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Abstract
General results from statistical learning theory suggest to understand not only brain compu-

tations, but also brain plasticity as probabilistic inference. But a model for that has been

missing. We propose that inherently stochastic features of synaptic plasticity and spine

motility enable cortical networks of neurons to carry out probabilistic inference by sampling

from a posterior distribution of network configurations. This model provides a viable alterna-

tive to existing models that propose convergence of parameters to maximum likelihood val-

ues. It explains how priors on weight distributions and connection probabilities can be

merged optimally with learned experience, how cortical networks can generalize learned

information so well to novel experiences, and how they can compensate continuously for

unforeseen disturbances of the network. The resulting new theory of network plasticity

explains from a functional perspective a number of experimental data on stochastic aspects

of synaptic plasticity that previously appeared to be quite puzzling.

Author Summary

Synaptic connectivity between neurons in the brain and the efficacies (“weights”) of these
synaptic connections are thought to encode the long-term memory of an organism. But a
closer look at their molecular implementation, as well as imaging experiments over longer
periods of time, have shown that synaptic connections are subject to numerous stochastic
processes. We propose that this seeming unreliability of synaptic connections is not a bug,
but an important feature. It endows networks of neurons with an important experimen-
tally observed but theoretically not understood capability: Automatic compensation for
internal and external changes. This perspective of network plasticity requires a new con-
ceptual and mathematical framework, which is provided by this article. Stochasticity of
synapses is seen here not as noise of an inherently deterministic system, but as an inherent
property, similarly as Brownian motion of particles in a physical system cannot be
abstracted away if one wants to understand certain properties of a physical system. In fact,
we find that this underlying stochasticity of synaptic connections enables a network of
neurons to continuously try out new network configurations while maintaining its
functionality.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004485 November 6, 2015 1 / 31

OPEN ACCESS

Citation: Kappel D, Habenschuss S, Legenstein R,
Maass W (2015) Network Plasticity as Bayesian
Inference. PLoS Comput Biol 11(11): e1004485.
doi:10.1371/journal.pcbi.1004485

Editor: Jeff Beck, Duke University, UNITED STATES

Received: April 8, 2015

Accepted: August 3, 2015

Published: November 6, 2015

Copyright: © 2015 Kappel et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding:Written under partial support of the
European Union project #604102 The Human Brain
Project (HBP) and CHIST-ERA ERA-Net (Project
FWF #I753-N23, PNEUMA). The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004485&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
We reexamine in this article the conceptual and mathematical framework for understanding the
organization of plasticity in networks of neurons in the brain. We will focus on synaptic plastic-
ity and network rewiring (spine motility) in this article, but our framework is also applicable to
other network plasticity processes. One commonly assumes, that plasticity moves network
parameters θ (such as synaptic connections between neurons and synaptic weights) to values θ�

that are optimal for the current computational function of the network. In learning theory, this
view is made precise for example as maximum likelihood learning, where model parameters θ
are moved to values θ� that maximize the fit of the resulting internal model to the inputs x that
impinge on the network from its environment (by maximizing the likelihood of these inputs x).
The convergence to θ� is often assumed to be facilitated by some external regulation of learning
rates, that reduces the learning rate when the network approaches an optimal solution.

This view of network plasticity has been challenged on several grounds. From the theoretical
perspective it is problematic because in the absence of an intelligent external controller it is
likely to lead to overfitting of the internal model to the inputs x it has received, thereby reduc-
ing its capability to generalize learned knowledge to new inputs. Furthermore, networks of neu-
rons in the brain are apparently exposed to a multitude of internal and external changes and
perturbations, to which they have to respond quickly in order to maintain stable functionality.

Other experimental data point to surprising ongoing fluctuations in dendritic spines and
spine volumes, to some extent even in the adult brain [1] and in the absence of synaptic activity
[2]. Also a significant portion of axonal side branches and axonal boutons were found to appear
and disapper within a week in adult visual cortex, even in the absence of imposed learning and
lesions [3]. Furthermore surprising random drifts of tuning curves of neurons in motor cortex
were observed [4]. Apart from such continuously ongoing changes in synaptic connections and
tuning curves of neurons, massive changes in synaptic connectivity were found to accompany
functional reorganization of primary visual cortex after lesions, see e.g. [5].

We therefore propose to view network plasticity as a process that continuously moves high-
dimensional network parameters θ within some low-dimensional manifold that represents a
compromise between overriding structural rules and different ways of fitting the internal
model to external inputs x. We propose that ongoing stochastic fluctuations (not unlike
Brownian motion) continuously drive network parameters θ within such low-dimensional
manifold. The primary conceptual innovation is the departure from the traditional view of
learning as moving parameters to values θ� that represent optimal (or locally optimal) fits to
network inputs x. We show that our alternative view can be turned into a precise learning
model within the framework of probability theory. This new model satisfies theoretical require-
ments for handling priors such as structural constraints and rules in a principled manner, that
have previously already been formulated and explored in the context of artificial neural net-
works [6, 7], as well as more recent challenges that arise from probabilistic brain models [8].
The low-dimensional manifold of parameters θ that becomes the new learning goal in our
model can be characterized mathematically as the high probability regions of the posterior dis-
tribution p�(θjx) of network parameters θ. This posterior arises as product of a general prior
pS(θ) for network parameters (that enforces structural rules) with a term that describes the
quality of the current internal model (e.g. in a predictive coding or generative modeling frame-
work: the likelihood pN(xjθ) of inputs x for the current parameter values θ of the networkN).
More precisely, we propose that brain plasticity mechanisms are designed to enable brain net-
works to sample from this posterior distribution p�(θjx) through inherent stochastic features of
their molecular implementation. In this way synaptic and other plasticity processes are able to
carry out probabilistic (or Bayesian) inference through sampling from a posterior distribution
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that takes into account both structural rules and fitting to external inputs. Hence this model
provides a solution to the challenge of [8] to understand how posterior distributions of weights
can be represented and learned by networks of neurons in the brain.

