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Selection of RNA‑based 
evaluation methods for tumor 
microenvironment by comparing 
with histochemical and flow 
cytometric analyses in gastric 
cancer
Noriyuki Saito1,2, Yasuyoshi Sato3, Hiroyuki Abe4, Ikuo Wada5, Yukari Kobayashi2, 
Koji Nagaoka2, Yoshihiro Kushihara2, Tetsuo Ushiku4, Yasuyuki Seto1 & Kazuhiro Kakimi2*

Understanding the tumor microenvironment (TME) and anti‑tumor immune responses in gastric 
cancer are required for precision immune‑oncology. Taking advantage of next‑generation sequencing 
technology, the feasibility and reliability of transcriptome‑based TME analysis were investigated. TME 
of 30 surgically resected gastric cancer tissues was analyzed by RNA‑Seq, immunohistochemistry 
(IHC) and flow cytometry (FCM). RNA‑Seq of bulk gastric cancer tissues was computationally analyzed 
to evaluate TME. Computationally analyzed immune cell composition was validated by comparison 
with cell densities established by IHC and FCM from the same tumor tissue. Immune cell infiltration 
and cellular function were also validated with IHC and FCM. Cell proliferation and cell death in the 
tumor as assessed by RNA‑Seq and IHC were compared. Computational tools and gene set analysis for 
quantifying  CD8+ T cells, regulatory T cells and B cells, T cell infiltration and functional status, and cell 
proliferation and cell death status yielded an excellent correlation with IHC and FCM data. Using these 
validated transcriptome‑based analyses, the immunological status of gastric cancer could be classified 
into immune‑rich and immune‑poor subtypes. Transcriptome‑based TME analysis is feasible and is 
valuable for further understanding the immunological status of gastric cancer.

The prognosis of locally advanced and metastatic gastric cancer remains poor, resulting in metastatic gastric 
cancers now being the fourth leading cause of cancer death  globally1. Immune checkpoint inhibitors (ICIs) 
targeting the PD-1/PD-L1 pathway were approved for metastatic gastric cancer in 2017; this has improved the 
prognosis, but the benefits are nonetheless  limited2,3. However, clinical indications for ICI are expanding, and 
different treatment strategies such as earlier administration or combinations with other chemotherapies are 
now becoming  feasible4,5. To optimize these approaches, a rational design of combination immunotherapies for 
gastric cancer requires a better understanding of the tumor microenvironment (TME) and anti-tumor immune 
responses, which in turn requires optimal analytical methods for use in the clinic.

The Cancer Genome Atlas Research Network (TCGA) advocates comprehensive molecular characterization of 
gastric cancer based on RNA sequencing from bulk tissue (bulk RNA-Seq)6. Here, we undertook bulk RNA-Seq 
of gastric cancer and evaluated the TME based on the "Cancer-Immunity Cycle" that dynamically represents the 
intratumoral immune  response7. We then proposed an immunogram classification for gastric  cancer8. Although 
good therapeutic responsiveness to ICI has been shown in MSI-type and EBV-type gastric  cancer9, responses to 
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ICI in other types are poor. An immunosuppressive TME with complex heterogeneity might be one important 
reason for this difficulty in treating gastric cancer and remains to be further investigated.

RNA-Seq is an attractive tool for the interrogation of the transcriptome of a tumor and its microenvironment. 
It is possible to perform RNA-Seq analysis from either fresh-frozen or fresh tissue, with even a tiny piece of biopsy 
specimen sufficing. Compared to immunohistochemistry (IHC) and flow cytometry (FCM), many aspects of 
the immune response in the tumor can be investigated simultaneously with a very large number of markers by 
single method RNA-Seq. Although RNA-Seq provides comprehensive transcriptomic data, extracting biological 
insight and deducing the presence of different immune cells from such data requires computational analytical 
methods. However, there is a recognized problem regarding potential discrepancies between the quantification 
of cell populations based on transcriptomic data and the actual amount of the corresponding cell types estimated 
by IHC or  FCM10. Therefore, further efforts to refine and improve the analysis of transcriptomic signatures are 
needed for their clinical application.

In this study, we examined the correlation between transcriptome-based analysis and IHC or FCM assess-
ments, currently considered the gold standard for quantifying cell type composition and functional status. We 
selected the appropriate gene sets and computational analysis frameworks that reflect the TME of gastric can-
cer in terms of tumor-infiltrating lymphocytes, proliferation of tumor cells and immune cells, and tumor cell 
death. Using these validated computational methods, we propose a novel RNA-based evaluation of intratumoral 
immune responses in gastric cancer.

Results
Patients’ characteristics. The characteristics of patients in the BKT cohort are shown in Table 1 and Sup-
plementary Table S1. Five of 30 patients had Stage IV disease and underwent palliative surgery. The HER2-
positive rate was 23.3%, and the percentage of each TCGA molecular classification was as follows: MSI (16.7%), 
EBV (10.0%), GS (13.3%), and CIN (60.0%). Thus, the cohort appears to be representative, with no significant 
deviations from previous  reports6,11.

