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Abbreviations
ATC​	� Autologous tumor cells
ATV	� Autologous tumor cell vaccine
CB	� Clinical benefit
cDC	� Conventional dendritic cells
CpG-B	� Class-B CpG oligodeoxynucleotide
CpG ODN	� Cytosine-phosphate-guanine 

oligodeoxynucleotides
CR	� Complete response
CT	� Computed tomography
DTH	� Delayed type hypersensitivity
E (1,2,3)	� Evaluation (1,2,3)
ICI	� Immune checkpoint inhibitors
KLH	� Keyhole limpet hemocyanine
med. fl.	� Median fluorescence
MFI	� Median fluorescence index
mMDSC	� Monocytoid myeloid-derived suppressor 

cells
mRCC​	� Metastatic renal cell carcinoma

NCB	� No clinical benefit
PBDC	� Peripheral blood dendritic cells
PD	� Progressive disease
pDC	� Plasmacytoid dendritic cells
PR	� Partial response
SD	� Stable disease
Tcm	� Central-memory T cells
Teff	� Effector T cells
Tem	� Effector-memory T cells
Tn	� Naïve T cells
UMC	� University medical center
VU	� Vrije Universiteit

Introduction

Up until the last decade, the treatment options for meta-
static renal cell carcinoma (mRCC) patients were limited. 
mRCC is resistant to systemic cytotoxic chemotherapy [1] 
and cytokine-based therapies like IFN-α and IL-2 resulted in 
modest response rates and little survival benefit [2]. Over the 
past decade, the treatment of mRCC has changed consider-
ably with the introduction of targeted therapies and, more 
recently, immune checkpoint inhibitors (ICI) [3]. Although 
the introduction of targeted therapies has markedly improved 
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patient outcome, they rarely induce complete responses, and 
most patients eventually develop resistance to these thera-
pies. Clinical trials with ICI nivolumab (anti PD-1) and ipili-
mumab (anti CTLA-4) in mRCC reconfirmed the relative 
tractability of this tumor type to immunotherapy. However, 
the objective response rate of mRCC patients who received 
combination treatment of nivolumab and ipilimumab is still 
only 42% and comes at the cost of substantial (although 
often manageable) toxicity [4]. Therefore, further explora-
tion of immunotherapeutic combination approaches is war-
ranted for the treatment of mRCC.

Recent insights have linked responses to immune check-
point blockade to mutation burden and the frequency of neo-
antigens [5]. Vaccines aimed at priming or boosting T cell 
responses to neoantigens may thus increase response rates 
to ICI [6]. Unfortunately, the highly individualized nature 
of these neoantigens makes them hard to leverage through 
therapeutic vaccination. Autologous tumor cell vaccination 
(ATV) is a strategy to induce a specific immune response 
against tumor cells and their particular antigens, including 
neoantigens, without the need for prior identification of 
actionable T cell epitopes. Whole tumor cell vaccines have 
shown clinical and immunological activity in mRCC patients 
[7–9], as well as in patients with other tumor types [10–12]. 
To increase the immune response against autologous tumor 
cells (ATC), the whole cell vaccine can be combined with 
adjuvants. We have demonstrated in the past that ATV and 
BCG prolonged disease free survival in stage-II colorec-
tal cancer and improved survival in stage-III/IV melanoma 
patients, which correlated significantly with a positive post-
vaccination DTH response [13, 14]. Unfortunately, BCG 
is relatively toxic as it can cause ulcerations [13–15]. The 
discovery that unmethylated cytosine-phosphate-guanine 
oligodeoxynucleotides (CpG ODN) are the active elements 
in bacterial DNA and can directly activate and induce matu-
ration of B cells and plasmacytoid dendritic cells (pDC) has 
led to the development of CpG ODN as treatment modality 
and vaccine adjuvant for infectious diseases and cancer [16, 
17]. Indeed, B-class CpG ODN (CpG-B) has been demon-
strated to enhance vaccine responses to hepatitis B, malaria 
and cancer [18–23].