This new model proposes to reexamine rules for synaptic plasticity. Rather than viewing
trial-to-trial variability and ongoing fluctuations of synaptic parameters as the result of a sub-
optimal implementation of an inherently deterministic plasticity process, it proposes to model
experimental data on synaptic plasticity by rules that consist of three terms: the standard (typi-
cally deterministic) activity-dependent (e.g., Hebbian or STDP) term that fits the model to
external inputs, a second term that enforces structural rules (priors), and a third term that pro-
vides the stochastic driving force. This stochastic force enables network parameters to sample
from the posterior, i.e., to fluctuate between different possible solutions of the learning task.
The stochastic third term can be modeled by a standard formalism (stochastic Wiener process)
that had been developed to model Brownian motion. The first two terms can be modeled as
drift terms in a stochastic process. A key insight is that one can easily relate details of the result-
ing more complex rules for the dynamics of network parameters θ, which now become stochas-
tic differential equations, to specific features of the resulting posterior distribution p�(θjx) of
parameter vectors θ from which the network samples. Thereby, this theory provides a new
framework for relating experimentally observed details of local plasticity mechanisms (includ-
ing their typically stochastic implementation on the molecular scale) to functional conse-
quences of network learning. For example, one gets a theoretically founded framework for
relating experimental data on spine motility to experimentally observed network properties,
such as sparse connectivity, specific distributions of synaptic weights, and the capability to
compensate against perturbations [9].

We demonstrate the resulting new style of modeling network plasticity in three examples.
These examples demonstrate how previously mentioned functional demands on network plas-
ticity, such as incorporation of structural rules, automatic avoidance of overfitting, and inher-
ent and immediate compensation for network perturbances, can be accomplished through
stochastic local plasticity processes. We focus here on common models for unsupervised learn-
ing in networks of neurons: generative models. We first develop the general learning theory for
this class of models, and then describe applications to common non-spiking and spiking gener-
ative network models. Both structural plasticity (see [10, 11] for reviews) and synaptic plasticity
(STDP) are integrated into the resulting theory of network plasticity.

Results
We present a new theoretical framework for analyzing and understanding local plasticity mech-
anisms of networks of neurons in the brain as stochastic processes, that generate specific distri-
butions p(θ) of network parameters θ over which these parameters fluctuate. This framework
can be used to analyze and model many types of learning processes. We illustrate it here for the
case of unsupervised learning, i.e., learning without a teacher or rewards. Obviously many learn-
ing processes in biological organisms are of this nature, especially learning processes in early
sensory areas, and in other brain areas that have to provide and maintain on their own an ade-
quate level of functionality, even in the face of internal or external perturbations.

A common framework for modeling unsupervised learning in networks of neurons are gen-
erative models, which date back to the 19th century, when Helmholtz proposed that perception
could be understood as unconscious inference [12]. Since then the hypothesis of the “generative
brain” has been receiving considerable attention, fueling interest in various aspects of the rela-
tion between Bayesian inference and the brain [8, 13, 14]. The basic assumption of the “Bayesian
brain” theory is that the activity z of neuronal networks in the brain can be viewed as an internal
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model for hidden variables in the outside world that give rise to sensory experiences x (such as
the response x of auditory sensory neurons to spoken words that are guessed by an internal
model z). The internal model z is usually assumed to be represented by the activity of neurons
in the network, e.g., in terms of the firing rates of neurons, or in terms of spatio-temporal spike
patterns. A networkN of stochastically firing neuron is modeled in this framework by a proba-
bility distribution pN(x,zjθ) that describes the probabilistic relationships betweenN input pat-
terns x = x1, . . ., xN and corresponding network responses z = z1, . . ., zN, where θ denotes the
vector of network parameters that shape this distribution, e.g., via synaptic efficacies and net-
work connectivity. The marginal probability pN(xjθ) = ∑z pN(x,zjθ) of the actually occurring
inputs x = x1, . . ., xN under the resulting internal model of the neural networkN with parame-
ters θ can then be viewed as a measure for the agreement between this internal model (which
carries out “predictive coding” [15]) and its environment (which generates the inputs x).

The goal of network learning is usually described in this probabilistic generative framework
as finding parameter values θ� that maximize this agreement, or equivalently the likelihood of
the inputs x (maximum likelihood learning):

θ� ¼ arg max
θ

pN ðxjθÞ: ð1Þ

Locally optimal parameter solutions are usually determined by gradient ascent on the data like-
lihood pN(xjθ).

Learning a posterior distribution through stochastic synaptic plasticity
In contrast, we assume here that not only a neural networkN, but also a prior pS(θ) for its
parameters are given. This prior pS can encode both structural constraints (such as sparse con-
nectivity) and structural rules (e.g., a heavy-tailed distribution of synaptic weights). Then the
goal of network learning becomes:

learn the posterior distributionp�ðθjxÞdefined ðup to normalizationÞ by
pSðθÞ � pN ðxjθÞ :

ð2Þ

The patterns x = x1, . . ., xN are assumed here to be regularly reoccurring network inputs.
A key insight (see Fig 1 for an illustration) is that stochastic local plasticity rules for the

parameters θi enable a network to achieve the learning goal Eq (2): The distribution of network
parameters θ will converge after a while to the posterior distribution p�(θ) = p�(θjx)—and pro-
duce samples from it—if each network parameter θi obeys the dynamics

dyi ¼ b
@

@yi

log pSðθÞ þ @

@yi
log pN ðxjθÞ

� �
dt þ

ffiffiffiffiffi
2b

p
dW i ; ð3Þ

where the learning rate b> 0 controls the speed of the parameter dynamics. Eq (3) is a stochas-
tic differential equation (see [16]), which differs from commonly considered differential equa-
tions through the stochastic term dWi that describes infinitesimal stochastic increments and
decrements of a Wiener processWi. A Wiener process is a standard model for Brownian
motion in one dimension (more precisely: the limit of a random walk with infinitesimal step
size and normally distributed incrementsW t

i �W s
i � NORMALð0; t � sÞ between times t

and s). Thus in an approximation of Eq (3) for discrete time steps Δt the term dWi can be
replaced by Gaussian noise with variance Δt (see Eq (7)). Note that Eq (3) does not have a sin-
gle solution θi(t), but a continuum of stochastic sample paths (see Fig 1F for an example) that
each describe one possible time course of the parameter θi.