Evaluation of transcriptome‑based cell type quantification. The different transcriptome-based 
immune cell quantification methods listed in Table 2 were applied to RNA-Seq data of 30 gastric cancer patients 
(Supplementary Table S2). Multiple immune cells were computationally quantified from one RNA-Seq dataset. 
These methods can be divided into two categories, namely, values for the expression of marker genes (marker-
based approach) or the deconvolution approach. The output scores are the absolute value of each cell population 
or the fraction (%) of the total cells. Therefore, certain defined cell type data can be compared between patients 
but cannot be compared to other cell types in the same patient (i.e. inter-sample comparisons of the same cell 
type but not intra-individual comparisons of different cell types). On the other hand, some cell population data 

Table 1.  Characteristics of individual patients.

Baseline clinicopathological characteristics

Age (years), mean ± SD 72.8 ± 9.1 Histology (differentiation), n (%)

Sex, n (%) Differentiated 16 (53.3)

Male 26 (86.7) Undifferentiated 14 (46.7)

Female 4 (13.3) Histology (Lauren classification), n (%)

Locus, n (%) Intestinal 19 (63.3)

GE 2 (6.7) Diffuse 1 (3.3)

U 9 (30.0) Mixed 9 (30.0)

M 8 (26.7) Indeterminant 1 (3.3)

L 11 (36.7) HER2 status, n (%)

Macroscopic type (Borrmann), n (%) Positive 7 (23.3)

1 2 (6.7) Negative 21 (70.0)

2 14 (46.7) Unknown 2 (6.7)

3 11 (36.7) Helicobacter pylori infection, n (%)

4 2 (6.7) Positive 20 (66.7)

5 1 (3.3) Negative 10 (33.3)

pStage, n (%) Molecular classification by TCGA, n (%)

I 4 (13.3) MSI 5 (16.7)

II 7 (23.3) EBV 3 (10.0)

III 14 (46.7) GS 4 (13.3)

IV 5 (16.7) CIN 18 (60.0)

Mesenchymal subtype by ACRG, n (%)

Mesenchymal 6 (20.0)

Non-mesenchymal 24 (80.0)
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can be compared to other cell populations within the analyzed patient but not the same cell population in a 
different patient (i.e. intra-sample comparison between cell types). To validate these transcriptome-based data 
(Supplementary Table S2), they were compared to IHC or FCM data. Formalin-fixed paraffin-embedded (FFPE) 
slides were stained with the indicated antibodies (Supplementary Fig. S1). Images were digitally captured and 
analyzed with Tissue Studio 2.0 to establish immune cell numbers and calculate the immune cell densities (/
mm2) (Supplementary Table S3). Tumor-infiltrating immune cells were also evaluated by FCM (Supplementary 
Table S4).

Figure 1 summarizes the results of bivariate Pearson correlations between the indicated computational 
transcriptome-based quantification methods and IHC/FCM data for the corresponding cells. The estimated 
scores of T cells and B cells by the RNA-Seq-based methods correlated closely with the density of CD3-, CD4-, 
CD8-, and CD20-positive cells by IHC (Fig. 1a) and the fraction of CD3-, CD8-, CD19- positive cells by FCM 
(Fig. 1b). Among them, the estimation of CD8-positive T cells in CIBERSORTx absolute mode exhibited the 
highest coefficient (0.8039). In addition, the single-sample Gene Set Enrichment Analysis (ssGSEA) score using 
the gene set of Bindea et al. and Danaher et al. for FOXP3-positive regulatory T cells (0.6373) and the MCP-
counter for CD20-positive B cells (0.7962) also showed a high correlation coefficient with IHC. On the other 
hand, transcriptome-based quantification of NK cells (NKp46) or macrophages (CD68) displayed less correlation 
with IHC; the highest correlation coefficient with NK cells (NKp46) and macrophages (CD68) was obtained by 
quanTIseq (0.3760) and TIMER (0.4636), respectively. For transcriptome-based estimation, PBMC benchmarks 
may be less  informative12. Therefore, we performed ssGSEA analysis using the gene set for tumor-associated 
macrophages (TAM) by Cassetta et al.13. However, it could not improve the correlation with CD68, CD163 or 
CD204-positive cells (0.4148, 0.4708 or 0.4119, respectively, Supplementary Fig. S2). In Supplementary Fig. S3, 
the transcriptome-based methods were ranked according to the correlation coefficient with the densities of 
immune cells. None of the methods outperformed others in every immune cell type.

Spatial and functional analysis of tumor‑infiltrating T cells. Compared to IHC, spatial analysis by 
RNA-Seq is challenging. First, immune cell densities at the core of the tumor (CT) and invasive margin (IM) 

Table 2.  Transcriptome-based immune cell quantification methods. ssGSEA single-sample gene set 
enrichment analysis.

