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Significance

 Global adaptation occurs when a 
species undergoes selection 
toward a common optimum 
throughout its natural range. 
While instances of global 
adaptation are widespread in the 
literature, there is a shortage of 
comparative studies aimed at 
understanding its genetic 
architecture and how it contrasts 
with that of local adaptation. This 
research compares global 
selective sweeps across 17 plant 
species to uncover the attributes 
of the genetic loci repeatedly 
involved in adaptation. We show 
that global adaptation tends to 
rely on genes with reduced 
pleiotropy and is characterized by 
increased levels of gene 
duplication. This finding contrasts 
with recent observations of 
increased pleiotropy in genes 
driving local adaptation, reflecting 
the opposing dynamics underlying 
these two evolutionary processes.
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Global adaptation occurs when all populations of a species undergo selection toward 
a common optimum. This can occur by a hard selective sweep with the emergence of 
a new globally advantageous allele that spreads throughout a species’ natural range 
until reaching fixation. This evolutionary process leaves a temporary trace in the region 
affected, which is detectable using population genomic methods. While selective sweeps 
have been identified in many species, there have been few comparative and systematic 
studies of the genes involved in global adaptation. Building upon recent findings showing 
repeated genetic basis of local adaptation across independent populations and species, 
we asked whether certain genes play a more significant role in driving global adaptation 
across plant species. To address this question, we scanned the genomes of 17 plant 
species to identify signals of repeated global selective sweeps. Despite the substantial 
evolutionary distance between the species analyzed, we identified several gene families 
with strong evidence of repeated positive selection. These gene families tend to be 
enriched for reduced pleiotropy, consistent with predictions from Fisher’s evolutionary 
model and the cost of complexity hypothesis. We also found that genes with repeated 
sweeps exhibit elevated levels of gene duplication. Our findings contrast with recent 
observations of increased pleiotropy in genes driving local adaptation, consistent with 
predictions based on the theory of migration-selection balance.

global adaptation | selective sweep | pleiotropy | repeated adaptation | plant genomics

 Plant species occupy a wide range of niches, adopt very different life history strategies, 
and inhabit environments with drastically different biotic pressures ( 1 ). Due to their sessile 
nature, plants must contend with the biotic and abiotic stresses they encounter directly 
in their environment, therefore phenotypic plasticity and genomic adaptation are of critical 
importance in the plant kingdom ( 1 ). To no surprise, local adaptation has been more 
commonly detected in plants than in animals ( 2     – 5 ).

 Local adaptation occurs when a species inhabits a heterogeneous environment with 
spatial variability in the optimal phenotype. This can lead to the evolution of spatially 
differentiated genotypes along environmental gradients that exhibit fitness trade-offs when 
transplanted, with local genotypes providing higher fitness than foreign ones ( 4   – 6 ). By 
contrast, global adaptation occurs when all populations of a species experience selection 
toward the same optimum, resulting in the gradual refinement of a trait that is advanta­
geous throughout all the environments inhabited by a species, such as the evolution of 
opposable thumbs in ancestral humans ( 6 ). While both global and local adaptation involve 
positive selection, the tension between migration and divergent natural selection inherent 
in local adaptation can result in different predictions about the evolution of genetic 
architecture. Local adaptation will tend to involve alleles with larger effects and more 
tightly linked than global adaptation, as such architectures are better able to resist the 
homogenizing effect of migration ( 6 ). However, while this is a clear theoretical prediction, 
it has not been extensively tested using empirical data.

 At the molecular level, global adaptation can occur via hard or soft selective sweeps or 
through more subtle shifts in allele frequency at many loci ( 7 ). With a hard selective sweep 
( 8   – 10 ), a new globally advantageous mutation rapidly spreads throughout a species’ natural 
range until it reaches fixation. During this process, the affected genomic region displays 
a distinctive signature marked by diminished genetic diversity and increased homozygosity, 
a shift of the site frequency spectrum (SFS) toward low and high-frequency variants ( 11 ,  12 ), 
and particular patterns of linkage disequilibrium (LD) characterized by elevated LD on 
each side of the selected site and decreased LD between sites located on different sides 
( 13 ). This trace can be detected by scanning intraspecific genetic data, and various pop­
ulation genomics methods have been developed to detect sweeps ( 10 ,  14 ,  15 ). After fixation 
of the beneficial variant, new mutations and recombination in the region slowly decay 
the genomic signature typical of a hard selective sweep, therefore genomic scans can only 
detect hard sweeps within a restricted time frame ( 14 ). Global adaptation can also arise 
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through positive selection on standing genetic variation, which 
tends to result in soft selective sweeps ( 16 ) or more subtle allele 
frequency shifts at many loci ( 7 ). When a beneficial variant is 
already segregating in a population before being subjected to pos­
itive selection, the selective process does not affect linked neutral 
polymorphisms as much as in hard-selective sweeps, making the 
detection of soft-sweeps much more challenging ( 10 ,  16 ).

 While selective sweeps have been reported in many species 
across both plants and animal kingdoms ( 17                           – 31 ), there has been 
limited comparative and systematic genome-wide study of the 
repeatability of gene involvement in global adaptation across mul­
tiple species. On the other hand, several studies have demonstrated 
that the same genetic loci are observed repeatedly driving local 
adaptation in different populations or species ( 32                 – 41 ). Whether 
adaptation is local or global, one important factor affecting the 
extent of repeatability is genotypic redundancy. If a given adaptive 
trait is characterized by limited genotypic redundancy ( 6 ), few 
loci are available to produce the mutations needed to reach the 
phenotypic optimum, therefore more repeatability is expected. In 
such cases, adaptive loci usually have large effects, a pattern that 
has recently emerged for several cases of local adaptation ( 42 ). On 
the other hand, if a trait is highly polygenic and driven by numer­
ous alleles of small and interchangeable effect ( 6 ,  43 ), a multitude 
of genotypes could potentially yield the same optimum pheno­
type. In such cases, fewer loci are expected to exhibit repeated 
contributions to adaptation in independent bouts of evolution 
across species or lineages.

 As repeated genetic basis of adaptation has been identified 
among different populations and in closely related species, it is 
intriguing to assess whether repeatability is observed at greater 
phylogenetic distances ( 41 ,  44 ). It is expected that more recently 
diverged lineages will demonstrate a higher degree of shared gene 

utilization in adaptation, owing to limited functional differenti­
ation, increased allele sharing, comparable genomic architecture, 
and similar life histories/adaptive strategies ( 41 ). Also, while fac­
tors such as pleiotropy, mutability, and average mutation effect 
size likely vary among genes and would be theoretically predicted 
to affect the repeatability of adaptation, there has been little sys­
tematic study of the importance of such factors in empirical 
datasets.