We conducted a phase II clinical trial with the primary 
objective of investigating whether the treatment with ATV, 
CpG-B and IFN-α was feasible and tolerable and resulted in 
higher clinical response rates than IFN-α alone (by historical 
controls). Secondary objectives were to assess progression-
free survival and overall survival of treated patients com-
pared to historical data. Here, we report on the biological 
and clinical efficacy of this experimental treatment.

Materials and methods

Patients

Patients with bi-dimensional measurable metastases of his-
tologically proven RCC, and in whom progression before or 
after nephrectomy had been demonstrated, were eligible for 
this trial. Furthermore, a WHO performance status of 0 or 1 
was required and patients were only eligible when sufficient 
numbers of tumor cells were available for the production of 
a minimum of three vaccines. Patients with a history of auto-
immune- or antibody-associated disease, prior malignancy, 
patients who were using immune suppressive drugs, or who 
had undergone prior immunotherapy for metastatic disease 
(e.g., IL-2 or IFN-α treatment) were excluded.

During the first month of therapy, the patients were seen 
bi-weekly. Thereafter, follow-up visits started at E3 (see 
Fig. 1) and were scheduled every 12 weeks or at treatment 
discontinuation due to disease progression. At each follow-
up visit, the patients were subjected to a physical examina-
tion including WHO performance status, blood panels and a 
tumor measurement to define response which was assessed 
on the basis of a set of “target lesions” chosen before the first 
vaccination. Response (at E3) was defined with computed 
tomography (CT) scans according to the WHO criteria for 
response.

The primary endpoint of the study was tumor response 
compared to historical data. Secondary endpoints included 
toxicity, progression-free survival, overall survival, the rela-
tion between DTH responses against tumor cells and clinical 

Fig. 1   ATV treatment scheme. 
E1, E2, E3 Evaluation 1, 2 
and 3 (i.e., time of heparinized 
blood collection), DTH delayed 
type hypersensitivity, Vac 1, 
Vac 2, Vac 3 vaccination 1, 2 
and 3, IFN-α interferon alpha, 
s.c. subcutaneous, CpG-B 
cytosine-phosphate-guanine 
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responses, and the value of pre-vaccination tumor-specific T 
cell reactivity as a predictor of successful immunotherapy.

Of note, IFN-α was the only treatment option for poten-
tially eligible patients at the start of this trial. However, 
the enrolment of this study was halted in 2006 when suni-
tinib became available. Therefore, enrolment stopped at 15 
patients instead of 41 as originally planned.

Vaccine preparation

Patients underwent a total nephrectomy or, if the kidney was 
already removed before inclusion, a metastasectomy. The 
tissue that was not used for pathologic diagnosis and staging 
was transferred to our vaccine production laboratory within 
48 h of the surgery. The tumor tissue was then dissociated 
as previously described [13, 24]. Briefly, tumor tissue was 
cut into small pieces and subsequently incubated in a 0.1% 
DNase I, 0.14% collagenase (Boehringer) solution. After 
45 min incubation at 37 °C, single cells were harvested and 
remaining tumor fragments again suspended in a DNase/
collagenase solution; this cycle was repeated 3–4 times, after 
which single cells were harvested through a 100 µm gauze, a 
sample for bacteriology control was taken and viability was 
tested using trypan blue exclusion. Cells were aliquoted (at 
15–20 × 106 viable cells per vial) and cryopreserved using a 
linear freezer. Vials were stored in liquid nitrogen until vac-
cination. Prior to vaccination, the frozen tumor cells were 
irradiated (20,000 rad), thawed, counted and assessed for 
viability. For each patient, we aimed to produce as many 
vaccines as possible.