Network Plasticity as Bayesian Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004485 November 6, 2015 4 / 31



Fig 1. Maximum likelihood (ML) learning vs. synaptic sampling. A, B, C: Illustration of ML learning for two
parameters θ = (θ1,θ2) of a neural networkN. A: 3D plot of an example likelihood function. For a fixed set of
inputs x it assigns a probability density (amplitude on z-axis) to each parameter setting θ. B: This likelihood
function is defined by some underlying neural networkN. C: Multiple trajectories along the gradient of the
likelihood function in (A). The parameters are initialized at random initial values (black dots) and then follow
the gradient to a local maximum (red triangles). D: Example for a prior that prefers small values for θ. E: The
posterior that results as product of the prior (D) and the likelihood (A). F: A single trajectory of synaptic
sampling from the posterior (E), starting at the black dot. The parameter vector θ fluctuates between different
solutions, the visited values cluster near local optima (red triangles).G: Cartoon illustrating the dynamic
forces (plasticity rule Eq (3)) that enable the network to sample from the posterior distribution p*(θjx) in (E).
Magnification of one synaptic sampling step dθ of the trajectory in (F) (green). The three forces acting on θ:
the deterministic drift term (red) is directed to the next local maximum (red triangle), it consists of the first two
terms in Eq (3); the stochastic diffusion term dW (black) has a random direction. See S2 Text for figure
details.

doi:10.1371/journal.pcbi.1004485.g001
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Rigorous mathematical results based on Fokker-Planck equations (see Methods and S1 Text
for details) allow us to infer from the stochastic local dynamics of the parameters θi given by a
stochastic differential equation of the form Eq (3) the probability that the parameter vector θ can
be found after a while in a particular region of the high-dimensional space in which it moves.
The key result is that for the case of the stochastic dynamics according to Eq (3) this probability
is equal to the posterior p�(θjx) given by Eq (2). Hence the stochastic dynamics Eq (3) of network
parameters θi enables a network to achieve the learning goal Eq (2): to learn the posterior distri-
bution p�(θjx). This posterior distribution is not represented in the network through any explicit
neural code, but through its stochastic dynamics, as the unique stationary distribution of a Mar-
kov process from which it samples continuously. In particular, if most of the mass of this poste-
rior distribution is concentrated on some low-dimensional manifold, the network parameters θ
will move most of the time within this low-dimensional manifold. Since this realization of the
posterior distribution p�(θjx) is achieved by sampling from it, we refer to this model defined by
Eq (3) (in the case where the parameters θi represent synaptic parameters) as synaptic sampling.

The stochastic term dWi in Eq (3) provides a simple integrative model for a multitude of
biological and biochemical stochastic processes that effect the efficacy of a synaptic connection.
The mammalian postsynaptic density comprises over 1000 different types of proteins [17].
Many of those proteins that effect the amplitude of postsynaptic potentials and synaptic plas-
ticity, for example NMDA receptors, occur in small numbers, and are subject to Brownian
motion within the membrane [18]. In addition, the turnover of important scaffolding proteins
in the postsynaptic density such as PSD-95, which clusters glutamate receptors and is thought
to have a substantial impact on synaptic efficacy, is relatively fast, on the time-scale of hours to
days, depending on developmental state and environmental condition [19]. Also the volume of
spines at dendrites, which is assumed to be directly related to synaptic efficacy [20, 21] is
reported to fluctuate continuously, even in the absence of synaptic activity [2]. Furthermore
the stochastically varying internal states of multiple interacting biochemical signaling pathways
in the postsynaptic neuron are likely to effect synaptic transmission and plasticity [22].

The contribution of the stochastic term dWi in Eq (3) can be scaled by a temperature

parameter
ffiffiffiffi
T

p
, where T can be any positive number. The resulting stationary distribution of θ

is proportional to p�ðθÞ1T , so that the dynamics of the stochastic process can be described by the

energy landscape
log p�ðθÞ

T
. For high values of T this energy landscape is flattened, i.e., the

main modes of p�(θ) become less pronounced. For T! 0 the dynamics of θ approaches a
deterministic process and converges to the next local maximum of p�(θ). Thus the learning
process approximates for low values of Tmaximum a posteriori (MAP) inference [7]. We pro-
pose that this temperature parameter T is regulated in biological networks of neurons depen-
dent on the developmental state, environment, and behavior of an organism. One can also
accommodate a modulation of the dynamics of each individual parameter θi by a learning rate
b(θi) that depends on its current value (see Methods).

Online synaptic sampling
For online learning one assumes that the likelihood pN(xjθ) = pN(x

1, . . ., xNjθ) of the network
inputs can be factorized:

pN ðx1; . . . ; xN jθÞ ¼
YN
n¼1

pN ðxnjθÞ; ð4Þ

i.e., each network input xn can be explained as being drawn individually from pN(x
njθ), inde-

pendently from other inputs.
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The weight update rule Eq (3) depends on all inputs x = x1, . . ., xN, hence synapses have to
keep track of the whole set of all network inputs for the exact dynamics (batch learning). In an
online scenario, we assume that only the current network input xn is available for synaptic sam-
pling. One then arrives at the following online-approximation to Eq (3)

dyi ¼ b
@

@yi

log pSðθÞ þ N
@

@yi
log pN ðxnjθÞ

� �
dt þ

ffiffiffiffiffiffi
2b

p
dW i : ð5Þ

Note the additional factor N in the rule. It compensates for the N-fold summation of the first
and last term in Eq (5) when one moves through all N inputs xn. Although convergence to the
correct posterior distribution cannot be guaranteed theoretically for this online rule, we show
in Methods that the rule is a reasonable approximation to the batch-rule Eq (3). Furthermore,
all subsequent simulations are based on this online rule, which demonstrates the viability of
this approximation.

Relationship to maximum likelihood learning
Typically, synaptic plasticity in generative network models is modeled as maximum likelihood
learning. Time is often discretized into small discrete time steps Δt. For gradient-based

approaches the parameter change DyML
i is then given by the gradient of the log likelihood mul-

tiplied with some learning rate η:

DyML
i ¼ Z

@

@yi
log pN ðxnjθÞ : ð6Þ

To compare this maximum likelihood update with synaptic sampling, we consider a version of
the parameter dynamics Eq (5) for discrete time (see Methods for a derivation):

Dyi ¼ Z
@

@yi
log pSðθÞ þ N

@

@yi

log pN ðxnjθÞ
� �

þ
ffiffiffiffiffi
2Z

p
nti ; ð7Þ

where the learning rate η is given by η = b Δt and nti denotes Gaussian noise with zero mean
and variance 1, drawn independently for each parameter θi and each update time t. We see that
the maximum likelihood update Eq (6) becomes one term in this online version of synaptic
sampling. Eq (7) is a special case of the online Langevin sampler that was introduced in [23].