 To address these questions, we retrieved publicly available high-
quality whole-genome sequencing (WGS) data from thousands 
of individuals from 17 natural plant and forest tree species dis­
tributed across four continents, including woody and herbaceous 
angiosperms species ( Fig. 1  and SI Appendix, Table S1 ). We 
employed LD-based genomic scans for selective sweeps ( 45 ) 
within each species to identify putative genes under positive selec­
tion, and then used PicMin  ( 46 ) to identify genes that are enriched 
for strong sweep signatures across multiple species. We explored 
the attributes of genes with repeated global sweeps by examining 
the pleiotropic potential and gene duplication levels of the repeat­
edly swept gene families identified. Our assessment of pleiotropy 
leveraged available gene expression data from Arabidopsis thaliana  
and Medicago truncatula  to generate different pleiotropy measures 
based on gene tissue specificity and position within gene coex­
pression networks. We also assessed levels of gene duplication 
based on our orthology assignment. We contextualized these find­
ings in view of Fisher’s model of evolution and the cost of com­
plexity hypothesis ( 47 ,  48 ), as well as recent theoretical work on 
migration-selection balance ( 6 ). To contrast our results for the 
architecture of global adaptation with that of local adaptation, we 
compare our observations to results from a related study on local 
adaptation ( 49 ), which employed the same bioinformatic methods 
and incorporated 14 of the 17 datasets used in our analysis.         
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Fig. 1.   Geographical distribution and relatedness within and among the study species. (A) Sampling locations of the 17 datasets included in the study. (B) 
Time-calibrated phylogenetic tree (retrieved from https://timetree.org/) of the 17 datasets, based on 12 reference species. (C) fastSTRUCTURE ancestry pie plot 
(K = 5) of the Helianthus argophyllus dataset in Texas (USA), showing substantial substructuring. (D) Relatedness filtering summary bar plot by dataset. Datasets 
labeled by corresponding color from B.
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Results

Datasets Assembly and Filtering. WGS data from 17 nondom­
esticated and noninvasive angiosperm species, including both 
herbaceous plants and forest trees, was retrieved from SRA/
ENA (Fig. 1 and SI Appendix, Table S1). These datasets included 
exclusively natural populations and ranged from closely related 
sister species known to hybridize (50) to species separated by up 
to 160 million years of evolution (Fig. 1B).

 Single nucleotide polymorphisms (SNPs) were identified by 
applying a uniform pipeline to all datasets for consistency, with 
filtering steps to exclude singleton SNPs and individuals with high 
relatedness (SI Appendix, Fig. S1 ; see Materials and Methods  for 
details). The SNP calling and filtering process resulted in between 
20 and 565 individuals per dataset, and between 667,641 and 
50,268,965 SNPs ( Fig. 1D   and SI Appendix, Table S1 ). We assessed 
population structure and found a wide range of patterns, with some 
species showing nearly panmictic structure across wide spatial scales 
(e.g., Eucalyptus albens ; SI Appendix, Fig. S2 ) and others exhibiting 
substantial substructuring, even across small spatial scales (e.g., 
﻿Helianthus argophyllus ) ( Fig. 1C   and SI Appendix, Fig. S2 ). In most 
species, the range of samples included in our study is sufficient to 
either cover multiple populations with detected genetic structure 
(SI Appendix, Fig. S2 ) or span a substantial portion of the overall 
species range (>20%), as estimated using data from GBIF 
(SI Appendix, Fig. S3 ). The only exception is P. tremula , which 
exhibited a panmictic genetic structure and had samples spanning 
approximately 11.3% of its range (SI Appendix, Figs. S2 and S3 ). 
Despite this, it included several sampling sites scattered over approx­
imately 1,100 km of latitude comprising a large number of indi­
viduals (SI Appendix, Fig. S2 and  Table S1 ), so it still should be seen 
as representative of capturing patterns of adaptation across a broad 
range of space. It is important to note that the native range estima­
tion of the species was likely overestimated due to the possible 
presence of erroneous observations, observations of planted speci­
mens, and observations within invasive ranges in the GBIF data.  

Orthology Inference. The phylogenetic relationship among the 
genes of the 12 species with reference genome assemblies was 
inferred with Orthofinder2 (51), which was used to group genes 
into orthology groups, or orthogroups. These included both 
orthologous genes, which are homologous genes separated by a 
speciation event, and paralogous genes, which are homologous 
genes diverged from a within-species duplication event. In total, 
Orthofinder assigned 376,881 genes out of 415,552 total genes to 
31,582 orthogroups. These included 9,521 orthogroups specific 
to individual species, 7,919 orthogroups with representation 
from all species, and 633 single-copy orthogroups. Subsequently, 
this assignment was refined by excluding cases where a given 
species had more than 10 paralogs within a single orthogroup 
(but retaining the orthogroup in other species with fewer than 10 
paralogs). We also excluded any gene with insufficient sequencing 
coverage within a given species, and excluded any orthogroups 
with representation in fewer than 7 species. These filtering steps 
resulted in a final set of 13,268 orthogroups for subsequent 
analysis, which exhibited low levels of paralogy and high species 
inclusion (Fig. 2). The mean and median number of paralogs per 
orthogroup was 1.72 and 1.67 per species respectively, while mean 
and median species number per orthogroup was 15.37 and 15.42 
(per species). Notably, B. stricta yielded results for significantly 
fewer orthogroups compared to the other species, owing to 
insufficient sequencing coverage of the data (52) across many genic 
regions (Fig. 2 and SI Appendix, Table S1). Overall, the topology of 
the tree inferred with Orthofinder2 largely matched the species tree 

derived from TimeTree (https://timetree.org/), with the exception 
of M. truncatula and E. grandis. Orthofinder2 placed M. truncatula 
closer to the Brassicaceae family, relative to E. grandis (Fig. 2D and 
SI Appendix, Fig. S4). It is worth noting that TimeTree estimates 
divergence between species using a simple average across published 
time estimates from scientific literature (53), therefore a minor 
mismatch with the protein sequences-based tree inferred with 
Orthofinder2 is not a reason of concern.

Repeated Selective Sweeps. We used OmegaPlus (45) to scan for 
global selective sweeps within species followed by PicMin (46) to 
identify orthogroups with repeated sweep signatures across several 
species. After performing a False Discovery Rate (FDR) correction 
to the P-values from PicMin based on the number of orthogroups 
tested, we detected 33 orthogroups with significant signatures of 
repeated sweeps, at q < 0.1 (Fig. 3A).

 Our application of PicMin  tests for an enrichment of strong 
sweep signatures across multiple species but does not perform a 
test of which species contribute to the signal. To explore any pat­
terns in the species driving these results, we classify any gene with 
an empirical P﻿-value of < 0.1 as a “driving gene.” Contribution 
toward the signatures of repeatability in the 33 OGs varied 
between species, ranging from approximately 14% (B. stricta ) 
driving genes to about 68% (E. sideroxylon ) ( Fig. 3B  ). The repeat­
ability signal is scattered throughout the phylogeny, with low 
﻿OmegaPlus  empirical p-values present in every species tested 
( Fig. 3C  ). However, two clusters of closely related species 
(Eucalyptus  spp. and Helianthus  spp.) were top contributors based 
on the count of driving genes and displayed a denser heat signature 
indicating an enrichment of driving genes ( Fig. 3 B  and C   and 
﻿SI Appendix, Fig. S5 ). Despite this, results for only a single 
orthogroup appeared to be driven solely by species from the 
﻿Eucalyptus  genus, OG0010509, and none was solely driven by the 
﻿Helianthus  genus ( Fig. 3C   and SI Appendix, Fig. S5 ). However, in 
four orthogroups (OG0017633, OG0019910, OG0022308, 
OG0017585), driving genes were found exclusively in multiple 
﻿Eucalyptus  species in conjunction with multiple Helianthus  species 
( Fig. 3C   and SI Appendix, Fig. S5 ).

 It is biologically expected that closely related species might 
evolve similarly and therefore might be more likely to experience 
sweeps in the same genes or genes families, particularly if they 
occupy an overlapping habitat and experience the same, or similar, 
selective pressures ( 41 ,  54 ). Alternatively, sweeps detected on the 
same gene of closely related species of the same genus could have 
originated from a single sweep that was then introgressed across 
these hybridizing species. However, it is also possible that such 
signatures are bioinformatic artifacts, as a single reference genome 
was used to call variants in the species within each of the Helianthus  
and Eucalyptus  genera, which means that any assembly errors could 
yield anomalous LD signatures that might confound OmegaPlus  
in each of the species. Consequently, the same errors could sys­
tematically propagate across closely related species sharing the 
same reference and potentially drive some of the observed PicMin  
repeatability.