Vaccination procedure

Vaccination started 4–6 weeks after nephrectomy or metas-
tasectomy. For every vaccine 0.7–1.3 ×107 viable autolo-
gous tumor, cells were used and 100 µg GM-CSF (Leukine; 
Berlex Laboratories Inc.), 1 mg CpG-B (CPG 7909, Coley 
Pharmaceutical Group, inc. Wellesley, MA 02481 USA) and 
50 µg Keyhole Limpet Hemocyanine (KLH) (Calbiochem) 
were added. Vaccines were administered intradermally. 
For individual evaluation of the injection sites, different 
locations were used for each administration as previously 
described for ATV in patients with colon carcinoma [13]. 
The local injection site reactions were monitored and docu-
mented at each visit. All patients received 3 weekly intrader-
mal injections of the vaccine, followed by booster vaccina-
tions every 3 months for as long as the vaccines lasted and 
the disease did not progress. After the first three vaccina-
tions, patients were treated bi-weekly with 8 mg of CpG-B 
s.c. and 6 MU IFN-α s.c. three times per week for at least 
3 months to enhance both innate immunity and the effector 
phase of the specific immunity. To prevent additive toxicity 
and to enable a separate observation of toxicity of CpG-B 

and IFN-α, these two compounds were never administered 
on the same day. IFN-α was administered for a maximum of 
1 year and CpG-B for a maximum of 2 years or until disease 
progression, grade III/IV toxicity, or death.

Sampling of peripheral blood

For immune monitoring, heparinized blood samples were 
taken from the patients before start of therapy [evaluation 
1 (E1)], at the day of the third vaccination [evaluation 2 
(E2)] and 5–12 weeks after the third vaccination [evaluation 
3 (E3)] (see Fig. 1 for treatment and evaluation scheme). 
PBMC were isolated by density centrifugation (Nycomed 
AS, Oslo, Norway) and subsequently cryopreserved for later 
analysis as previously described [25].

Antibodies and four‑color flow cytometry

Peripheral blood lymphocyte, monocyte, peripheral blood 
dendritic cell (PBDC) and monocytoid myeloid-derived 
suppressor cell (mMDSC) frequencies and activation sta-
tus were assessed before and during treatment by four-color 
flow cytometry staining. Cell surface antibody staining of 
PBMC was performed in PBS/0.1% BSA/0.02% Sodium-
Azide for 30 min at 4 °C. The following antibodies were 
used: FITC, PE, PerCP-Cy5.5 or APC-labeled Abs directed 
against human CD3, CD4, CD8, CD11c, CD14, CD15, 
CD16, CD19, CD25, CD27, CD33, CD45, CD45RO, 
CD45RA, CD56, CTLA4, CD123, HLA-DR, PD-1 (all BD 
Biosciences), CD11b, FoxP3 (eBioscience, San Diego, CA), 
CD40 (Beckman Coulter, Marseille, France), Fab-M-FITC 
(Southern Biotec, Birmingham, AL), and blood DC anti-
gens BDCA1, BDCA2, BDCA3 (all from Milteny Biotec, 
Bergisch Gladbach, Germany) and MDC8 (a kind gift from 
Dr. E.P. Rieber, Dresden, Germany) and matching isotype 
control antibodies. Intracellular FoxP3 and CTLA-4 stain-
ing was conducted with the anti-human FoxP3 staining kit 
(eBioscience, San Diego, CA) according to the manufactur-
ers’ protocol. Stained cells were analyzed on a FACScalibur 
(BD Biosciences) using Cell Quest software.

T cell subset and differentiation state definitions

Naive CD4+ or CD8+ T cells (Tn) were defined as 
CD27+CD45RO− cells, effector T cells (Teff) as 
CD27−CD45RO+, central-memory CD4+ T cells (Tcm) 
as CD27+CD45RO+ cells and effector-memory cells 
(Tem) as CD27−CD45RO+ [26]. Tregs were defined as 
CD3+CD4+CD25hi, and FoxP3+. As FoxP3 has also been 
described to be transiently up-regulated on dividing (acti-
vated) effector T cells [27–29], we also analyzed FoxP3 
expression within these activated (effector-like) T cells, 
which we defined as CD4+CD25intermediate (CD4+CD25int) 
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cells. For Treg gating procedures, we refer to Huijts et al. 
2017 [30].