The first term @
@yi

log pSðθÞ in Eq (7) arises from the prior pS(θ), and has apparently not

been considered in previous rules for synaptic plasticity. An additional novel component is the
Gaussian noise term nti (see also Fig 1G). It arises because the accumulated impact of the Wie-
ner processWi over a time interval of length Δt is distributed according to a normal distribu-
tion with variance Δt. In contrast to traditional maximum likelihood optimization based on
additive noise for escaping local optima, this noise term is not scaled down when learning
approaches a local optimum. This ongoing noise is essential for enabling the network to sample
from the posterior distribution p�(θ) via continuously ongoing synaptic plasticity (see Fig 1F).

Synaptic sampling improves the generalization capability of a neural
network
The previously described theory for learning a posterior distribution over parameters θ can be
applied to all neural network modelsN where the derivative @

@yi
log pN ðxnjθÞ in Eq (5) can be

efficiently estimated. Since this term also has to be estimated for maximum likelihood learning
Eq (6), synaptic sampling can basically be applied to all neuron and network models that are
amenable to maximum likelihood learning. We illustrate salient new features that result from
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synaptic sampling (i.e., plasticity rules Eqs (5) or (7)) for some of these models. We begin with
the Boltzmann machine [24], one of the oldest generative neural network models. It is cur-
rently still extensively investigated in the context of deep learning [25, 26]. We demonstrate in
Fig 2D and 2F the improved generalization capability of this model for the learning approach
Eq (2) (learning of the posterior), compared with maximum likelihood learning (approach Eq
(1)), which had been theoretically predicted by [6] and [7]. But this model for learning the pos-
terior (approach Eq (2)) in Boltzmann machines is now based on local plasticity rules. Note
that the Boltzmann machine with synaptic sampling samples simultaneously on two different
time scales: In addition to sampling for given parameters θ from likely network states in the
usual manner, it now samples simultaneously on a slower time scale according to Eq (7) from
the posterior of network parameters θ.

A Boltzmann machine employs extremely simple non-spiking neuron models with binary
outputs. Neuron yi outputs 1 with probability σ(∑j wij yj + bi), else 0, where σ is the logistic sig-
moid sðuÞ ¼ 1

1þe�u, with synaptic weights wij and bias parameters bi. Synaptic connections in a

Boltzmann machine are bidirectional, with symmetric weights (wij = wji). The parameters θ for
the Boltzmann machine consist of all weights wij and biases bi in the network. For the special
case of a restricted Boltzmann machine (RBM), maximum likelihood learning of these parame-
ters can be done efficiently [27], and therefore RBM’s are typically used for deep learning. An

Fig 2. Priors for synaptic weights improve generalization capability. A: The training set, consisting of five samples of a handwritten 1. Below a cartoon
illustrating the network architecture of the restricted Boltzmann machine (RBM), composed of a layer of 784 visible neurons x and a layer of 9 hidden neurons
z. B: Examples from the test set. It contains many different styles of writing that are not part of the training set.C: Evolution of 50 randomly selected synaptic
weights throughout learning (on the training set). The weight histogram (right) shows the distribution of synaptic weights at the end of learning. 80 histogram
bins were equally spaced between -4 and 4. D: Performance of the network in terms of log likelihood on the training set (blue) and on the test set (red)
throughout learning. Mean values over 100 trial runs are shown, shaded area indicates std. The performance on the test set initially increases but degrades
for prolonged learning. E: Evolution of 50 weights for the same network but with a bimodal prior. The prior pS(w) is indicated by the blue curve. Most synaptic
weights settle in the mode around 0, but a few larger weights also emerge and stabilize in the larger mode. Weight histogram (green) as in (C). F: The log
likelihood on the test set maintains a constant high value throughout the whole learning session, compare to (D).

doi:10.1371/journal.pcbi.1004485.g002
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RBM has a layered structure with one layer of visible neurons x and a second layer of hidden
neurons z. Synaptic connections are formed only between neurons on different layers (Fig 2A).
The maximum likelihood gradients DwML

ij ¼ @
@wij

log pN ðxjθÞ and DbML
i ¼ @

@bi
log pN ðxjθÞ can

be efficiently approximated for this model, for example

@

@wij

log pN ðxnjθÞ � zni x
n
j � ẑ ni x̂

n
j ; ð8Þ

where xnj is the output of input neuron j while input xn is presented, and x̂n
j its output during a

subsequent phase of spontaneous activity (“reconstruction phase”); analogously for the hidden
neuron zj (see Methods and S3 Text).

We integrated this maximum likelihood estimate Eq (8) into the synaptic sampling rule Eq
(7) in order to test whether a suitable prior pS(w) for the weights improves the generalization
capability of the network. The network received as input just five samples x1, . . ., x5 of a hand-
written Arabic number 1 from the MNIST dataset (the training set, shown in Fig 2A) that were
repeatedly presented. Each pixel of the digit images was represented by one neuron in the visi-
ble layer (which consisted of 784 neurons). We selected a second set of 100 samples of the
handwritten digit 1 from the MNIST dataset as test set (Fig 2B). These samples include
completely different styles of writing that were not present in the training set. After allowing
the network to learn the five input samples from Fig 2A for various numbers of update steps
(horizontal axis of Fig 2D and 2F), we evaluated the learned internal model of this networkN
for the digit 1 by measuring the average log-likelihood log pN(xjθ) for the test data. The result
is indicated in Fig 2D and 2F for the training samples by the blue curves, and for the new test
examples, that were never shown while synaptic plasticity was active, by the red curves.

First, a uniform prior over the synaptic weights was used (Fig 2C), which corresponds to the
common maximum likelihood learning paradigm Eq (8). The performance on the test set
(shown on vertical axis) initially increases but degrades for prolonged exposure to the training
set (length of that prior exposure shown on horizontal axis). This effect is known as overfitting
[6, 7]. It can be reduced by choosing a suitable prior pS(θ) in the synaptic sampling rule Eq (7).
The choice for the prior distribution is best if it matches the statistics of the training samples
[6], which has in this case two modes (resulting from black and white pixels). The presence of
this prior in the learning rule maintains good generalization capability for test samples even
after prolonged exposure to the training set (red curve in Fig 2F).