 To test whether this was a source of error, we assessed whether 
phylogenetic distance correlated with the amount of overlap in the 
driving genes between pairs of species, which we calculated as the 
ratio of observed versus expected overlap, according to the expecta­
tion of a hypergeometric distribution, and found no significant cor­
relation (Pearson’s r  = 0.05, P-value  = 0.57; Spearman’s rho  = −0.05,  
﻿P-value  = 0.6) (SI Appendix, Fig. S6A ). Overall, the observed over­
lap in driving genes between closely related species did not appear 
to deviate from the expectation differently than that between more 
distantly related species. Further assessment of the average 
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phylogenetic distance between driving genes species showed that 
all the candidates, except one (OG0010509), are characterized by 
considerable mean phylogenetic distances between the species with 
driving genes (SI Appendix, Fig. S6B ). This confirms that despite 
an apparent enrichment of low empirical P﻿-values in Helianthus  
and Eucalyptus  species, the overall repeatability signal is driven by 
genes spread throughout the analyzed phylogeny.

 To preclude spurious contributions from closely related species 
arising from bioinformatic artifacts, we conducted follow-up 
repeatability testing by running PicMin  with only one species from 
each of these two genera and taking the union of significant hits 
(FDR < 0.5) across runs, evaluating all nine of the 13-species 
combinations [1 Helianthus  + 1 Eucalyptus  + all other species]. 
While this restricted analysis cannot detect true signals of repeated 
sweeps within a genus, it does not suffer from the risk of being 
driven by bioinformatic errors propagating due to closely related 
species sharing the same reference genome. Despite reduced power 
due to the overall lower number of species included, this follow-up 
analysis successfully retrieved 15 of the 33 originally identified 
candidate orthogroups (FDR < 0.1) (SI Appendix, Table S2 ). 
Finally, we tested the robustness of PicMin  against statistical arti­
facts and potential biases introduced by factors such as gene 
length, variations in OmegaPlus  settings and scanning strategies, 
shared recombination landscape, and background selection (please 
see SI Appendix, Supporting Text – Possible biases and artifacts ).

 Next, we explored the functional characteristics of the highest 
confidence set of 15 orthogroups with repeated sweep signatures, 

using the annotations of A. thaliana  ( 55 ) and M. truncatula  ( 56 ) 
genes (SI Appendix, Table S2 ). These orthogroups included sev­
eral genes with pivotal roles in biotic and abiotic stress responses. 
For instance, TPS14 (TERPENE SYNTHASE 14) is a key pro­
tein involved in terpene metabolism. Terpenes are metabolites 
involved in plant defense against both pathogens and herbivores, 
and are responsible for the attraction of beneficial organisms 
such as pollinators and seed dispersers ( 57 ,  58 ). Similarly, 
TGSL12 (CALLOSE SYNTHASE 3) is a protein that partici­
pates in callose metabolism, a polysaccharide synthesized in the 
cell wall of a variety of higher plants in response to pathogens 
infections and abiotic stress ( 59 ). The extensively studied 
cytochrome P450, belongs to a large family of proteins involved 
in NADPH- and O2﻿-dependent hydroxylation reactions across 
all domains of life and is closely linked to environmental stress 
response in plants ( 60 ). Notably ATERF019 (ERF019, ERF19), 
is a critical transcription factor involved in the response to a 
range of stressors, such as drought, osmotic, and oxidative stress, 
as well as bacterial and fungal infection ( 61 ,  62 ). Intriguingly, 
this gene has been found to negatively regulate plant resistance 
to Phytophthora parasitica , underscoring its significance in mit­
igating the impact of destructive plant pathogens causing signif­
icant crop losses worldwide ( 61 ). Another notable protein group 
identified was the Plant U-box type E3 ubiquitin ligase (PUB62, 
PUBs), which encompasses proteins with diverse functions in 
abiotic and biotic stress responses and is also associated with 
pollen self-incompatibility ( 63 ).

P. hallii

E. grandis

M. truncatula

B. pendula

P. tremula

A. tuberculatus

E. grandis

B. pendula

P. hallii

A. tuberculatus

H. annuus H. annuus

B. stricta B. stricta

C. rubella C. rubella

A. halleri A. halleri

A. thalianaA. thaliana

M. truncatula

P. tremula

P. trichocarpaP. trichocarpa
Ti

m
eT

re
e

O
rthofinder2

DC

BA

Fig. 2.   Orthology assignment summary 
of the final set of 13,268 orthogroups. 
(A) Bar plot of the number of paralogs 
per orthogroup for each species. (B) Bar 
plot of the number of species included 
in each orthogroup, for the orthogroups 
of each species. (C) Distribution of the 
13,268 tested orthogroups across species 
number. (D) Comparison between the 
TimeTree and Orthofinder2 phylogenies, 
each based on 12 reference species.
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 In addition to stress responses, several orthogroups with sig­
natures of repeated sweeps play roles in plant growth and devel­
opment. For instance, the clathrin adaptor complexes medium 
subunit family protein is involved in clathrin-mediated endocy­
tosis (CME). This process regulates various aspects of plant devel­
opment, such as hormone signaling, and has also been linked to 
response against environmental stresses ( 64 ). Interestingly, the 
machinery of CME has been shown to be evolutionarily con­
served in plants ( 64 ). Furthermore, we identified the p300/CBP 
acetyltransferase-related protein, which is linked to cell differen­
tiation, growth, and homeostasis. Notably, this protein has a 600 
amino acid C-terminal segment which appears highly conserved 
across plants and animals, suggesting an essential role in multi­
cellular organisms ( 65 ). Other key players in growth and devel­
opment included ATSPLA2-ALPHA (PHOSPHOLIPASE 
A2-ALPHA), which is involved in various growth-related pro­
cesses ( 66 ), and ROXY1/ROXY2 of the CC-type glutaredoxin 
(ROXY) family, which is a group of proteins crucial for organo­
genesis, particularly anther development ( 67 ). Last, among our 
top candidates was ATIPT4 (ARABIDOPSIS THALIANA 
ISOPENTENYLTRANSFERASE 4), a protein that plays a 

significant role in cytokinin biosynthesis. Cytokinins are hor­
mones essential for regulating various aspects of plant growth 
and development ( 68 ).  

Spatial Scale of Adaptation. Selective sweeps are typically 
interpreted as evidence of a mutation spreading throughout the 
range of an entire species (i.e., global adaptation), but they can 
also occur within a restricted portion of the range due to local 
adaptation. It is possible that some of the signatures of repeated 
sweeps we observed could be driven by strong local adaptation 
within a subsection of the species range, rather than global 
adaptation. To explore this possibility, we estimated FST for each 
SNP within each species and took the average across all SNPs 
within each gene. Driving genes in orthogroups with repeated 
sweep signatures displayed low to average FST within species, 
with few exceptions, suggesting that the signatures of repeated 
selective sweeps were driven by global, rather than local adaptation 
(SI Appendix, Figs. S7 and S8). Even though we observed few 
driving genes with high FST (8 genes out of 78 fell within the 
top 10% of FST values genome wide; SI Appendix, Fig. S8), it is 
worth noting that a mutation making a global selective sweep can 
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Fig. 3.   Evidence for repeated selective 
sweeps across multiple species. (A) 
Distribution of PicMin FDR (−log10 
PicMin FDR on the Y axis) for the 
13,268 tested orthogroups, ordered 
by number of putative driving genes 
on the X axis (number of OmegaPlus 
emp-P < 0.1). Points above the red 
line have FDR < 0.1. (B) Species 
contribution to PicMin top candidates 
(FDR < 0.1), calculated for each species 
as: [number of empirical P-values < 0.1 
in the PicMin FDR < 0.1 orthogroups]/
[total number of orthogroups with 
PicMin FDR < 0.1 tested]. (C) Heatmap 
of OmegaPlus empirical P-values for the 
33 candidate orthogroups (PicMin FDR 
< 0.1); driving genes cells (emp-P < 0.1 – 
black cells) are outlined in red, species 
are ordered by phylogenetic distance 
along the Y axis. A white cell indicates 
that an orthogroup was not tested in 
a species.
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generate transient genetic differentiation as FST outliers, so even 
the relatively rare cases of high FST that we observed within species 
could still have been driven by global adaptation (69).