Myeloid subset definitions

PBDC frequencies were determined on the basis of expres-
sion of BDCA or MDC-8 markers: cDC1 was detected as 
CD11c+CD14− BDCA3+ [31]. DC belonging to the so-
called conventional DC2 (cDC2) subset was identified as: 
CD11chiCD19−CD14−BDCA1/CD1c+; non-classical mono-
cytes [32] were detected as CD11c+CD14loMDC8+ (also pre-
viously known as 6-sulfo LacNAc+ or SLAN-DC [33, 34]) 
and pDC were detected as CD11c−CD14−CD123hiBDCA2+ 
[35]. Classical monocytes were defined as CD14hi and 
mMDSC were defined as Lin−CD14+HLA-DRneg/lo cells 
[36]. Activation status of the above-mentioned cDC and 
pDC subsets was determined by calculating the median fluo-
rescence index (MFI) of CD40 expression by dividing the 
median fluorescence (med. fl.) of the CD40 antibody by the 
med. fl. of the isotype-control antibody. For detailed gating 
procedures, we refer to Santegoets et al. [37], including its 
supplementary materials.

Tumor‑specific T cell reactivity and IFN‑γ ELISA

Tumor reactivity of T cells in peripheral blood before, during 
and after ATV was assessed by IFN-γ secretion. To this end, 
ATC suspensions were used as stimulator cells in an over-
night stimulation assay. Tumor cell suspensions were thawed 
and resuspended in IMDM medium (Lonza, Verviers, Bel-
gium) supplemented with 10% FCS (Hyclone, Amsterdam, 
The Netherlands), 100 I.E./ml sodium penicillin (Yaman-
ouchi Pharma, Leiderdorp, The Netherlands), 100 µg/ml 
streptomycin sulphate (Radiumfarma-Fisiopharma, Naples, 
Italy), 2.0 mM l-glutamine (Invitrogen, Breda, The Nether-
lands) and 0.01 mM 2-mercapoethanol (Merck, Darmstadt, 
Germany; hereafter referred to as complete medium). Next, 
50,000 ATC and 100,000 PBMC were cultured either alone 
or together for 20 h in complete medium in a 96-well round-
bottom plate, after which supernatants were harvested and 
frozen. IFN-γ levels were determined by ELISA (sensitivity 
1 pg/ml) according to manufacturer’s instructions (M1933, 
Sanquin, Amsterdam, The Netherlands). IFN-γ levels are 
given as the mean IFN-γ concentration in pg/ml per 1 × 10e6 
PBMC/ml ± SD of triplicate wells. Responses were consid-
ered positive when the amount of IFN-γ produced by PBMC 
in response to ATC was at least twice the amount of the 
sum of IFN-γ detected in overnight unstimulated PBMC or 
ATC mono-cultures, and was at least 10 pg/ml. Mean ATC-
specific IFN-γ concentration was calculated by subtracting 
the IFN-γ levels from ATC + PBMC alone from the IFN-γ 
levels from ATC:PBMC co-cultures.

Delayed type hypersensitivity (DTH) response 
assessment

Several studies have demonstrated that the size of a DTH 
response after autologous tumor cell vaccination strongly 
correlates with recurrence and survival of cancer [7, 14, 
39]. The presence of a DTH response to tumor cells is a 
measure of immunogenicity and reflects the efficacy of the 
vaccination and the general immune status of the patient. 
In our study, DTH skin tests were performed prior to the 
first vaccination and at the time of the third vaccination. 
To this end, 2 × 106 ATC and 5 µg KLH were injected 
intradermally into separate sites and 48 h later the DTH 
response was evaluated by measuring the induration by the 
“Sokal pen method”[38]. In brief, a line was drawn with a 
pen 1–2 cm away from the margin of the skin test reaction 
towards the lesion. The pen was held at a 45° angle and 
the pen was advanced with moderate pressure until resist-
ance was met. This procedure was repeated four times. 
Next, induration was measured between opposing points 
by centimeter ruler. Total induration was calculated as an 
ellipse (πab) and given in mm2.

Statistics

Sample size

The response rate for IFN-α treatment, taken from historical 
data, was assumed to be 10% [2]. A response rate of 25% for 
the combination of ATV, CpG-B and IFN-α was expected 
and initially planned as primary outcome of this study. To 
detect this increase with a two-sided test (α = 0.05) and 80% 
power, 41 evaluable patients had to be enrolled in the study. 
Abortion of the enrolment after 15 patients disabled us to 
perform a reliable response rate analysis. However, the sam-
ple size proved sufficient to obtain significance levels in the 
immune monitoring analyses.