The improved generalization capability of the network is a result of the prior distribution. It
is well known that the prior in Bayesian inference allows to effectively prevent overfitting by
making solutions that use fewer or smaller parameters more likely. Similar results would there-
fore emerge in any other implementation of Bayesian learning in neural networks. A thorough
discussion on this topic which is known as Bayesian regularization can be found in [6, 7].

As a consequence, the choice of the prior distribution can have a significant impact on the
learning result. In S3 Text we compared a set of different priors and demonstrate this effect
more systematically. There it can also be seen that if the choice of the prior is bad, the learning
performance can even get worse than in the case without a prior.

Spine motility as synaptic sampling
In the following sections we apply our synaptic sampling framework to networks of spiking
neurons and biological models for network plasticity. The number and volume of spines for a
synaptic connection is thought to be directly related to its synaptic weight [28]. Experimental
studies have provided a wealth of information about the stochastic dynamics of dendritic
spines (see e.g. [1, 28–32]). They demonstrate that the volume of a substantial fraction of
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dendritic spines varies continuously over time, and that all the time new spines and synaptic
connections are formed and existing ones are eliminated. We show that these experimental
data on spine motility can be understood as special cases of synaptic sampling. The synaptic
sampling framework is however very general, and many different models for spine motility can
be derived from it as special cases. We demonstrate this here for one simple model, induced by
the following assumptions:

1. We restrict ourselves to plasticity of excitatory synapses, although the framework is general
enough to apply to inhibitory synapses as well.

2. In accordance with experimental studies [28], we require that spine sizes have a multiplica-
tive dynamics, i.e., that the amount of change within some given time window is propor-
tional to the current size of the spine.

3. We assume here for simplicity that a synaptic connection between two neurons is realized
by a single spine and that there is a single parameter θi for each potential synaptic connec-
tion i.

The last requirement can be met by encoding the state of the synapse in an abstract form, that
represents synaptic connectivity and synaptic plasticity in a single parameter θi. We define that
negative values of θi represent a current disconnection and positive values represent a func-
tional synaptic connection. The distance of the current value of θi from zero indicates how
likely it is that the synapse will soon reconnect (for negative values) or withdraw (for positive
values), see Fig 3A. In addition the synaptic parameter θi encodes for positive values the synap-
tic efficacy wi, i.e., the resulting EPSP amplitudes, by a simple mapping wi = f(θi).

A large class of mapping functions f is supported by our theory (see S4 Text for details). The
second assumption which requires multiplicative synaptic dynamics supports an exponential
function f in our model, in accordance with previous models of spine motility [28]. Thus, we
assume in the following that the efficacy wi of synapse i is given by

wi ¼ exp ðyi � y0Þ ; ð9Þ

see Fig 3C. Note that for a large enough offset θ0, negative parameter values θi (which model a
non-functional synaptic connection) are automatically mapped onto a tiny region close to zero
in the w-space, so that retracted spines have essentially zero synaptic efficacy. The general rule
for online synaptic sampling Eq (5) for the exponential mapping Eq (9) can be written as (see
S4 Text)

dyi ¼ b
@

@yi
log pSðθÞ þ Nwi

@

@wi

log pN ðxnjwÞ
� �

dt þ
ffiffiffiffiffi
2b

p
dW i : ð10Þ

In Eq (10) the multiplicative synaptic dynamics becomes explicit. The gradient
@
@wi

log pN ðxnjwÞ, i.e., the activity-dependent contribution to synaptic plasticity, is weighted by

wi. Hence, for negative values of θi (non-functional synaptic connection), the activities of the
pre- and post-synaptic neurons have negligible impact on the dynamics of the synapse. Assum-
ing a large enough θ0, retracted synapses therefore evolve solely according to the prior pS(θ)
and the random fluctuations dWi. For large values of θi the opposite is the case. The influence
of the prior @

@yi
log pSðθÞ and the Wiener process dWi become negligible, and the dynamics is

dominated by the activity-dependent likelihood term. Large synapses can therefore become
quite stable if the presynaptic activity is strong and reliable (see Fig 3B). Through the use of
parameters θ which determine both synaptic connectivity and synaptic efficacies, the synaptic
sampling framework provides a unified model for structural and synaptic plasticity. The prior
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distribution can have significant impact on the spine motility, encouraging for example sparser
or denser synaptic connectivity. If the activity-dependent second term in Eq (10), that tries to
maximize the likelihood, is small (e.g., because θi is small or parameters are near a mode of the
likelihood) then Eq (10) implements an Ornstein Uhlenbeck process. This prediction of our
model is consistent with a previous analysis which showed that an Ornstein Uhlenbeck process
is a viable model for synaptic spine motility [28].

The weight dynamics that emerges through the stochastic process Eq (10) is illustrated in
the right panel of Fig 3D. A Gaussian parameter prior pS(θi) results in a log-normal prior
pS(wi) in a corresponding stochastic differential equation for synaptic efficacies wi (see S4 Text
for details).

The last term (noise term) in our synaptic sampling rule Eq (10) predicts that eliminated
connections spontaneously regrow at irregular intervals. In this way they can test whether they
can contribute to explaining the input. If they cannot contribute, they disappear again. The
resulting power-law behavior of the survival of newly formed synaptic connections (Fig 3E and
3F) matches corresponding new experimental data [32] and is qualitatively similar to earlier

Fig 3. Integration of spinemotility into the synaptic samplingmodel. A: Illustration of the parametrization of spine motility. Values θ > 0 indicate a
functional synaptic connection.B: A Gaussian prior pS(θ), and a few stochastic sample trajectories of θ according to the synaptic sampling rule Eq (10).
Negative values of θ (gray area) are interpreted as non-functional connections. Some stable synaptic connections emerge (traces in the upper half), whereas
other synaptic connections come and go (traces in lower half). All traces, as well as survival statistics shown in (E, F), are taken from the network simulation
described in detail in the next section and S5 Text. C: The exponential function maps synapse parameters θ to synaptic efficaciesw. Negative values of θ,
corresponding to (retracted) spines are mapped to a tiny region close to zero in thew-space.D: The Gaussian prior in the θ-space translates to a log-normal
distribution in thew-space. The traces from (B) are shown in the right panel transformed into thew-space. Only persistent synaptic connections contribute
substantial synaptic efficacies. E, F: The emergent survival statistics of newly formed synaptic connections, (i.e., formed during the preceding 12 hours)
evaluated at three different start times throughout learning (blue traces, axes are aligned with start times of the analyses). The survival statistics exhibit in our
synaptic sampling model a power-law behavior (red curves, see S5 Text). The time-scale (and exponent of the power-law) depends on the learning rate b in
Eq (10), and can assume any value in our quite general model (shown is b = 10−4 in (E) and b = 10−6 in (F)).

doi:10.1371/journal.pcbi.1004485.g003
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experimental results which revealed a quick decay of transient dendritic spines [30, 31, 33].
Functional consequences of this structural plasticity are explored in the following sections.