Tool Approach Method Output score Cell types Comparisons References
On-line 
information

MCP-counter Marker-based Mean of marker gene 
expression

Arbitrary units, 
comparable between 
samples

8 immune cells, fibro-
blast, endothelial cell Inter Becht et al. Genome 

Biology (2016)
http:// 134. 157. 229. 105: 
3838/ webMCP/

xCell Marker-based ssGSEA
Arbitrary units, 
comparable between 
samples

34 immune cells, 9 
other haematopoietic 
and 21 non-haemat-
opoietic lineage cells

Inter Aran et al. Genome 
Biology (2017) https:// xcell. ucsf. edu/

Bindea Marker-based ssGSEA
Arbitrary units, 
comparable between 
samples

24 immune cells, 
angiogenesis & 
antigen presentation 
machinery

Inter Bindea et al. Immu-
nity (2013)

https:// cloud. genep 
attern. org/ gp/ pages/ 
index. jsf

Davoli Marker-based ssGSEA
Arbitrary units, 
comparable between 
samples

10 immune cells Inter Davoli et al. Science 
(2017)

https:// cloud. genep 
attern. org/ gp/ pages/ 
index. jsf

Danaher Marker-based ssGSEA
Arbitrary units, 
comparable between 
samples

14 immune cells Inter
Danaher et al. J 
Immunother Cancer 
(2017)

https:// cloud. genep 
attern. org/ gp/ pages/ 
index. jsf

ConsensusTME Marker-based ssGSEA
Arbitrary units, 
comparable between 
samples

16 immune cells, 
fibroblast, endothe-
lial cell

Inter Jiménez et al. Cancer 
Res (2019)

https:// cloud. genep 
attern. org/ gp/ pages/ 
index. jsf

TIMER Deconvolution Linear least square 
regression

Arbitrary units, 
comparable between 
samples (not different 
cancer types)

6 immune cells Inter Li et al. Genome Biol 
(2016)

http:// timer. cistr ome. 
org/

quanTlseq Deconvolution Constrained least 
square regression

Cell fractions, relative 
to all cells in sample 10 immune cells Inter, Intra Finotello et al. 

Genome Med (2019)
https:// icbi.i- med. ac. 
at/ softw are/ quant iseq/ 
doc/

EPIC Deconvolution Constrained least 
square regression

Cell fractions, relative 
to all cells in sample

6 immune cells, 
fibroblast, endothelial 
cell, uncharacterized 
cell type

Inter, Intra Racle et al. Elife 
(2017)

http:// epic. gfell erlab. 
org

CIBERSORTx (abso-
lute) Deconvolution Support vector regres-

sion

Score of arbitrary 
units that reflects the 
absolute proportion of 
each cell type

22 immune cells Inter, Intra Newman et al. Nat 
Biotechnol (2019)

https:// ciber sortx. stanf 
ord. edu/

CIBERSORTx (rela-
tive) Deconvolution Support vector regres-

sion
Immune cell frac-
tions, relative to total 
immune cell content

22 immune cells Intra Newman et al. Nat 
Biotechnol (2019)

https:// ciber sortx. stanf 
ord. edu/

http://134.157.229.105:3838/webMCP/
http://134.157.229.105:3838/webMCP/
https://xcell.ucsf.edu/
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
http://timer.cistrome.org/
http://timer.cistrome.org/
https://icbi.i-med.ac.at/software/quantiseq/doc/
https://icbi.i-med.ac.at/software/quantiseq/doc/
https://icbi.i-med.ac.at/software/quantiseq/doc/
http://epic.gfellerlab.org
http://epic.gfellerlab.org
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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Figure 1.  Correlation between transcriptome-based quantification methods and IHC or FCM. The vertical 
axis shows arbitrary scores obtained by the indicated computational method for RNA-Seq. (a) The horizontal 
axis shows the densities of immune cells detected by the indicated antibodies (/mm2). (b) The horizontal axis 
shows the percentages of the indicated antibody-positive cells in the sample as assessed by FCM. The Pearson’s 
correlation coefficient (r) between the two is shown in the upper part of each scatter plot. Transcriptome-
based cell quantification methods for inter-sample comparison were validated with IHC (a) and intra-sample 
comparison with FCM (b).
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of the tumor were enumerated in each patient (Supplementary Fig.  S4 and Supplementary Table  S5). Next, 
RNA-Seq data were subjected to Tumor Immune Dysfunction and Exclusion (TIDE) framework approaches 
to compute a T cell exclusion score (Supplementary Table S6)14. Finally, the exclusion scores of 30 gastric can-
cer patients were compared to the ratio of cell densities at the CT versus IM of the  CD3+,  CD4+ or  CD8+ cells 
(Fig. 2a). TIDE exclusion scores negatively correlated with the ratio of CT/IM densities for  CD8+ cells, suggest-
ing that RNA-Seq can be utilized to evaluate the spatial distribution of immune cells, particularly  CD8+ T cells.