Statistical analyses

Differences between immune parameters before (E1) and 
during treatment (E2 or E3) were analyzed with a two-tailed 
paired t test. A two-tailed unpaired t test was used for the 
analysis of the difference in induration area caused by ATC 
and KLH between patients with clinical benefit (CB) (CR, 
PR and SD) and patients without clinical benefit (NCB) (PD) 
and for the analysis of the difference in tumor-specific T cell 
reactivity between CB and NCB before and during treat-
ment. Microsoft Excel (version 2010) and GraphPad Prism 
(Version 6.02) were used for all graphs, tables and analyses. 
Differences were considered significant when p ≤ 0.05.
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Results

Patient characteristics

Between April 2004 and April 2006, 30 mRCC patients 
were assessed for eligibility to enter this single-centre, sin-
gle-arm phase II trial. 90% (n = 27) of the patients had suf-
ficient tumor material for vaccine preparation. 15 patients 
were eventually enrolled and 12 patients were excluded 
due to death prior to the first vaccination (n = 5), addi-
tional malignancies (n = 3), the absence of progression or 
metastasis (n = 3) or poor renal function (n = 1). We refer 
to Table 1 for detailed characteristics of the 15 enrolled 
patients.

Clinical results

All 15 patients received the first three vaccines and were, 
therefore, included in the current analysis. Objective clini-
cal responses occurred in three patients, including one CR 
and two PR. The CR is still ongoing for more than 12 years 
and PR lasted 6.5 and 7 months. The patient with the CR 
was alive at the last moment of follow-up (October 2017) 
and has not shown any signs of disease since the experimen-
tal treatment and, therefore, never received any other form 
of therapy for RCC (See Fig. 2 for pre- and post-treatment 
lung window CT scans). Three patients had SD which lasted 
between 3.6 and 5.1 months. The six patients with CR, PR 
and SD were designated patients with CB. Nine patients 
developed PD and were designated patients with NCB 

Table 1   Patient characteristics

M Male, F Female, ECOG Eastern Cooperative Oncology Group, MSKCC Memorial Sloan-Kettering Cancer Center, ccRCC​ clear cell Renal 
Cell Carcinoma, sRCC​ sarcomatoid Renal Cell Carcinoma, MLN Mediastinal Lymph Node, RLN Retroperitoneal Lymph Node, CR Complete 
Response, PR Partial Response, SD Stable Disease, PD Progressive Disease

Patient Age Sex (M/F) ECOG status MSKCC 
risk factors

Histologic subtype Metastatic sites Response Response 
(in 
months)

1 61 M 1 3 ccRCC​ Lungs, liver, MLN, RLN PD –
2 74 M 0 2 ccRCC​ Lungs, liver, MLN PD –
3 45 M 0 2 ccRCC​ Lungs, MLN SD 3.6
4 69 M 1 3 ccRCC​ Liver, MLN, RLN PD –
5 56 M 1 2 ccRCC​ Lungs, bone, MLN, RLN PD –
6 52 M 1 2 ccRCC​ MLN PD –
7 54 M 0 1 ccRCC​ Lungs, MLN PR 7
8 60 F 1 4 ccRCC/ sRCC​ Lungs, bone, MLN, RLN PD –
9 57 M 0 2 ccRCC/ sRCC​ Lungs, Skin, MLN, intramuscular PD –
10 60 F 0 1 ccRCC​ Lungs SD 5.1
11 62 M 0 2 ccRCC​ Lungs, MLN, RLN PR 6.5
12 71 M 0 2 ccRCC​ Lungs, MLN CR 146+
13 57 F 0 2 ccRCC​ Lungs, liver, MLN, RLN PD –
14 73 F 0 2 ccRCC​ Lungs, bone, RLN SD 4.4
15 59 M 0 3 ccRCC​ Lungs, bone, MLN PD –

Fig. 2   Pre-treatment lung win-
dow CT scan of the patient that 
had a complete response shows 
multiple solid nodules in both 
lungs (a). In the most recent 
lung window CT scan (approxi-
mately, 5 and a half years later), 
no solid lung nodules are identi-
fied (b)
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(Table 1) and, therefore, did not receive any booster vac-
cines. From the six patients with CB, four patients received 
one and two patients received two booster vaccinations after 
which there was either no ATV available anymore or disease 
progression occurred.