Genes with Repeated Sweeps Have Low Pleiotropy. We explored 
the pleiotropic characteristics of orthogroups with repeated sweep 
signatures to assess the genetic architecture of global adaptation in 
comparison to the classical theoretical expectation based on Fisher’s 
geometric model of universal pleiotropy (47, 48), other empirical 
studies (32–39, 70–74), as well as more recent findings on the 
architecture of local adaptation derived from a large comparative 
study across plant species sharing the same methods and majority 
of datasets, including the same SNPs sets (49).

 To evaluate the amount of pleiotropy in genes with repeated 
selective sweeps, we utilized gene expression data for A. thaliana  
and M. truncatula  genes sourced from Expression Atlas ( 75 ) and 
ATTED-II ( 76 ). We estimated two kinds of gene property related 
to pleiotropy: A) tissue specificity of gene expression ( 77 ) and B) 
statistics describing a gene’s position/importance within a gene 
coexpression network ( 78 ). For tissue specificity A), we employed 
the τ metric ( 79 ) of A. thaliana  genes, which should be inversely 
proportional to pleiotropy; highly tissue-specific genes are likely to 
influence fewer processes compared to genes expressed across several 
tissues. Tissue specificity has been found to be positively associated 
with rates of molecular evolution ( 80 ). Using gene coexpression 
networks B), we estimated pleiotropy based on four centrality meas­
ures (see Materials & Methods  for details): degree, strength, close­
ness, and betweenness ( 81 ). Node degree signifies the number of 
nodes connected to a gene and thus the number of coexpressed 
genes; node strength represents the combined weights of these con­
nections; closeness reflects a node’s capacity to interact with all other 
nodes, even those not directly connected to it, and hence its coex­
pression capability across the entire network; betweenness indicates 
a node’s ability to act as a bridging node in the network, linking 
coexpression subnetworks together. Each of these measures should 
be positively correlated to pleiotropy ( 82   – 84 ). Genes with high 
centrality measures in coexpression networks are hubs; hence, their 
expression affects many other genes and processes, potentially 
imposing an evolutionary constraint as changes in them can more 
likely be lethal or have strong effects. Conversely, genes with low 
centrality measures can be considered less pleiotropic, with changes 
in them affecting fewer processes ( 82   – 84 ).

 To evaluate the amount of pleiotropy in the candidate 
orthogroups with repeated sweep signatures, each of the above 
measures was calculated for each orthogroup based on the metrics 
described above, using data from A. thaliana  and M. truncatula  
(see Materials and Methods  for details). We assessed pleiotropy in 
the candidate set including 33 Orthogroups (FDR < 0.1), as well 
as within a larger set of 107 orthogroups with a more relaxed FDR 
cutoff (FDR < 0.2). While using a more relaxed FDR results in 
more false positives, it also allows a larger number of true positives, 
which improves the power to test patterns in pleiotropy for genes 
involved in global adaptation. Consistent with the Fisher-Orr 
model of evolution ( 47 ,  48 ), both sets of results showed the same 
pattern: Pleiotropy appeared significantly lower in the candidate 
orthogroups compared to random expectation ( Fig. 4 A  and B  ). 
All measures used as proxies for pleiotropy, except Medicago  
betweenness, showed either a significant (P  < 0.05) association 
with decreased pleiotropy or tended strongly toward this direction. 
It is noteworthy that another study focusing on local (rather than 
global) adaptation found the opposite relationship with increased 
pleiotropy for genes driving repeated local adaptation ( 49 ), using 
many of the same datasets and the same methods to identify 
repeated adaptation and pleiotropy.        

 We further assessed pleiotropy within the more conservative set 
of 15 orthogroups identified by intersecting the 33 candidate OGs 
identified in the main analysis (FDR < 0.1) with results derived from 
nine additional PicMin  omitting closely related Eucalyptus  and 
﻿Helianthus  species. The correlation between global adaptation and 
decreased pleiotropy largely persisted (P  < 0.05) when the assessment 
was restricted to this small set, indicating a robust association between 
genes driving global adaptation and decreased pleiotropy ( Fig. 4C  ).  

Duplications Are Enriched in Genes with Repeated Sweeps. Newly 
duplicated genes may experience selective sweeps due to positive 
selection if the resulting copies undergo sub- or neofunctionalization. 
Additionally, subfunctionalization reduces the pleiotropy of the 
original gene by distributing the function of the parent gene among 
new copies (85). This process may aid adaptation by easing the 
evolutionary constraints associated with a more pleiotropic ancestral 
gene (85, 86). Considering this, we utilized the results obtained from 
Orthofinder2 to investigate the involvement of gene duplications in 
recurrent global adaptation. We counted the number of paralogs 
within orthogroups as a representation of the number of duplication 
events and compared our candidates with repeated sweeps against 
a set of randomly chosen orthogroups, using the same statistical 
approach as the pleiotropy assessment. The 33 orthogroups with 
repeated sweeps (FDR < 0.1) exhibited a significant enrichment in 
gene duplications (P < 0.05), with a 3.3-fold-increase relative to the 
overall average for all orthogroups (Fig. 4D).

 Next, we investigated whether the excess of duplicated genes 
observed in the recurrently globally adapted orthologous groups orig­
inated from small-scale single-copy gene duplications or from large-
scale duplications due to polyploidization, as genes resulting from 
these two types of events evolve very differently ( 87 ,  88 ). For this 
assessment, we retrieved lists of polyploidy-produced duplicated genes 
available for A. thaliana , for which there is evidence of at least three 
ancient whole-genome duplication events (α, β, and γ) ( 87   – 89 ).

 Among the six driving genes identified in A. thaliana  (OmegaPlus  
empirical P﻿-values < 0.1 for the 33 PicMin  orthogroups with FDR 
< 0.1,  Fig. 3 ), two appear to have originated from whole-genome 
duplication events: ROXY1/ROXY2 (AT5G14070/OG0002218), 
which is dated back to the most recent duplication event α (86 to 
14.5 mya), and a protein of unknown function (AT5G11000/
OG0005857), which is dated to the β event (235 to 112 mya) ( 88 , 
 89 ). Extending this assessment to those orthogroups out of the 33 
identified (PicMin  FDR < 0.1) with a representative gene from A. 
thaliana  (even though not necessarily an A. thaliana  driving gene), 
we found that nine genes in total (out of 22) appear to be polyploidy 
duplicated genes retained after one of the three ancient tetraploidy 
events ( 88 ,  89 ). Although this enrichment does not achieve statistical 
significance (P  > 0.05), it is clearly above the mean when assessed 
using a bootstrapping method akin to that employed for pleiotropy 
(SI Appendix, Fig. S9 ). Between the polyploidy duplicated genes with 
available functional annotation there were several other key develop­
mental genes in addition to ROXY1/ROXY2, such as p300/CBP 
(OG0004755/ AT1G16705), ATIPT4 (OG0001035/AT4G24650), 
NPY (AT1G67900/OG0002632), and SLY1 (AT2G17980/
OG0007322) as well as a few genes with key roles in the response to 
biotic stimuli, such as ERF19 (OG0006228/AT1G22810) and 
G-type lectin S-receptor-like serine/threonine-kinase (OG0002608/
AT1G11340).   