Fast adaptation of synaptic connections and weights to a changing input
statistics
We will explore in this and the next section implications of the synaptic sampling rule Eq (10)
for network plasticity in simple generative spike-based neural network models.

The main types of spike-based generative neural network models that have been proposed
are [34–37]. We focus here on the type of models introduced by [36–38], since these models
allow an easy estimation of the likelihood gradient (the second term in Eq (10)) and can relate
this likelihood term to STDP. Since these spike-based neural network models have non-sym-
metric synaptic connections (that model chemical synapses between pyramidal cells in the cor-
tex), they do not allow to regenerate inputs x from internal responses z by running the network
backwards (like in a Boltzmann machine). Rather they are implicit generative models, where
synaptic weights from inputs to hidden neurons are interpreted as implicit models for presyn-
aptic activity, given that the postsynaptic neuron fires.

We focus in this section on a simple model for an ubiquitous cortical microcircuit motif: an
ensemble of pyramidal cells with lateral inhibition, often referred to as Winner-Take-All
(WTA) circuit. It has been proposed that this microcircuit motif provides for computational
analysis an important bridge between single neurons and larger brain systems [39]. We employ
a simple form of divisive normalization (as proposed by [39]; see Methods) to model lateral
inhibition, thereby arriving at a theoretically tractable version of this microcircuit motif that
allows us to compute the maximum likelihood term (second term in Eq (10)) in the synaptic
sampling rule. We assumed Gaussian prior distributions pS(θi), with mean μ and variance σ2

over the synaptic parameters θi (as in Fig 3B). Then the synaptic sampling rule Eq (10) yields
for this model

dyi ¼ b
1

s2
m� yið Þ þ Nwi SðtÞ xiðtÞ � a ewið Þ

� �
dt þ

ffiffiffiffiffi
2b

p
dW i ; ð11Þ

where S(t) denotes the spike train of the postsynaptic neuron and xi(t) denotes the weight-nor-
malized value of the sum of EPSPs from presynaptic neuron i at time t (i.e., the summed EPSPs
that would arise for weight wi = 1; see Methods for details). α is a parameter that scales the
impact of synaptic plasticity depending on the current synaptic efficacy. The resulting activity-
dependent component S(t)(xi(t) − α ewi) of the likelihood term is a simplified version of the stan-
dard STDP learning rule (Fig 4B and 4C), like in [36, 40]. Synaptic plasticity (STDP) for connec-
tions from input neurons to pyramidal cells in theWTA circuit can be understood from the
generative aspect as fitting a mixture of Poisson (or other exponential family) distributions to
high-dimensional spike inputs [36, 37]. The factor wi = exp(θi − θ0) had been discussed in [36],
because it is compatible with the underlying generative model, but provides in addition a better
fit to the experimental data of [41]. We examine in this section emergent properties of network
plasticity in this simple spike-based neural network under the synaptic sampling rule Eq (11).

It is well documented that cortical dendritic spines are transient and that spine turnover is
enhanced by novel experience and training [33, 42, 43]. For example, enhanced spine forma-
tion as a consequence of sensory enrichment was found in mouse somatosensory cortex [33].
In this study the animals were exposed to a new sensory environment by adding additional
objects to their home cage. This sensory enrichment resulted in a rapid increase in the forma-
tion of new spines. If the exposure to the enriched environment was only brief, the newly
formed spines quickly decayed.
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We wondered whether these experimentally observed effects also emerge in our synaptic
sampling model. As in [33] we exposed the network to different sensory environments to study
these effects. Sensory experiences typically involve several processing steps and interactions
between multiple brain systems, and precise knowledge about their cortical representation is still
missing. Therefore we used here a simple symbolic representation of the sensory environment.
We represented each sensory experience by a point in some finite dimensional space which is
covered by the tuning curves of a large number of input neurons. Their spike output was then
communicated to the WTA circuit in the form of 200 ms-long spike patterns of the 1000 input

Fig 4. Adaptation of synaptic connections to changing input statistics through synaptic sampling. A: Illustration of the network architecture. AWTA
circuit consisting of ten neurons z receives afferent stimuli from input neurons x (few connections shown for a single neuron in z).B: The STDP learning curve
that arises from the likelihood term in Eq (11).C: Measured STDP curve that results from a related STDP rule for a moderate pairing frequency of 20 Hz, as in
[41]. (Figure adapted from [36]).D, E: Each sensory experience was modeled by 200 ms long spiking activity of 1000 input neurons, that covered some 3D data
space with Gaussian tuning curves (the results do not depend on the finite dimension of the data space, we chose 3 dimension for easier visualization). Insets
show the firing activity of randomly chosen 50 of the 1000 input neurons for the sample data points marked by green circles. Objects in the environment were
represented by Gaussian clusters (ellipses) in this finite dimensional data space. F: During learning phase 1 (3 hours) only samples from SE were presented to
the network, in phase 2 (which lasted 1 hour) samples from EE. Shortly after the transition from SE to EE the number of newly formed synaptic connections
significantly increases (compare to Fig. 1h in [33]).G: Comparison of the survival of synapses for a network with persistent exposure to EE (EE-EE condition)
and a network that was returned to SE (EE-SE condition). Newly formed synaptic connections are transient and quickly decay after formation. A significantly
larger fraction of synapses persists if the network continuously receives EE inputs (compare to Fig. 2c in [33]). The dots showmeans of measurements taken
every 30minutes, the lines represent two-term exponential fits (r2 = 1). The results in (F, G) showmeans over 5 trial runs. Error bars indicate STD.

doi:10.1371/journal.pcbi.1004485.g004
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neurons (see Fig 4D and 4E and Methods for details). Independently drawn sensory experiences
were presented sequentially and synaptic sampling according to Eq (11) was applied continu-
ously to all synapses from the 1000 input neurons to the ten neurons in theWTA circuit.