Tumor-infiltrating cells (TICs) were isolated from the surgically resected tumors and their capacity to produce 
IFN-γ, TNF-α and IL-2 was examined by FCM (Supplementary Fig. 5a and Table S7). TICs were left unstimulated 
or were stimulated with CytoStim (CS), which stimulates T cells via the T cell receptor (TCR), or were stimulated 
with Phorbol 12-Myristate 13-Acetate/Ionomycin (PMA/IM; PI), which directly increases intracellular calcium 
concentration without TCR signaling and results in cytokine expression (Supplementary Fig. S5b). Were TCR 
signaling to be suppressed by the immune inhibitory molecules, cytokine production following CytoStim stimula-
tion would be decreased relative to PMA/IM stimulation. Therefore, using FCM, the level of T cell dysfunction 
can be evaluated by the differences in the percentage of cytokine-producing cells between PMA/IM stimulation 
versus CytoStim stimulation (PI-CS). As shown in Fig. 2b, TIDE dysfunction scores of the 30 patients correlated 
well with differences in the percentages of cytokine-producing cells of PI-CS (Fig. 2b).

Proliferation of tumor cells and immune cells. Ki-67 staining is a well-established method for detect-
ing proliferating cells. In the case of IHC, Ki-67+ tumor cells and immune cells can be discriminated morpholog-
ically (Fig. 3a, Supplementary Table S8). However, RNA-based evaluation methods for cell proliferation cannot 
predict the type of proliferating cells. As shown in Fig. 3b, the densities of Ki-67+ tumor cells, Ki-67+ immune 
cells and all Ki-67+ cells (both tumor and immune cells) were closely correlated with one another (Fig. 3b). These 
results suggest that extensively proliferating tumor cells are associated with proliferating immune cells. There-
fore, we screened the appropriate gene sets to reflect the proliferation of the tumor cells and the immune cells all 
together (Supplementary Table S9). The ssGSEA scores of DNA REPLICATION from the REACTOME subset of 
canonical pathways in MSigDB (http:// www. gsea- msigdb. org/ gsea/ msigdb/ colle ctions. jsp) displayed the highest 
correlation with the Ki-67-positive cell density by IHC (Fig. 3c).

Cytotoxic activity in the tumor. As shown in Fig. 3d, damaged tumor cells were detected and enumer-
ated on histology slides (Supplementary Table S10). The correlation between the total cell death count by histol-
ogy and ssGSEA scores was examined to identify the appropriate gene sets for evaluating cell death in the tumor 
(Supplementary Table  S11). GOBP_NECROPTOTIC_SIGNALING_PATHWAY from MSigDB exhibited the 
highest correlation coefficient of 0.7231 (Fig. 3e).

TME analysis with the reliable gene sets. To obtain cell fractions that can be compared within samples 
(intra-sample comparison), quanTIseq and CIBERSORTx are recommended. For inter-sample comparison of 
any cells of interest, we selected 7 reliable transcriptome-based parameters supported by histology and FCM to 
evaluate the gastric cancer TME (Table 3 and Supplementary Fig. S3). In terms of the numbers and percentages 
of immune cells, the CIBERSORTx absolute mode for  CD8+ T cells, Bindea’s and Danaher’s gene set analysis for 
regulatory T cells, and the MCP-counter for B cells were selected. IHC and FCM confirmed the appropriateness 
of using the TIDE framework for evaluating the exclusion and dysfunction of immune cells in gastric cancer. The 
ssGSEA scores of REACTOME_DNA_REPLICATION and GOBP_NECROPTOTIC_SIGNALING_PATH-
WAY can be utilized for evaluating proliferation and cell death in the tumor.

With these 7 selected transcriptome-based methods, the inter-sample comparison of TME in 30 gastric cancer 
patients was performed. The 30 gastric cancer patients were first clustered into two groups; the Immune-Rich 
(IR) and the Immune-Poor (IP) groups (Fig. 4a). Scores for  CD8+ T cells, Tregs and B cells were high in the IR 
group, whereas the exclusion scores were consistently low. T cells became dysfunctional and both proliferation 
and cell death were evident in the IR patients. The IP group was further divided into IP dysfunctional (IPd) and 
proliferative (IPp). Scores for Tregs, exclusion, and dysfunction were high in IPd, while scores for proliferation 
were high and dysfunction were low in IPp. Patients with MSI and EBV subtypes (TCGA molecular classifica-
tion) or “Hot” tumors (by Sato’s immunogram  classification8) were enriched in the IR group, while GS and CIN 
types were enriched in the IP group. In addition, PD-L1 expression by tumor or immune cells was present in IR 
patients. In survival analysis, IPd patients had the worst overall survival (OS) (Fig. 4c, P = 0.007, log-rank test).