Discussion

 Here, we have uncovered evidence of 33 orthogroups (FDR < 0.1) 
with repeated global selective sweeps in multiple species ( Fig. 3C  ). 
This finding is noteworthy given the considerable evolutionary 

http://www.pnas.org/lookup/doi/10.1073/pnas.2406832121#supplementary-materials
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divergence among the analyzed plant species and their diverse life 
history strategies and growth forms. These range from the herba­
ceous perennial monocot P. hallii , to eudicots encompassing both 
herbaceous annuals (A. thaliana , C. rubella , M. truncatula , A. 
tuberculatus , Helianthus spp .) and herbaceous perennials (A. hal-
leri ), to long-lived trees such as Betula  spp., Eucalyptus  spp., and 
﻿Populus  spp. ( Fig. 1 ). While our study stands out for its focus on 
global adaptation and the exploration of more extensive phyloge­
netic distances, other studies have identified repeated signatures 
of local adaptation across independent populations and species 
residing in similar habitats or experiencing analogous selective 
pressures ( 32                 – 41 ,  49 ). Taken together, these studies suggest that 
while adaptation may commonly be polygenic and involve only 
subtle changes in allele frequency across many loci ( 90 ), it can also 
involve the contribution of key genes that appear to play particu­
larly important roles, given their repeated involvement. In 
attempting to understand what determines the propensity of a 
gene to contribute to adaptation, it is important to consider both 
the biological characteristics of the gene and the influence of the 
methods used to detect selection.

 Our set of genes with repeated sweeps includes many with 
demonstrated roles in abiotic and biotic stress responses in plants, 
as well as a few candidates with important functions related to 
growth and developmental processes (SI Appendix, Table S2 ). This 
echoes prior research based on rates of sequence substitution show­
ing that protein function significantly influences these signatures 
of selection ( 91     – 94 ), as found in Drosophila  ( 95 ,  96 ), Arabidopsis  
( 97 ), hominids ( 98 ), and other mammals ( 99 ,  100 ). There is strong 

support for the hypothesis that host–pathogen interactions drive 
particularly rapid protein evolution, as immune and stress/defense 
response genes are often identified as targets of natural selection 
( 91     – 94 ). Similarly, genes linked to defense responses, such as 
cytochrome P450 proteins (OG0001991), have been previously 
reported for their higher rates of sequence evolution ( 91 ,  92 ). 
These findings are derived from methods based on high rates of 
nonsynonymous substitution that have very limited power to 
detect evolution that involves only a small number of impactful 
mutations and will therefore only tend to capture particularly 
strong and persistent selection pressure that drives many recurrent 
sweeps. By contrast, our sweep-based methods only detect more 
recent adaptation, as genomic signatures of selective sweeps 
degrade with time ( 14 ) but are able to detect the signatures arising 
from individual selective sweeps that may be missed by substitution-
based methods. It is interesting that methods suited to detecting 
selection operating at very different timescales both tend to find 
genes involved in biotic interactions and defense as the targets of 
repeated natural selection. 

The Role of Gene Duplication in Adaptation. Gene duplication is 
thought to provide a source of genetic flexibility and facilitate of 
adaptation, through the means of sub- and neofunctionalization 
(85, 86). Indeed, candidates for convergent local adaptation to 
temperature in two distantly related conifers, lodgepole pine (Pinus 
contorta) and interior spruce (Picea glauca, Picea engelmannii, Picea 
glauca x Picea engelmannii), were enriched for duplicated genes 
(34), but this was not found in the recent study of repeated local 
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adaptation across plants (49). In this study, we found a strong 
association between the orthogroups with signatures of repeated 
global adaptation and increased duplication number, with a 
3.3x-fold increase relative to the average, despite our method 
penalizing duplicated genes with a conservative paralog correction 
per orthogroup (Fig. 4D). However, we note that pleiotropy and 
number of duplications tend to be inversely correlated, therefore 
it can be tricky to separate the causative effects (SI  Appendix, 
Table S3). Gene duplication may facilitate global adaptation by 
decreasing pleiotropy of a parent gene via subfunctionalization 
(85). Alternatively, if sub-/neofunctionalization result in a new 
selective landscape for the novel copy of a gene, repeated sweeps 
would be expected as it evolves to improve this novel function. 
In either case, if the propensity for gene duplication is conserved 
over deep time, these mechanisms associated with duplication 
could partly explain our findings.

 As polyploidy is a potential source of gene duplication, we also 
assessed whether the gene duplicates involved in repeated adap­
tation were derived from whole-genome or localized duplication. 
We found that a large portion of genes present in the repeated 
orthogroups (9 out of 22 genes in A. thaliana ) may have originated 
during ancient polyploidization events, highlighting the important 
evolutionary role of whole-genome duplications in angiosperms. 
In A. thaliana , there is compelling evidence of at least three past 
tetraploidizations followed by subsequent rediploidizations, with 
the oldest of these events dated before the moncot–dicot diver­
gence, the second-oldest dated before A. thaliana  divergence from 
all the other dicots included in our study and the most recent 
event dated before the Brassicaceae radiation ( 89 ). During redip­
loidizations some of the polyploidy-duplicated genes were retained 
and previous studies have shown that this process was highly 
biased toward certain gene functional classes, with some gene 
categories being expanded exclusively through these large-scale 
polyploidization–diploidization cycles ( 87 ,  88 ). This is the case 
for several transcription factors and signal transducers involved in 
responses to biotic stimuli and secondary metabolisms, which are 
critical for survival ( 87 ,  88 ), such as ERF19 (OG0006228/
AT1G22810) and receptor-like protein kinases (OG0002608/
AT1G11340), both identified here. Another category that has 
shown increased gene retention following whole-genome dupli­
cation events are developmental genes ( 87 ,  88 ). Our analysis iden­
tified several A. thaliana  genes belonging to this category present 
within the repeatedly globally selected orthogroups (PicMin  FDR 
< 0.1), including ROXY1/ROXY2 (AT5G14070/OG0002218), 
p300/CBP (OG0004755/AT1G16705), ATIPT4 (OG0001035/
AT4G24650), NPY (AT1G67900/OG0002632), and SLY1 
(AT2G17980/OG0007322). Altogether, given that ancient whole 
genome duplications likely played a major role in the evolution of 
angiosperms by expanding certain gene functional classes to enhance 
growth and development as well as survival strategies against path­
ogens and other biotic threats ( 87   – 89 ), our results are consistent 
with an ongoing effect of this on the process of adaptation.  

Contrasting Effects of Pleiotropy in Global vs. Local Adaptation. 
One characteristic of a gene that appears particularly important 
for adaptation is pleiotropy, where a single genetic locus influences 
multiple phenotypic traits (101). Pleiotropy is thought to constrain 
adaptation due to the possible detrimental effects of a mutational 
change affecting multiple biological processes (42, 102). Fisher’s 
model of evolution provides a mathematical representation of this 
effect: The greater the number of trait dimensions, the lower the 
chance that a random mutation is beneficial, thus posing a reduced 
adaptive potential under higher pleiotropy (47). Similarly, if all 
genes have the same pleiotropy, larger mutations are more likely 

to incur negative fitness costs, due to the increased likelihood of 
overshooting the optimal trait value in some dimensions. Kimura 
(103) reassessed Fisher’s model by incorporating the probability 
of fixation and concluded that mutations of intermediate effect 
would be most likely to contribute to adaptation. Later, Orr 
(104, 105), considered the distribution of mutations fixed over an 
adaptive walk and found this would be approximately exponential, 
with alleles of larger effect fixing only earlier in the process, and 
later stages of evolution dominated by mutations of smaller effect, 
a prediction which has found empirical support in stickleback 
(106). This family of models therefore predicts that the rate of 
adaptation will be slower for organisms with more traits due to 
the greater amount of pleiotropy, and that most mutations driving 
adaptation will be of small effect (48).