Each environment was represented as a mixture of Gaussians (clusters) of points in the
finite-dimensional sensory space. Each cluster could represent for example different sensory
experiences with some object in the environment. Consequently we modelled an enriched envi-
ronment (EE) simply by adding a few new clusters to the standard environment (SE). In phase
1 the network was exposed to an environment with 3 clusters (standard environment (SE), see
Fig 4D). After 3 hours the network input was enriched by adding 4 additional clusters
(enriched environment (EE), see Fig 4E). We found that exposure to EE significantly increased
the rate of new synapse formation as in the experimental result of [33] (Fig 4F).

Most of the newly formed synapses decayed within a few hours after return to the standard
environment (EE-SE situation, see Fig 4G). In this case only about about 8% become stable. A
fraction of about 30% becomes stable when the enriched environment was maintained (EE-EE
situation). These results qualitatively reproduce the findings from mouse barrel cortex (com-
pare Figures 1h and 2c in [33]). Note that we used here relatively large update rates b to keep
simulation times in a feasible range, which results in spine dynamics on the time scale of hours
instead of days as in biological synapses [33].

Inherent network compensation capability through synaptic sampling
Numerous experimental data show that the same function of a neural circuit is achieved in dif-
ferent individuals with drastically different parameters, and also that a single organism can
compensate for disturbances by moving to a new parameter vector [9, 44–47]. These results
suggest that there exists some low-dimensional submanifold of values for the high-dimensional
parameter vector θ of a biological neural network that all provide stable network function
(degeneracy). We propose that the previously discussed posterior distribution of network
parameters θ provides a mathematical model for such low-dimensional submanifold. Further-
more we propose that the underlying continuous stochastic fluctuation dW provides a driving
force that automatically moves network parameters (with high probability) to a functionally
more attractive regime when the current solution performs worse because of perturbations,
such as lesions of neurons or network connections. This compensation capability is not an
add-on to the synaptic sampling model, but an inherent feature of its organization.

We demonstrate this inherent compensation capability in Fig 5 for a generative spiking neu-
ral network with synaptic parameters θ that regulate simultaneously structural plasticity and
synaptic plasticity (dynamics of weights) as in Figs 3 and 4. The prior pS(θ) for these parame-
ters is here the same as in the preceding section (see Fig 4G on the left). But in contrast to the
previous section we consider here a network that allows us to study the self-organization of
connections between hidden neurons. The network consists of eight WTA-circuits, but in con-
trast to Fig 4 we allow here arbitrary excitatory synaptic connections between neurons within
the same or different ones of these WTA circuits. This network models multi-modal sensory
integration and association in a simplified manner. Two populations of “auditory” and “visual”
input neurons xA and xV project onto corresponding populations zA and zV of hidden neurons
(each consisting of one half of the WTA circuits, see lower panel of Fig 5A). Only a fraction of
the potential synaptic connections became functional (see Fig. S2A in S6 Text) through the
synaptic sampling rule Eq (11) that integrates structural and synaptic plasticity. Synaptic
weights and connections were not forced to be symmetric or bidirectional.

As in the previous demonstrations we do not use external rewards or teacher-inputs for
guiding network plasticity. Rather, we allow the model to discover on its own regularities in its
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Fig 5. Inherent compensation for network perturbations. A: A spike-based generative neural network (illustrated at the bottom) received simultaneously
spoken and handwritten representations of the same digit (and for tests only spoken digits, see (B)). Stimulus examples for spoken and written digit 2 are
shown at the top. These inputs are presented to the network through corresponding firing rates of “auditory” (xA) and “visual” (xV) input neurons. Two
populations zA and zV of 40 neurons, each consisting of four WTA circuits like in Fig 4, receive exclusively auditory or visual inputs. In addition, arbitrary
lateral excitatory connections between these “hidden” neurons are allowed. B: Assemblies of hidden neurons emerge that encode the presented digit (1 or
2). Top panel shows PETH of all neurons from zV for stimulus 1 (left) and 2 (right) after learning, when only an auditory stimulus is presented. Neurons are
sorted by the time of their highest average firing. Although only auditory stimuli are presented, it is possible to reconstruct an internally generated “guessed”
visual stimulus that represents the same digit (bottom).C: First three PCA components of the temporal evolution of a subset θ0 of network parameters θ (see
text). Two major lesions were applied to the network. In the first lesion (transition to red) all neurons that significantly encode stimulus 2were removed from
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network inputs. The “auditory” hidden neurons zA on the left in Fig 5A received temporal
spike patterns from the auditory input neurons xA that were generated from spoken utterings
of the digit 1 and 2 (which lasted between 320 ms and 520 ms). Simultaneously we presented to
the “visual” hidden neurons zV on the right for the same time period a (symbolic) visual repre-
sentation of the same digit (randomly drawn from the MNIST database like in Fig. 2).

The emergent associations between the two populations zA and zV of hidden neurons were
tested by presenting auditory input only and observing the activity of the “visual” hidden neu-
rons zV. Fig 5B shows the emergent activity of the neurons zV when only the auditory stimulus
was presented (visual input neurons xV remained silent). The generative aspect of the network
can be demonstrated by reconstructing for this case the visual stimulus from the activity of the
“visual” hidden neurons zV. Fig 5B shows reconstructed visual stimuli from a single run where
only the auditory stimuli xA for digits 1 (left) and 2 (right) were presented to the network. Digit
images were reconstructed by multiplying the synaptic efficacies of synapses from neurons in
xV to neurons in zV (which did not receive any input from xV in this experiment) with the
instantaneous firing rates of the corresponding zV-neurons.

Interestingly we found that synaptic sampling significantly outperforms the pure determin-
istic STDP updates introduced in [38], which do not impose a prior distribution over synaptic
parameters. The structural prior that favors solutions with only a small number of large synap-
tic weights seems to be beneficial for this task as it allows to learn few but pronounced associa-
tions between the neurons (see S6 Text).