Three hundred seventy-five gastric cancer patients from the TCGA cohort were similarly clustered into 
IR, IPd and IPp groups (Fig. 4b and Supplementary Table S12). Although the differences were not statistically 
significant, the worst OS in the IPd group was also detected (Fig. 4d, P = 0.06, log-rank test). We compared the 
survival analysis of the TCGA cohort between Sato’s immunogram  classification8 and the transcriptome-based 
TME classification of this study. Eighty Hot1 cases were re-classified as 61 IR (Hot1-IR), 10 IPd (Hot1-IPd) and 
9 IPp (Hot1-IPp) subtypes (Supplementary Fig. S6a). OS of Hot1-IR was better than that of Hot1, and OS of 
Hot1-IPd and Hot1-IPp was worse than that of Hot1 (Supplementary Fig. S6b). Similarly, 187 Cold cases were 
classified as 34 IR (Cold-IR), 38 IPd (Cold-IPd) and 115 IPp (Cold-IPp). OS of Cold-IR was better than that of 
Cold, while OS of Cold-IPd and Cold-IPp was comparable to that of Cold patients (Supplementary Fig. S6e).

Discussion
RNA-Seq data of bulk tumor tissues treats heterogeneous cell populations as a whole; data are averages of differ-
ent cells with various gene expression levels. Therefore, computational methods to evaluate cellular composition 
are essential. There are now many tools available for this  purpose16. In an earlier study, we selected gene sets 
to quantify immunological parameters in the TME by comparing them with similar gene sets available in the 

http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
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 literature17. However, there were some discrepancies between the quantification results of cell populations by 
transcriptomic analyses and the density of the corresponding cell type in a tissue. Therefore, in this study, we 
applied several computational transcriptome analysis methods for evaluating the immune cell composition and 
immune-related TME of gastric cancer and compared the results to IHC and FCM data, which are regarded as 
gold standards for TME analysis. Transcriptome-based quantification of  CD8+ T cells, regulatory T cells and 
B cells in the tumor was quite reliable (Fig. 1). Furthermore, we demonstrated that even spatial and functional 
analysis is feasible by RNA-Seq (Fig. 2); the “Exclusion score” was validated by the absence of  CD8+ T cells in the 
core of the tumor as shown by IHC. The “Dysfunction score” was validated by the detection of fewer IFN-γ pro-
ducing capacity of  CD8+ T cells in the tumor using FCM. We also identified appropriate gene sets that reflected 
cell proliferation or cell death in the tumor (Fig. 3).

The output scores of the different methods allow either inter-sample comparisons of the same cell type, 
intra-sample comparisons between different cell types, or both (Table 2). In fact, IHC using a single antibody 
allows inter-sample comparisons, while FCM is good for intra-sample comparisons, depending on the panel of 
antibodies used. Therefore, transcriptome-based cell type quantification methods for inter-sample comparison 
were validated with IHC, and methods for intra-sample comparison were compared to FCM (Fig. 1). Quan-
TIseq, EPIC, and the absolute mode of CIBERSORTx generate an absolute score that can be interpreted as a 
cell fraction. Therefore, they can be utilized for both inter- and intra-sample comparisons and are quite useful 
in this context. Cell-type-specific estimation in the TME using bulk tumor data is challenging. Predicting tran-
scriptionally distinct cell types would likely show good correlations. For example, Bindea et al. and Danaher 
et al. took FOXP3 as a single marker gene for Treg and successfully hit the best correlation coefficient of 0.6373 
(Fig. 1). However, gene expression levels change according to their activation and differentiation status in many 
other cell types. Therefore, the gene set approach was used to address these complex problems as the wisdom of 
the  crowd18. Although different gene sets were proposed by different methods, strategies to assemble gene sets 
for immune cells, in general, depend on the expression profiles of purified cell types to identify reference genes 
and therefore rely heavily on the data source from which the references are inferred and could this be inclined 

Figure 2.  Correlations between TIDE scores and IHC or FCM. T cell dysfunction and exclusion scores were 
calculated on the TIDE website (http:// tide. dfci. harva rd. edu/). (a) The vertical axis shows the exclusion score. 
The horizontal axis shows the ratio of cell densities at CT versus IM of the following antibody-positive cells 
in IHC; CD3, CD4 and CD8. (b) The vertical axis shows the dysfunction score. The horizontal axis shows the 
percentage of cytokine (IFN-γ, TNF-α, IL-2)-producing  CD4+ or  CD8+ T cells without stimulation (Unstim), 
with CytoStim stimulation (CS), or PMA/IM (PI) stimulation, as detected by FCM. In addition, the difference 
between cytokine-positive cells with PI- and CS-stimulated cells was calculated in each patient and compared 
(PI-CS). The Pearson’s correlation coefficient (r) between dysfunction scores and the percentages of cytokine-
producing cells is shown in the upper part of each scatter plot.

http://tide.dfci.harvard.edu/
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to overfitting these data. Therefore, it is difficult to cover the estimation of all cell types with a single prediction 
tool (Supplementary Fig. S3).