 Consistent with this “cost of complexity” hypothesis, genes and 
mutations with low pleiotropy have often been found as the target 
of parallel genetic and phenotypic evolution ( 42 ,  102 ). Similarly, 
our research has pinpointed genes exhibiting low pleiotropy as 
recurrent targets of global adaptation across multiple plant species 
( Fig. 4 ). Furthermore, this evolutionary model has also found 
support in previous empirical studies, such as in yeast, where 
mutations affecting more phenotypic traits showed higher fitness 
costs hence implying a negative relationship between pleiotropic 
and fitness effects of mutations ( 70 ). Similarly, a study on 
Norwegian graylings populations showed that gene pleiotropy 
constrains both plastic and adaptive gene expression responses and 
highlighted the importance of genes with low pleiotropy in evo­
lution ( 71 ). Taken together, these findings align with Fisher’s view 
of evolution, suggesting that functional changes that favor one 
process are more likely to have deleterious trade-offs on others if 
pleiotropy is high.

 Further theoretical work on the importance of pleiotropy was 
motivated by empirical observations of substantial modularity (i.e. 
most genes affect few traits) along with larger per-trait mutation 
effects in more pleiotropic genes ( 107 ,  108 ). These observations 
were incorporated into models showing that organisms with inter­
mediate levels of pleiotropy would have the fastest adaptive rates, 
mitigating the cost of complexity ( 109 ). These species-level models 
have subsequently been interpreted as predicting the greatest con­
tribution to adaptation within a species by genes with intermediate 
pleiotropy ( 73 ), which is reasonable but worthy of further directed 
theoretical study. Consistent with this prediction, empirical stud­
ies in A. thaliana  ( 73 ), stickleback ( 32 ), ragweed ( 72 ), and 
﻿Heliconius  butterflies ( 74 ) have found evidence of intermediate 
pleiotropy driving repeated adaptation.

 Another factor that can affect the impact of pleiotropy on adap­
tation is the spatial pattern of natural selection. If natural selection 
favors different trait optima in different locations of a species range 
(i.e., local adaptation), then migration will tend to counteract 
divergence, resulting in a general advantage for alleles of larger 
effect, as they can withstand the homogenizing effect of migration 
( 6 ). To the extent that pleiotropic effects of a mutation are aligned 
with the direction of divergence in phenotypic optima, which 
seems common for modular traits ( 107 ,  108 ), we would therefore 
expect more pleiotropic genes to contribute to local adaptation 
more readily, due to their larger effects overcoming the homoge­
nizing effect of migration ( 109 ). By contrast, when a species adapts 
to a similar phenotypic optimum across its range (i.e., global 
adaptation), there is no tension with migration and therefore no 
additional advantage for alleles of larger effect ( 6 ). In accordance 
with this prediction ( 6 ,  109 ), we found a strong association 
between decreased pleiotropy and genes involved in global adap­
tation ( Fig. 4 ), which is also in line with Fisher’s and Orr’s models 
of evolution and with evidence of reduced pleiotropy in rapidly 
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evolving adaptive genes reported in other studies ( 70 ,  80 ,  82 ,  83 ). 
In further agreement with migration-selection theory predictions 
( 6 ,  109 ), the opposite pattern was found for genes driving local 
adaptation (i.e. increased pleiotropy) by another study using the 
same bioinformatic pipeline and statistical tests, and conducted 
on many of the same species, but studying signatures of local, 
rather than global adaptation ( 49 ). Taken together, these two stud­
ies provide the first controlled comparison of the genetics of 
repeated global vs. local adaptation. Observed differences in the 
pleiotropy of genes driving adaptive responses are consistent with 
population genetic predictions from models of spatially varying 
vs. spatially uniform selection. This therefore suggests that local 
adaptation may often look quite different than global adaptation, 
underlining the importance of considering the spatial pattern of 
selection when studying how evolution works.   

Materials and Methods

Dataset Selection. We downloaded raw sequencing data of 17 angiosperm 
plants and forest trees WGS datasets from SRA and ENA (Fig. 1A and SI Appendix, 
Table S1).

The choice of WGS as the sole sequencing method for inclusion was imposed 
by the need for high quality dense SNP data by the software used in this study, 
OmegaPlus (45). Additionally, the datasets were chosen based on the following 
specific criteria: They encompassed natural populations in their native habitats, 
comprised noninvasive and nondomesticated species, included a minimum of 
20 unrelated individuals sampled from five or more locations, and featured a 
high-quality reference genome, or one of a closely related species. We estimated 
each species’ natural range based on 1,000 random observations downloaded 
from the Global Biodiversity Information Facility (http://www.gbif.org) using the 
R packages rgbif and gbif.range (110).

Finally, we explored the phylogenetic relationship between reference genome 
species using TimeTree (https://timetree.org/). Phylogenetic distances between 
species were calculated based on the TimeTree phylogeny using the R package 
ape (function: cophenetic).

SNP Calling. We applied a uniform SNP calling pipeline to all datasets for con-
sistency. This pipeline was derived from a previous study and was selected as it 
optimizes the trade off between SNP quality and processing times (111). Raw fastq 
files were trimmed using fastp (112) with default settings. Clean reads were then 
aligned to reference genomes with bwa-mem (v0.7.17-r1188) (113), using 12 
distinct reference genomes to map 17 datasets. If a species reference genome 
was not available, we used that of a closely related species. Three clusters of 
closely related species were mapped to the same reference genome (B. pendula 
and B. platyphylla mapped to B. pendula; E. magnificata, E. sideroxylon and E. 
albens to E. grandis; H. annuus, H. petiolaris and H. argophyllus to H. annuus). 
Following mapping, samtools was used to convert the alignment files from 
sequence alignment map (SAM) format to sorted, indexed binary alignment map 
(BAM) files, while discarding any alignment with mapping quality below 10 (−q 
10) (114). The MarkDuplicates tool (115) from Picard tools was used to remove 
potential PCR duplicates and to set read groups. Indels were realigned using 
GATK RealignerTargetCreator followed by GATK IndelRealigner (116). After indel 
realignment, SNP calling was performed using BCFTtools mpileup, computing 
genotype likelihoods based on alignments with a minimum mapping quality 
of 5 (−q 5), followed by BCFtools call to identify SNPs from the pileup output 
and generate VCFs (114). Finally, we filtered raw VCF files with VCFtools (117) 
to retain only biallelic SNPs genotyped in at least 70% of the individuals, SNPs 
with quality value above 30 (--minQ 30), genotype quality above 20 (--minGQ 
20) and minimum read depth above 5 (--minDP 5).

For downstream analyses, we retained SNP present at all minor allele fre-
quencies except singletons. This retention of frequencies, often overlooked, was 
critical since the method employed to detect selective sweeps relies upon eval-
uating the patterns of LD across genic regions (45). Therefore, filtering by allele 
frequency would introduce a bias by distorting LD patterns and could significantly 
decrease the detective power of the analysis, as excess of low frequency variants 
constitutes the main signature of a selective sweep (118). However, singletons 

are often bioinformatic artifacts and distinguishing them from real mutations can 
be challenging, hence their exclusion (119).