Adverse events

Adverse events to the experimental treatment were relatively 
mild with grade one and two fever and fatigue being the most 
common events. Elevated gamma-glutamyl transferase and 
alkaline phosphatase (in six and three patients, respectively) 
were the most prominent grade three or four adverse events 
that might have been related to the experimental treatment. 
Furthermore, two cases of grade three or four anaemia were 
recorded and grade three or four melena, fatigue, dizziness, 
disturbed balance, sensory neuropathy, aphasia, hemiplegia 
were all recorded once (Supplemental table 1) which were 
all considered to be unrelated to the experimental treatment 
(e.g., neurological adverse events were found in one patient 
who suffered from brain metastases). Common local toxicity 
consisted of induration and edema at the vaccination site. 
We did not observe any ulcerations at the vaccination sites.

Delayed type hypersensitivity (DTH) response

None of 15 patients demonstrated a positive skin test in 
response to ATC before vaccination, but 13 of them showed 
a positive skin test upon treatment. 12 of 15 patients 

demonstrated a positive skin test in response to KLH after 
vaccination. The median induration in response to ATC 
was 169.6 mm2 and to KLH was 201.1 mm2. Interestingly, 
we observed a significant difference in the size of the DTH 
response between patients with CB (i.e., stronger DTH reac-
tion) and patients with NCB for ATC (p = 0.038), but not for 
KLH (Fig. 3a).

Tumor‑specific T cell reactivity and IFN‑γ ELISA

Similarly to our findings for DTH responsiveness to ATC, 
ATC recognizing circulating T cells were revealed to be 
more frequent in patients who clinically benefitted from the 
therapy compared to patients with NCB (i.e.three of four in 
CB versus two of seven in NCB patients; p = 0.061 with two-
sided Fisher’s exact test; data not shown). We also found that 
the magnitude of the IFN-γ response was significantly higher 
in patients with CB at E1 (p = 0.046) and at E3 (p = 0.042) 
but, interestingly, not at E2 (Fig. 3b).

B and T cell activation

No significant differences were observed in overall fre-
quencies of circulating CD3+ T cells, CD19+ B cells, 
CD3−CD56+ NK cells, CD14hi classical monocytes and 
CD4+CD25hiFoxP3+ Tregs, nor in frequencies of circu-
lating CD4+ T cells, CD8+ T cells and CD4+ or CD8+ T 
naive, Teff, Tcm or Tem cells following treatment (Sup-
plemental figure. 1). However, ATV delivery induced 

Fig. 3   Delayed type hypersen-
sitivity (DTH) response against 
autologous tumor cells (ATC) 
and keyhole limpet hemocya-
nine (KLH) at the time of the 
third vaccination and DTH2 
(E2) in mm2 (a). ATC-specific 
IFN-ɣ production (pg/ml) deter-
mined by ELISA at baseline 
(E1), third vaccination (E2), 
and follow-up (7–14 weeks, E3) 
for patients with clinical benefit 
[CB: stable disease (SD), partial 
response (PR) and complete 
response (CR)] and patients 
with no clinical benefit [NCB: 
progressive disease (PD)] (b)
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activation of B cells and T cells, as reflected by signifi-
cantly increased percentages of CD19+CD86+ B cells 
and of CD4+PD-1+, CD8+ PD-1+ and CD8+CTLA-4+ T 
cells following treatment (see Fig. 4). Yet, no correlations 
between baseline levels or increases in activated B or T 
cell rates and treatment response were observed (data not 
shown).