The difficulties in quantifying NK cells and macrophages are not limited to transcriptome-based methods. 
Because NK cells and macrophages express different arrays of cell surface receptors, the expression of which 
overlap in different cell populations, identification and quantification of these cells is not possible by a single 
marker  assay19,20. For example, macrophage marker CD68 is also expressed by γδ T cells, NK cells, a subset of B 
cells, fibroblasts, and endothelial cells. CD163 is also expressed by dendritic cells. CD204 is expressed by only a 
subset of M2 macrophages. NKp46 is expressed by  CD56bright NK cells, but not  CD56dim NK  cells19. Ki67 staining 
is used as a standard for evaluating proliferating cells. However, Ki67 protein levels were not a simple on-and-off 
switch of cell proliferation. Because Ki67 protein is continuously produced from the start of S phase and Ki67 is 
continuously degraded during G0 and G1 phase, quiescent cells re-entering the cell cycle will have varying levels 
of  Ki6721. The discrepancy between transcriptome-based methods and IHC for NK cells, macrophages and cell 
proliferation might be due to the uncertainty of IHC results rather than the ambiguity of transcriptome-based 
methods. Multiplex IHC will overcome this problem and can be used as the gold standard for such assays.

IHC and FCM have been used as gold standards to estimate the immune cell content within a  sample10. 
However, there are several limitations to these methods. Only a limited number of cell-type-specific markers 
can be utilized. FCM requires a large amount of sample that should be mechanically or enzymatically dissociated 
to isolate single-cell suspensions. Different single-cell dissociation efficiencies might bias the apparent propor-
tions of immune cells in the tumor. In contrast, gene expression profiling by RNA-Seq provides comprehensive 
transcriptomics datasets derived from small tumor samples, and a large number of markers can be analyzed 
simultaneously. In addition to inflammatory molecules, many biological processes that shape the TME, such as 
angiogenesis, metabolism, and response to hypoxia, can be assessed and incorporated into the marker panel. 
Although we incorporated only 7 parameters that were validated by IHC or FCM into the TME analysis in this 
study, transcriptome-based TME analysis can easily be integrated with other molecular analyses and extended 
in the future.

Using 7 parameters extracted from RNA-Seq of bulk tissues, gastric cancers were immunologically classified 
into 3 clusters (Fig. 4). As reported previously, patients whose tumors had an immunologically “hot” TME had 
a better post-surgical  prognosis8. Similar results were obtained in the current study (Fig. 4), although different 
gene sets and algorithms were applied. In Fig. 4a, two MSI cases, BKT008 and 038, were classified as belonging to 
the IP group, while the other 3 MSI cases were clustered in the IR group. The prognosis of these two IP patients 
was poor; BKT008 died of the primary disease 741 days after surgery and BKT038 after 347 days (Supplementary 
Tables S1 and S13). A poor immune response in the tumor might be responsible for the shorter OS of these two 
patients, despite their MSI subtype. In addition, BKT053, which was classified as CIN by TCGA classification 
and Hot1 by immunogram classification, was re-classified as IPp in this study. BKT053 relapsed on day 223 and 
died on 482 days. As shown in Supplementary Fig. S6a, transcriptome-based TME classification can discriminate 
IP patients from Hot1 patients in the TCGA cohort. Immunogram classification was based on the concept of 
the cancer-immunity  cycle7, and TME classification was more associated with intratumoral immune response. 
Both methods are not mutually exclusive. Combining these two classifications can fine-tune the immunological 
subtypes of gastric cancer.

In conclusion, computational methods for transcriptomic analysis were validated by comparison with IHC 
and FCM to evaluate the TME of gastric cancer. It is feasible to evaluate the TME using RNA-Seq data obtained 
from small bulk tissues. For intra-sample comparison, either quanTIseq or CIBERSORTx is an appropriate tool 
to evaluate the immune cell fractions in TME. For inter-sample comparison, selecting the best score method for 
each parameter is better than any single method. Using 7 parameters selected, the TME of gastric cancer could 
be appropriately immunologically classified.

Methods
Patients and data sets. We enrolled 30 patients who underwent gastrectomy at Tokyo Metropolitan 
Bokutoh Hospital between June 2014 and October 2017 (Table 1). Clinical profiles with histology by the Lauren 
classification, overexpression of human epidermal growth factor receptor 2 (HER2) protein and the presence or 
absence of Helicobacter pylori infection were reported in our previous  work8. In the previous study, RNA-Seq of 
bulk tumor tissue was  performed8. RNA-Seq data of BKT patients are available at DDBJ Sequence Read Archive 
(Accession no. DRA009379)8. Clinicopathological features and RNA-Seq data for 375 additional gastric cancer 
patients were downloaded from the TCGA portal site (https:// portal. gdc. cancer. gov/).