Finally, each dataset was filtered based on genomic relatedness (Fig. 1D). 
This step was taken to remove closely related individuals, as cryptic related-
ness can potentially distort the estimation of regions under selection similarly 
to how it can confound GWAS (120). We used Plink (--genome function) to 
calculate relatedness (121), and the R package PlinkQC for filtering (122). 
PlinkQC aims to find the minimum number of individuals to remove to keep 
relatedness between any pairs below a chosen threshold (122). Individuals 
were systematically excluded from each species dataset to ensure that no relat-
edness scores between pairs exceeded 0.2, effectively removing any first and 
second-degree relatedness.

Orthology Inference. To assign genes to orthogroups, we first retrieved 
the amino acid sequences (proteomes) for each of the 12 reference species 
(SI Appendix, Table S1). For each gene, we selected a primary transcript according 
to the longest isoform using custom scripts. Sequences were sorted by amino 
acid length, and each protein was given a name corresponding to the genomic 
coordinates of its gene. A Perl script was used to scan the proteins FASTA files. 
Upon encountering a duplicate sequence (i.e., a sequence with the same header), 
the script retained the first occurrence (the longest) and discarded subsequent 
occurrences. The decision is made based on whether the header has been encoun-
tered before. If it is the first time encountering a particular header, the script writes 
both the header and sequence to the output file. Finally, Orthofinder2 (51) was 
run with default settings using as input the 12 filtered proteomes, including only 
a single transcript per gene.

Detection of Selective Sweeps Using OmegaPlus. We used OmegaPlus (45) 
to scan each species dataset for global selective sweeps. OmegaPlus searches for 
specific LD patterns characteristic of recent hard selective sweeps and outputs 
the ω-statistic (13). LD-based methods have been shown to outperform SFS-
based methods in the search for hard selective sweeps resulting in higher true 
positive rate, and OmegaPlus (45) has been consistently reported as the most 
sensitive tool to detect potential hard selective sweeps (10, 15, 118). For our 
analysis of repeated sweeps across multiple species using PicMin, it is preferable 
to use the most sensitive method at the cost of a higher false positive rate, in 
order to detect the highest number of true positive sweeps. This is not a reason 
of concern in comparative studies using PicMin, as the same false positives 
are unlikely to arise from independent analyses in different species (46). We 
extracted genes from each species’ VCF and added 1,000 bp flanking regions on 
either side to include potential promoter and regulatory regions. Subsequently, 
OmegaPlus was run on each gene using a grid size of three, resulting in three 
measurements: one at the first SNP, one at the last SNP, and one equidistant 
between those two measurements. The minimum and maximum sizes of the 
subregion around a position that was included in the calculation of the ω-sta-
tistic were set to 500 and 100,000 base pairs, respectively. For each gene we 
retained the second scan, which was expected to lie approximately near the 
center of genes.

Following OmegaPlus, we ranked genes within each species by converting 
ω-scores to empirical P-values. An empirical P-value corresponds to the rank of a 
given gene’s selection score relative to all other genes from that species, therefore 
it reflects the strength of evidence against a null hypothesis of no selection (46). 
Gene empirical P-values were further summarized within each orthogroup by 
taking the lowest empirical P-value (i.e., the strongest selection evidence for a 
sweep) and applying a Dunn-Sidak correction to account for the number of par-
alogs within the orthogroup. This method of correcting for multiple comparisons 
within orthogroups only represents the contribution of the member gene with the 
strongest sweep signature within a given species (i.e., if two genes experience 
sweeps within an orthogroup in a given species, only the gene with the stronger 
signal contributes to the test).

We excluded orthogroups with more than 10 paralogs within a species, as they 
would be heavily penalized by the Dunn-Sidak correction and suffer from low 
power. Furthermore, we removed orthogroups with genes from less than seven 
species from the analysis, as PicMin sensitivity would be reduced under such 
conditions. Finally, after these exclusions, we reranked the empirical p-values 
within each species to ensure uniform distributions of orthogroups empirical 
p-values for PicMin.

http://www.pnas.org/lookup/doi/10.1073/pnas.2406832121#supplementary-materials
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https://timetree.org/
http://www.pnas.org/lookup/doi/10.1073/pnas.2406832121#supplementary-materials
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Detection of Selective Sweeps Using OmegaPlus: Additional Approaches. 
OmegaPlus was tested using the methodology outlined in the preceding section, 
with variations in the minimum window settings to explore robustness of our 
results. We experimented with both 200 and 1,000 as minimum window sizes 
before ultimately opting for the intermediate value of 500. This was crucial, as 
research indicates that this setting can potentially significantly impact results 
and introduce increased stochasticity, particularly when employing very small 
minimum windows (118).

Additionally, we explored a genome-wide scan strategy, covering the entire 
genomes at intervals of 1,000 bases. Subsequently, we extracted the scans fall-
ing within genes and aggregated these measurements on a per-gene basis by 
calculating the average for each gene, before applying the same methodology 
as before. However, we deemed this latter approach unsuitable due to its bias 
toward shorter genes, which tended to report more extreme average ω-scores.

Nevertheless, we evaluated the correlation between all different OmegaPlus 
runs per dataset and systematically examined the pleiotropy of the candidate 
orthogroups derived from each approach to enhance our confidence in the results.

Testing for Repeated Global Sweeps: PicMin. We used PicMin (46) to test for 
repetitive selective sweeps in 13,268 orthogroups across 17 species. PicMin uses 
order statistics to perform hypothesis tests on a set of ranked values, in this case 
empirical P-values derived from OmegaPlus ω scores, and identifies orthogroups 
enriched for large numbers of genes with low empirical P-values (46). Lower 
OmegaPlus empirical p-values correspond to higher ω scores, and indicate 
genes with stronger evidence of selection. For each orthogroup, PicMin provides 
a P-value representing the probability of generating ranks as extreme or more 
extreme than the observation under the null hypothesis of random genetic drift 
driving the OmegaPlus scores within each species. The method works as follows: 
For an orthogroup with genes in n species or lineages (17 in this case), under the 
null hypothesis the n empirical P-values representing the strength of evidence 
for selective sweeps in each species should follow a uniform distribution. If we 
order the empirical P-values within the orthogroup, the theory of order statistics 
shows they have marginal distributions that belong to the beta distribution, which 
PicMin uses to compute one-sided P-values. If the xth rank in the list of ordered 
empirical P-values is low relative to the beta distribution, this indicates that the x 
species with the lowest empirical P-values all have stronger signatures of selective 
sweeps than would be expected by chance. Because some genes will always have 
a low rank within one species, we ignore the x = 1st (lowest) ranked empirical 
P-value and consider all remaining higher ranks, effectively conducting tests of 
repeatability across two or more species. PicMin applies a multiple comparisons 
correction to the minimum P-value across all x = {2…n} contrasts, based on the 
methods by Tippett (123) and Dunn and Sidak (124, 125). This results in a final 
P-value that reflects the evidence that a particular orthogroup exhibits repeated 
adaptation. Finally, a multiple testing correction to account for the number of 
tested orthogroups was applied to the final per orthogroup P-values according 
to the Benjamini and Hochberg (126) formula, implemented in the R function 
p.adjust (method = “fdr”).

Population Structure Assessment. For population structure assessment, SNPs 
with minor allele frequencies < 0.05 were discarded (VCFtools) (117) and each 
dataset was pruned by LD (r2 > 0.4) using the indep-pairphase function of Plink 
in windows of 50 and step of 5 (121). Population structure was explored using 
principal component analysis with Plink and ancestry inference with fastSTRUC-
TURE (127), testing Ks from 1 to 10. The representative admixture model for each 
dataset was determined using fastSTRUCTURE built-in chooseK function, which 
selects the model that maximizes the log-marginal likelihood lower bound of 
the data and best explain strong population structure (127).