Treatment‑induced changes in myeloid subset 
frequencies and activation states

Frequencies of cDC2, non-classical monocytes and pDC, 
but not of cDC1, decreased during treatment (Fig. 5a–d). 
Maximal and significant decreases of cDC2 and non-clas-
sical monocytes subsets were reached after three vaccina-
tions and multiple injections of CpG-B and IFN-α at E3. 
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Significant decreases in pDC frequencies were observed at 
E2, and were shown to be only transient as pDC levels were 
restored at E3 after the 3rd vaccination and repeated CpG-B 
and IFN-α injections. Decreases in non-classical monocytes 
and pDC frequencies were paralleled by increases in their 
activation status at E3, as indicated in Fig. 5g, h by sig-
nificant up-regulation of CD40 expression. In line with this, 
decreases in rates of non-classical monocytes and pDC at 
E2 were only observed in patients with CB, suggesting that 
indeed early decreases in frequencies of these antigen pre-
senting cell subsets were associated with their activation 
and the patients’ response to treatment (See Supplementary 
Fig. 3a–d). Finally, after a transient non-significant increase 
at E2, mMDSC were significantly decreased at E3 in the CB 
group of patients (Supplementary Fig. 2e).

Discussion

This phase II study in 15 patients with mRCC demonstrates 
that i.d. delivery of ATV with ATC/CpG-B/GM-CSF and 
systemic CpG-B/IFN-α is feasible, immunogenic and clini-
cally active. All patients with CB developed a DTH response 
against ATC during the treatment and the induration area in 
the skin of patients with CB was significantly larger than 
in the patients with NCB, a difference that was not seen for 
KLH DTH suggesting an association of the DTH response 
against ATC with clinical activity as we have demonstrated 
before in stage III/IV melanoma patients [14]. We found 
relatively mild toxicity and no treatment-related deaths. 
Importantly, CpG-B as intradermally administered adjuvant 
(combined with GM-CSF) was shown to be safe and did 
not cause the ulcers that we observed in our previous stud-
ies where we used BCG instead [13, 39]. Unfortunately, we 
were not able to complete the pre-calculated enrollment level 
of 41 patients due to the approval of sunitinib as standard 
treatment for the patient group with mRCC. This has left us 
unable to perform a reliable assessment of the response rate 
(which was one of our primary objective) and overall sur-
vival. Nevertheless, a response rate of 20% (3/15 patients) 
was reached in this small cohort which is in line with our 
expectations prior to the start of the trial.

We found that ATC-specific IFN-ɣ production before 
ATV was related to clinical outcome (Fig. 3b). Interestingly, 
this difference in ATC responsiveness between patients with 
CB and patients with NCB was no longer detectable in the 
peripheral blood at E2 due to equally low IFN-ɣ levels in 
both patient groups, but reappeared at E3 with no detectable 
response to ATC in the patients with NCB. This may be due 
to a previously described phenomenon where ATC-specific 
T cells, upon their activation in the circulation, acquire the 
ability to migrate to the effector sites (the vaccination and 
tumor sites) under the influence of the immunotherapy and, 

thus, are transiently less abundant in the peripheral blood 
[40, 41]. This is corroborated by the relative (increase in) 
size of DTH to ATC at E2, which was elevated over E1 
and significantly higher in patients with CB, further sup-
porting the presence of an anti-tumor response that could 
localize to the site of tumor cell presence in the patients 
who responded to ATV administration (Fig. 3a). Our data 
thus suggest that ATC-specific IFN-ɣ production in vitro 
before treatment may be a predictive biomarker for treat-
ment response, whereas the size of the DTH to ATC may be 
a first indicator of effective immunization against ATC (and 
treatment response) as early as 2 weeks after the first ATV.

Further immune monitoring revealed a decrease over 
treatment in cDC2, non-classical monocytes and pDC fre-
quencies, which may also reflect recruitment of these mye-
loid effector subsets to effector sites. The frequencies of pDC 
(which are directly targeted by CpG-B via TLR-9) returned 
to baseline levels at E3, whereas cDC2 and non-classical 
monocytes frequencies further declined. Interestingly, the 
decline in non-classical monocytes and pDC frequencies 
was associated with a significant increase in their activation 
status (measured by CD40) at E3 which may be attributed 
to the bi-weekly CpG-B injections that started 1 week after 
E2. Also, mMDSC frequencies were significantly decreased 
by E3 in patients with CB.