Computational methods to analyze RNA‑Seq data. RNA-Seq data were analyzed using the follow-
ing algorithms or web tools: MCP-counter ("MCPcounter" R package)22, xCell (https:// xcell. ucsf. edu/)23, TIMER 
(http:// timer. cistr ome. org/)24, quanTlseq (https:// icbi.i- med. ac. at/ softw are/ quant iseq/ doc/)25, EPIC (http:// epic. 
gfell erlab. org)26, and CIBERSORTx (https:// ciber sortx. stanf ord. edu/)27. ssGSEA was performed using the gene 
sets of  Bindea28,  Davoli29,  Danaher30,  Cassetta13 and Consensus  TME31 to enumerate immune cell composition. 
The enrichment scores were obtained using the ssGSEA method with R package ssGSEA 2.0 (https:// github. 
com/ broad insti tute/ ssGSE A2.0) and R software version 3.6.0. The list of genes used by each method is provided 
in Supplementary Table  S14. Because of the variation in the degree of specificity to which cell subsets were 
defined, summations of subsets were required to allow accurate comparisons in each cell type (Supplementary 
Tables S15 and S16). T cell dysfunction and exclusion scores were calculated on the TIDE website (http:// tide. 
dfci. harva rd. edu/)14. TCGA molecular classification of gastric cancer was performed as previously  reported6,8. 
Gastric cancers were classified as EBV, MSI, genomic stability (GS), or chromosomal instability (CIN). Gastric 
cancers were also grouped as Mesenchymal or Non‐Mesenchymal subtypes by their 71‐gene mesenchymal sig-

https://portal.gdc.cancer.gov/
https://xcell.ucsf.edu/
http://timer.cistrome.org/
https://icbi.i-med.ac.at/software/quantiseq/doc/
http://epic.gfellerlab.org
http://epic.gfellerlab.org
https://cibersortx.stanford.edu/
https://github.com/broadinstitute/ssGSEA2.0
https://github.com/broadinstitute/ssGSEA2.0
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/


8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8576  | https://doi.org/10.1038/s41598-022-12610-w

www.nature.com/scientificreports/

Figure 3.  Cell proliferation and cell death in the tumor. (a) The slides were stained with anti-Ki-67 and the number of Ki-67+ cells 
was counted in the whole tumor area. The Ki-67+ cell densities were calculated as the number of Ki-67+ cells divided by tumor tissue 
area  (mm2). Cells with a nucleus size ≥ 30 μm2 were considered to be cancer cells, and those with < 30 μm2 were regarded as immune 
cells. Slides with the most (BKT053) and the least (BKT005) Ki-67+ cells are shown. (b) Correlations between scores for the indicated 
Ki-67+ cell densities were examined. The Pearson’s correlation coefficients (r) between the two are indicated at the top of the panels. 
(c) The vertical axis shows the indicated ssGSEA scores. The horizontal axis shows the Ki-67+ cell densities. (d) In H&E slides, tumor 
cells with elevated cytoplasmic acidity, nuclear fragmentation, or enrichment were defined as damaged cells (arrow). The tumor tissue 
was equally divided into 4 parts, and 3 areas of 25  mm2 each were randomly selected in each fraction. The number of damaged cells 
was counted in each area and the total number of damaged cells was obtained as the sum of the numbers from 12 areas. The tissues 
with the most (BKT004) and the least (BKT001) damaged cells are indicated. (e) The vertical axis shows the indicated ssGSEA scores. 
The horizontal axis shows the number of damaged cells. Correlations between the ssGSEA score for cell death and the total number of 
damaged cells in H&E slides were examined. The Pearson’s correlation efficient (r) is shown in the upper part of each scatter plot.
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nature according to the ACRG  project32. Immunological subtypes based on immunogram scores were deter-
mined in our previous  work8.

Histological analysis. FFPE blocks were obtained from the Pathology Department of Tokyo Metropolitan 
Bokutoh Hospital. Immunohistochemistry was performed using the Ventana BenchMark automated immu-
nostainer (Ventana Medical Systems, Tucson, AZ, USA) with labeled streptavidin–biotin and visualized with 
3,3′-diaminobenzidine. The primary antibodies used were anti-CD3 (clone LN10, Leica), -CD4 (clone SP35, 
Ventana), -CD8 (clone 4B11, Leica), -CD45RO (clone UCHL-1, Ventana), -FOXP3 (clone 236A/E7, Abcam), 
-CD20 (clone L26, Leica), -NKp46 (clone #195314, R&D), -CD68 (clone Kp-1, Dako), -CD163 (clone 10D6, 
Leica), -CD204 (clone SRA-E5, Transgenic), -Ki-67 (clone MIB-1, Dako), -PD-L1 (clone E1L3N, Cell Signal-
ing), -MLH1 (clone ES05, Leica), -MSH2 (clone FE11, Dako), -MSH6 (clone Polyclonal (Rabbit), GeneTex) and 
-PMS2 (clone M0R4G, Leica). EBV-encoded small RNA in situ hybridization (EBER-ISH) was performed on 
paraffin sections using a fluorescein isothiocyanate (FITC)-labeled peptide nucleic acid probe (Y5200; Dako, 
Glostrup, Denmark) and anti-FITC antibody (V0403, Dako). Slides were digitized with a Nanozoomer 2.0-
HT virtual slide scanner (Hamamatsu Photonics, Hamamatsu, Japan) and observed in the NDP.view2 software 
(Hamamatsu Photonics). The density of immune cells was analyzed by Tissue Studio 2.0 software (Definiens, 
Munich, Germany).