Weir and Cockerham FST (128) was calculated between the populations iden-
tified with fastSTRUCTURE on a per SNP site basis with the vcftools function weir-
fst-pop (117). Within each species, individuals were assigned to populations 
according to the best K model Q coefficient, using as threshold of inclusion Q > 
0.9. Average FST per gene was calculated by taking the mean across FST values of 
SNPs within each gene.

Gene Length. We assessed the association between gene length and OmegaPlus 
empirical P-values by calculating their Pearson correlation in each species, and 
examining the consistency of any patterning across species. We tested whether 
the mean gene length of the orthogroups with repeated sweep signatures 

identified with PicMin differed significantly from the expectation for randomly 
chosen genes. This was done by taking 10,000 random orthogroup draws of the 
same size as the significant set (33 orthogroups) and calculating the mean gene 
length of each draw. We then compared the mean of our candidate set against 
this null distribution.

Recombination Landscape. We tested the correlation between gene recom-
bination rate and evidence for selective sweeps derived from the OmegaPlus 
analysis. To achieve this, we downloaded recombination rate data for A. thaliana 
(129) and Helianthus annuus (130), corresponding to four distinct datasets in our 
analysis (A. thaliana, H. annuus, H. petiolaris, H. argophyllus). We then constructed 
density plots (in R) comparing OmegaPlus per-gene empirical p-values against 
the ranked average gene recombination rate.

Furthermore, we estimated recombination rates from SFS patterns for each 
dataset using the R package FastEPRR (131). The final filtered VCFs used for the 
main analysis were further refined to include only SNPs with minor allele fre-
quency above 0.1 located on the major scaffolds (excluding short/fragmented 
scaffolds to avoid inaccurate phasing), and to retain no more than one SNP every 
2,500 bp, with VCFtools (117). This filtering step ensured a manageable SNP 
set for subsequent computations. Each species’ VCF was then split by chromo-
some and phased using Beagle (132). Recombination rates were estimated with 
FastEPRR (131) in nonoverlapping 100,000 bp windows, and average per-gene 
recombination rates were calculated and then converted into empirical P-values 
in R. We used the R function qbinom to calculate the total number of driving 
genes expected to fall in either 5% tail of the distribution of genes’ recombination 
rates across all species.

Nucleotide Diversity. To determine whether BGS could have influenced our 
repeatability results, we calculated genome-wide nucleotide diversity at each 
SNP site for each species using VCFtools (117). Next, we computed the average 
nucleotide diversity per gene for all genes in every species. We then compared 
the driving genes’ average nucleotide diversity relative to the average gene 
nucleotide diversity distribution within each species. Finally, we converted per-
gene nucleotide diversity estimates into empirical P-values in R, and used the R 
function qbinom to calculate the total number of driving genes expected to fall in 
either 5% tail of the distribution of genes’ nucleotide diversity across all species.

Estimation of Pleiotropy. We estimated the amount of pleiotropy for each 
gene using two characteristics based on gene expression data: A) specificity of 
expression across tissues (77) and B) centrality within coexpression networks (78). 
To measure tissue specificity A), we obtained A. thaliana tissue expression data 
from Expression Atlas, accession E-MTAB-7978 (75). This dataset includes tissue 
expression (transcripts per million - TPM) across developmental stages, tissue 
types, and subtissue types. We computed the mean TPM across all developmental 
stages and subtissue types within each tissue type, to result in the mean TPM 
for each of the 23 tissue types. The tissue specificity metric τ was determined 
following the method by Yanai et al. (79) as

� =

∑N

i=1

�

1−x
i

�

N − 1
,

where, for a given gene, xi corresponds to the mean TPM for a given tissue type 
normalized by the maximum mean TPM across N tissue types.

We converted τ scores into per-gene empirical P-values, treating higher τ esti-
mates (corresponding to higher tissue specificity) as higher empirical P-values. 
We then applied the same methodology used to summarize OmegaPlus per-gene 
empirical P-values into orthogroups values, retaining the minimum empirical 
P-value (corresponding to minimum τ and therefore maximum pleiotropy) per 
orthogroup and applying a Dunn-Šidák correction to correct for the number of 
paralogs. Finally, we transformed per-orthogroup empirical P-values into Z-scores 
with a mean of 0 and SD of 1 across all orthogroups.

This approach avoids assuming that specificity/pleiotropy is maintained across 
paralogs, which should be more representative than taking the mean τ per-
orthogroup. In fact, calculating the mean τ per orthogroup significantly decreased 
the prevalence of high τ values in the genome-wide distribution. This suggests 
that tissue specificity within orthogroups varies significantly among paralogs, 
possibly due to neofunctionalization or subfunctionalization. Additionally, we 
explored the same methodology in the reverse direction, considering lower τ 
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estimates as lower empirical P-values. However, this alternative approach did 
not yield any substantial differences in the results.

To calculate the four centrality measures of coexpression networks B), we 
built two networks using coexpression data from ATTED-II for A. thaliana and M. 
truncatula. The ATTED-II database summarizes gene coexpression data derived 
from RNA-seq and microarray sources in a condition-independent manner, 
which is given as a standardized z-score between a given pair of genes (76). To 
construct coexpression networks, genes were treated as nodes and z-scores as 
edges, where positive z-scores denote positive coexpression and vice versa for 
negative z-scores. Coexpression gene tables were downloaded for both species: 
A. thaliana = Ath-u.c3-0 and M. truncatula = Mtr-u.c3- 0. We discarded all edges 
with −5 < z < 2.33 following the recommendations for significant negative/
positive coexpression.

The A. thaliana network included 18,570 genes, while M. truncatula net-
work included 17,786 genes. Networks were generated using the igraph 
package in R. Node betweenness and closeness were calculated using the 
estimate_betweenness() and closeness() functions, respectively. Node degree 
and strength were calculated as the number of edges and the sum of all edge 
absolute z-scores respectively. We then condensed the resulting gene central-
ity measures into per-orthogroup Z-scores with mean 0 and SD of 1 across 
all orthogroups, with the same approach used for tissue specificity τ scores 
and testing both directions for the initial conversion of centrality scores into 
empirical P-values.

To test whether genes with repeated sweep signatures had high/low values of 
pleiotropy, for both the tissue specificity A) and centrality measures B) we used 
a bootstrapping method to compare their values to those of randomly chosen 
genes. For each measure, we calculated the mean z-score of the candidate set 
for repeatability, including 33 OGs. We then performed 10,000 random draws, 
each comprising the same number of orthogroups as the candidate set and cal-
culated the mean of each random draw. Finally, we assessed whether the mean 
of the candidate set fell within the 95% CI of the means from the 10,000 random 
draws. For the smaller sets of candidates, we assessed pleiotropy by calculating 

Stouffer’s Z score (133) for tissue specificity and centrality measures using the 
following formula:

Z =

∑N

i=1
Z
i

√

n
.

Gene Duplication. We used the output from Orthofinder2 to count duplication 
events within orthogroups, including both terminal and nonterminal nodes. We 
then used these data to test whether the candidate set with repeated sweep sig-
natures was significantly enriched for duplications, using the same bootstrapping 
method used for pleiotropy (described in the previous section).

Data, Materials, and Software Availability. The scripts for SNP calling are 
available at: https://github.com/GabrieleNocchi/snp_calling_bcftools_slurm 
(134). The scripts for the population structure analysis are available at: https://
github.com/GabrieleNocchi/population_structure_analysis (135). The scripts for 
the main analyses are available at https://github.com/GabrieleNocchi/RepSweeps 
(136). References and links to the genomic resources for each dataset are avail-
able in SI Appendix, Table S1. All other data are included in the manuscript and/
or SI Appendix.
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