicles. The DHN is then secreted
into the cell wall space, where LACM-1 acts on the DHN to
generate melanin granules (Ao et al., 2019). The melanin is made
“in situ” and as the granules form they encase the other cell
wall components.

CHANGING THE CELL WALL
THROUGHOUT THE N. crassa LIFE
CYCLE

One of the interesting aspects of the N. crassa cell wall is how
the cell wall structure and composition changes during the life
cycle of the organism. Table 1 shows the major cell wall proteins
identified via proteomic analyses of the vegetative hyphae and
conidia (Bowman et al., 2006; Maddi et al., 2009, 2012; Maddi
and Free, 2010; Ao et al., 2016). What is evident is that
different combinations of cell wall glycoproteins are expressed
in the two cell types. Seventeen of the cell wall glycoproteins
in the vegetative cell wall are also present in the conidial
cell wall. However, the vegetative hyphal cell wall contains
seven major vegetative cell wall glycoproteins which are missing
from the conidia cell wall. While sharing seventeen cell wall
glycoproteins with the vegetative hyphal cell wall, the conidial
cell has seventeen cell wall glycoproteins that are not found in
the vegetative cell wall (Table 1). Interestingly, most of these
additional conidia-specific glycoproteins lack a GPI-anchor. An
analysis of the deletion mutants for these conidia-specific cell wall
glycoproteins showed that two of them, CGL-1/NCU07523 and
NAG-1/NCU10852 play significant roles in conidia development.
CGL-1 is a β-glucanase and NAG-1 is an exochitinase, and
both activities are needed to remodel the conidia cell wall

FIGURE 3 | The N. crassa conidia cell wall. The locations of the components of the conidial cell wall are depicted. Chitin is shown in purple and is located adjacent
to the plasma membrane at the bottom of the diagram. The β-1,3-glucan is shown in black and located in the middle of the cell wall. Cell wall glycoproteins are
shown in red. GPI anchors are shown in red and extent into the plasma membrane. N-linked oligosaccharides are shown with N-acetylglucosamine residues in
green squares, mannoses from the N-linked oligosaccharide shown in orange circles, and processed galactomannans shown in magenta circles. O-linked
oligosaccharides are also shown in orange. Lichenin is shown in blue and is attached to the processed galactomannan and to β-1,3-glucans. The α-1,3-glucans are
shown in green and are attached to β-1,3-glucan and/or lichenin at the cell wall periphery.
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between adjacent conidia to facilitate the separation of the
individual conidia in a conidial chain from each other (Ao
et al., 2016). The conidia-specific expression of the conidia
cell wall associated hydrophobin, EAS (easily wettable)/CCG-2
(NCU08457) is yet another example of an important cell wall
difference between vegetative hyphae and conidia (Bell-Pedersen
et al., 1992). The EAS/CCG-2 hydrophobin forms a hydrophobic
surface rodlet layer around the conidia cell wall and facilitates
the dispersal of conidia in an aqueous environment. These
conidia-specific cell wall proteins play important roles in the
development of the conidia.

A second important difference between the cell wall of the
vegetative hyphal cell and the conidia is found in their glucan
components. The conidia contains α-1,3-glucan, which is lacking
from the vegetative cell wall. Like the expression of the CGL-1
and NAG-1 cell wall remodeling enzymes, synthesis of α-1,3-
glucan plays an important role in conidial development (Fu
et al., 2014b). Mutants lacking α-1,3-glucan are unable to produce
normal conidia. This demonstrates that the formation of conidia
requires major changes in the glucan components of the cell
wall as well as the expression of conidia-specific glycoproteins.
Figure 3 shows a representation of the conidial cell wall with the
α-1,3-glucan being localized at the periphery of the cell wall.

There are no published proteomic analyses of the cell walls
produced during the sexual stages of the N. crassa life cycle.
However, there are three RNAseq analyses of gene expression
during sexual development (Lehr et al., 2014; Wang et al., 2014;
Liu et al., 2017). In looking through the data from these RNAseq
analyses, it is clear that members of the GH16, GH17, GH72, and
GH76 gene families which are not expressed in vegetative hyphae
are being expressed in the developing ascospores (sexual spores)
and in the peridium (a female-derived tissue that surrounds
and protects the developing ascospores). In addition to these
changes in the cross-linking enzymes, many other genes encoding
putative cell wall remodeling enzymes and structural proteins
are being differentially expressed during the sexual stages. These
changes in gene expression extend to genes encoding putative
mixed β-1,3-/β-1,4- glucan synthases. Deletion mutants for
the chitin synthases demonstrate that some chitin synthases
are critical for the development of perithecia, ascospores, and
conidia, further demonstrating that there are important cell wall
differences between these different cell types (Fajardo-Somera
et al., 2015). Not only are there major changes in the expression
of cell wall glycoproteins and glucans, the developing ascospores

and peridium cells become heavily melanized. The expression
of the DHN pathway enzymes and the LACM-1 laccase are
regulated in a cell-type specific manner in the developing
ascospores and peridium (Ao et al., 2019). Unfortunately,
deletion mutants for the different glycoproteins and glucan
synthases expressed uniquely in the ascospores and peridium
have not been carefully analyzed. Although the ascospore and
peridium cell walls have not been characterized by proteomics,
the available data makes it clear that there are major differences
between the cell walls produced during sexual development and
the cell walls from vegetative hyphae and conidia.

In summary, each of the different cell types in the N. crassa
life cycle produces a cell wall with a unique combination of
glycoproteins, glucans, and melanin. Some of these components,
like CGL-1, NAG-1, α-1-3-glucan, and melanin, have been shown
to carry out important cell-type specific functions (Fu et al.,
2014b; Ao et al., 2016, 2019). There is also a cell-type expression
pattern for the members of the GH16, GH17, GH72, and GH76
gene families, with different combinations of these genes being
expressed in each cell type (Lehr et al., 2014; Wang et al., 2014; Ao
and Free, 2017; Liu et al., 2017). Many other cell wall remodeling
enzymes and structural proteins are expressed in cell-type specific
fashion (Ao et al., 2016). While the glucan/chitin/glycoprotein
matrix remains the basic cell wall structure throughout the
entire life cycle of the fungus, this structure is being extensively
modified by adding new glycoproteins, changing glucans, and/or
the incorporation of melanin to control cell morphology and to
facilitate cell development.
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