Flow cytometry. Tumors were cut into small pieces and enzymatically dissociated using a tumor dissocia-
tion kit (Miltenyi Biotec Inc., Auburn, CA, USA) to prepare fresh tumor digest (FTD) according to the manufac-
turer’s instructions. After passing through a 70‐μm cell strainer (Thermo Fisher Scientific, Hampton, NH, USA), 
FTDs were cryopreserved in Bambanker™ freezing medium (NIPPON Genetics, Tokyo, Japan) until analysis. 
Cryopreserved FTDs were thawed in RPMI, and then stained using a Zombie Aqua™ Fixable Viability Kit (Bio-
Legend, San Diego, CA, USA) with anti‐CD45 (clone 2D1, BioLegend) and -CD3 (clone HIT3a, BioLegend), 
-CD4 (clone SK3, Thermo Fisher Scientific), -CD8 (clone, HIT8a, BioLegend), -CD14 (clone: M5E2, BioLeg-
end), -CD19 (clone J3-119, Beckman Coulter), -CD56-PE (clone N901, Beckman Coulter), -IFN‐γ (clone 45.15, 
Beckman Coulter, Brea, CA, USA), -TNF‐α (clone MAb11, BioLegend), -IL‐2 (clone MQ1-17H12, BioLegend). 
For the detection of cytokine production, cells were stimulated with 10 ng/ml Phorbol 12‐Myristate 13‐Acetate 
(PMA; Sigma‐Aldrich, St. Louis, MO, USA) together with 1 μg/ml Ionomycin (IM; Sigma‐Aldrich) or CytoStim 
(CS; Miltenyi Biotec) in the presence of 10 µg/ml brefeldin A (Sigma‐Aldrich) at 37ºC for 4 h. Intracellular 
cytokine staining was then carried out according to the manufacturer’s instructions (using IntraPrep Permeabi-
lization Reagent; Beckman Coulter). Stained cells were analyzed on a Gallios flow cytometer (Beckman Coulter) 
and data were processed using Kaluza (Beckman Coulter) and FlowJo (version 7.6.5; TreeStar, Ashland, OR, 
USA) software.

Statistical analyses. For analyzing the correlation between each factor, Pearson’s correlation coefficient 
method was used. For categorical variables, the chi-square test was used. A heat map was created using Ward’s 
hierarchical cluster analysis. The Kaplan–Meier method was used for survival analysis, and comparisons between 
groups were performed by log-rank testing. JMP Pro 15 (SAS Institute Japan, Tokyo, Japan) was used for statisti-
cal analysis. A value of P < 0.05 was considered statistically significant.

Ethical declarations. This study was approved by the Research Ethics Committees of the University of 
Tokyo (No. G3545) and Tokyo Metropolitan Bokutoh Hospital (No. 25‐38‐02). All procedures followed were 
in accordance with the ethical standards of the responsible committee on human experimentation (institu-

Table 3.  Validated transcriptome-based analysis.

Category Selected bulk RNA-Seq analysis

(1) Immune cell estimation

1_CIBERSORTx (absolute)_T cells CD8

2_Bindea_Treg

3_MCP-counter_B lineage

(2) Infiltration and function
4_TIDE_Exclusion

5_TIDE_Dysfunction

(3) Proliferation 6_ssGSEA_REACTOME_DNA_REPLICATION

(4) Tumor cell death 7_ssGSEA_GOBP_NECROPTOTIC_SIGNALING_PATHWAY 
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Figure 4.  Transcriptome-based TME analysis with selected reliable gene sets in gastric cancer. (a) Hierarchical 
cluster analysis was performed in our 30 gastric cancer patients (BKT Cohort). The patients’ characteristics are 
shown in Table 1 and Supplementary Table S1. Degree of tumor differentiation, Lauren classification, HER2 
status, Helicobacter pylori infection, TCGA subtype, the Asian Cancer Research Group (ACRG) Mesenchymal 
 subtype15, Sato’s immunogram classification (IGS)8 and PD-L1 IHC are displayed at the bottom. (b) Gastric 
cancer patients from the TCGA cohort (n = 375) were subjected to hierarchical clustering with 7 transcriptome-
based TME analyses. The patients’ characteristics are shown in Tables S12-1 and S12-2. The molecular 
classification of TCGA is indicated at the bottom. Survival analysis for Immune-Rich (IR, red), Immune-Poor 
dysfunctional (IPd, green) and Immune-Poor proliferative (IPp, blue) groups. The Kaplan–Meier method and 
log-rank test were performed in BKT cohort (c) and TCGA cohort (d).
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tional and national) and with the Helsinki Declaration of 1964 and later versions. Informed written consent was 
obtained from all patients included in the study.

Data availability
Data are deposited on DDBJ Sequence Read Archive (Accession no. DRA009379).
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