This study shows that i.d. administration of ATV has 
clinical activity in a subset of patients but it may be even 
more interesting to look at possible combinations of this 
vaccination approach with other treatment modalities 
for mRCC. It was found for example that sunitinib has 
the ability to modulate the anti-tumor immune response 
by reversing MDSC accumulation and Treg elevation in 
RCC [42]. In a randomized study in metastatic renal cell 
carcinoma, it was demonstrated that the combined treat-
ment with avelumab (anti-PDL1) and axitinib resulted 
in an improved progression-free survival as compared to 
sunitinib alone, suggesting that tyrosine kinase inhibitors 
have at least an added effect to immunotherapy (Abstract 
ESMO LBA6_PR ‘JAVELIN Renal 101). Therefore, when 
combined with therapeutic vaccines, sunitinib may help 
to overcome tumor-induced immune escape leading to 
increased numbers of tumor-infiltrating lymphocytes and 
tumor-specific CD8+ T cells, as well as enhanced tumor 
eradication and improved survival, as was previously 
shown in murine models [43, 44]. In patients, however, a 
recent randomized controlled phase III trial showed that 
there was no clinical benefit from the addition of a multi-
peptide cancer vaccine to sunitinib and even though T cell 
responses and monocyte counts were only assessed in a 
subset of the patients in the combination arm (which left 
the authors unable to compare these parameters between 
the combination and sunitinib monotherapy), the authors 
actually found evidence for a potential immune inhibitory 
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role of sunitinib [45]. This seems to be in stark contrast 
with previous findings by us and others showing favorable 
immune modulation in patients with mRCC [35, 46], but 
may be due to differential effects of sunitinib in periph-
eral blood versus the tumor microenvironment [47]. As 
depicted in Fig. 4, we also observed an increase in the 
number of activated B cells (by CD86) and T cells (by 
CTLA-4 and PD-1). CTLA-4 and PD-1 are up-regulated 
when T cells become activated, which in the case of PD-1 
has also been linked to neo-antigen specificity [48], and 
since the introduction of ICI, we know that selectively 
inhibiting these immune checkpoints can result in unprec-
edented anti-tumor activity. Moreover, it has become clear 
that response to ICI relies on T cells reactive to highly 
individualized neo-antigens [49]. In contrast to allogeneic 
or peptide-based vaccines, autologous vaccines cover all 
the personal (neo-) antigens that the tumor may express. 
In this light, ATV approaches may be able to enhance the 
sensitivity to ICI. Obstacles to further clinical develop-
ment of ATV, however, are the fact that they do not qualify 
as a pharmaceutical product which makes funding of fur-
ther development challenging, and the fact that vaccine 
production is laborious and dependent on the availability 
of tumor material. Nonetheless, 90% of the patients that 
were assessed for inclusion in this trial had enough tumor 
material available for successful vaccine production.

Patients received IFN-α after the third vaccination 
(E2) and since the clinical response evaluation (E3) was 
12 weeks after the start of this active drug, it is possible 
that the clinical responses were (in part) the result of this 
treatment. Unfortunately we are unable to discriminate 
between the clinical effects of the ATV and the IFN-α 
in this trial. However, clinical responses in mRCC were 
previously demonstrated by others in vaccine-based clini-
cal trials (without IFN-α) with cultured CD83 + blood 
DC loaded with autologous tumor cell lysates [50], DC 
pulsed with MUC1-derived peptides [51], a multipeptide 
cancer vaccine [52] and RNA coding for tumor-associated 
antigens [53]. As for the immunomonitoring data, all the 
findings obtained at E1 and E2 are the result of the ATV 
and that the findings at E3 can be attributed to either ATV 
or IFN-α, or both.

In conclusion, our data show that our ATV approach 
combined with IFN-α in mRCC is feasible, well tolerated 
and clinically active. Moreover, this treatment approach 
induced DTH responses against ATC and systemic activa-
tion of circulating PBDC and T cells in mRCC patients. 
In addition, preexisting ATC responsiveness of circulating 
T cells may be predictive for clinical outcome following 
treatment. Based on our observations in these 15 patients, 
further investigation of our ATV approach and current treat-
ment modalities is indicated to improve response rates in 
this patient group.
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