In order to investigate the inherent compensation capability of synaptic sampling, we
applied two lesions to the network within a learning session of 8 hours. In the first lesion all
neurons (16 out of 40) that became tuned for digit 2 in the preceding learning (see Fig 5D and
S6 Text) were removed. The lesion significantly impaired the performance of the network in
stimulus reconstruction, but it was able to recover from the lesion after about one hour of con-
tinuing network plasticity according to Eq (11) (Fig 5D). The reconstruction performance of
the network was measured here continuously through the capability of a linear readout neuron
from the visual ensemble to classify the current auditory stimulus (1 or 2).

In the second lesion all synaptic connections between hidden neurons that were present
after recovery from the first lesion were removed and not allowed to regrow (2936 synapses in
total). After about two hours of continuing synaptic sampling 294 new synaptic connections
between hidden neurons emerged. These made it again possible to infer the auditory stimulus
from the activity of the remaining 24 hidden neurons in the population zV (in the absence of
any input from the population xV), at about 75% of the performance level before the second
lesion (see bottom panel of Fig 5D).

In order to illustrate the ongoing network reconfiguration we track in Fig 5C the temporal
evolution of a subset θ0 of network parameters (35 parameters θi associated with the potential
synaptic connections of the neuron marked in red in the middle of Fig 5D from or to other hid-
den neurons, excluding those that were removed at lesion 2 and not allowed to regrow). The

the population zV. In the second lesion (transition to green) all currently existing synaptic connections between neuron in zA and zV were removed, and not
allowed to regrow. After each lesion the network parameters θ0 migrate to a new manifold. D: The generative reconstruction performance of the “visual”
neurons zV for the test case when only an auditory stimulus is presented was tracked throughout the whole learning session, including lesions 1 and 2
(bottom panel). After each lesion the performance strongly degrades, but reliably recovers. Insets show at the top the synaptic weights of neurons in zV at 4
time points t1, . . ., t4, projected back into the input space like in Fig 4E. Network diagrams in the middle show ongoing network rewiring for synaptic
connections between the hidden neurons zA and zV. Each arrow indicates a functional connection between two neurons. To keep the figure uncluttered only
subsets of synapses are shown (1% randomly drawn from the total set of possible lateral connections). Connections at time t2 that were already functional at
time t1 are plotted in gray. The neuron whose parameter vector θ0 is tracked in (C) is highlighted in red. The text under the network diagrams shows the total
number of functional connections between hidden neurons at the time point.

doi:10.1371/journal.pcbi.1004485.g005

Network Plasticity as Bayesian Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004485 November 6, 2015 16 / 31



first three PCA components of this 35-dimensional parameter vector are shown. The vector θ0

fluctuates first within one region of the parameter space while probing different solutions to
the learning problem, e.g., high probability regions of the posterior distribution (blue trace).
Each lesions induced a fast switch to a different region (red, green), accompanied by a recovery
of the visual stimulus reconstruction performance (see Fig 5D).

The random fluctuations were found to be an integral part of the fast recovery form lesions.
In S6 Text we analyzed the impact of the diffusion term in Eq (11) on the learning speed. We
found that it acts as a temperature parameter that allows to scale the speed of exploration in
the parameter space (see also the Methods for a detailed derivation).

Altogether this experiment showed that continuously ongoing synaptic sampling maintains
stable network function also in a more complex network architecture. Another consequence of
synaptic sampling was that the neural codes (assembly sequences) that emerged for the two
digit classes within the hidden neurons zA and zV (see Fig. S2B in S6 Text) drifted over larger
periods of time (also in the absence of lesions), similarly as observed for place cells in [48] and
for tuning curves of motor cortex neurons in [4].

Discussion
We have shown that stochasticity may provide an important function for network plasticity. It
enables networks to sample parameters from some low-dimensional manifold in a high-
dimensional parameter space that represents attractive combinations of structural constraints
and rules (such as sparse connectivity and heavy-tailed distributions of synaptic weights) and a
good fit to empirical evidence (e.g., sensory inputs). We have developed a normative model for
this new learning perspective, where the traditional gold standard of maximum likelihood opti-
mization is replaced by theoretically optimal sampling from a posterior distribution of parame-
ter settings, where regions of high probability provide a theoretically optimal model for the
low-dimensional manifold from which parameter settings should be sampled. The postulate
that networks should learn such posterior distributions of parameters, rather than maximum
likelihood values, had been proposed already for quite some while for artificial neural networks
[6, 7], since such organization of learning promises better generalization capability to new
examples. The open problem how such posterior distributions could be learned by networks of
neurons in the brain, in a way that is consistent with experimental data, has been highlighted
in [8] as a key challenge for computational neuroscience. We have presented here such a
model, whose primary innovation is to view experimentally found trial-to-trial variability and
ongoing fluctuations of parameters such as spine volumes no longer as a nuisance, but as a
functionally important component of the organization of network learning, since it enables
sampling from a distribution of network configurations. The mathematical framework that we
have presented provides a normative model for evaluating such empirically found stochastic
dynamics of network parameters, and for relating specific properties of this “noise” to func-
tional aspects of network learning.

Reports of trial-to-trial variability and ongoing fluctuations of parameters related to synap-
tic weights are ubiquitous in experimental studies of synaptic plasticity and its molecular
implementation, from fluctuations of proteins such as PSD-95 [19] in the postsynaptic density
that are thought to be related to synaptic strength, over intrinsic fluctuations in spine volumes
and synaptic connections [1–3, 5, 28, 31, 32], to surprising shifts of neural codes on a larger
time scale [4, 48]. These fluctuations may have numerous causes, from noise in the external
environment over noise and fluctuations of internal states in sensory neurons and brain net-
works, to noise in the pre- and postsynaptic molecular machinery that implements changes in
synaptic efficacies on various time scales [18]. One might even hypothesize, that it would be
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very hard for this molecular machinery to implement synaptic weights that remain constant in
the absence of learning, and deterministic rules for synaptic plasticity, because the half-life of
many key proteins that are involved is relatively short, and receptors and other membrane-
bound proteins are subject to Brownian motion. In this context the finding that neural codes
shift over time [4, 48] appears to be less surprising. In fact, our model predicts (see S6 Text)
that also stereotypical assembly sequences that emerge in our model through learning, similarly
as in the experimental data of [49], are subject to such shifts on a larger time scale. However it
should be pointed out that our model is agnostic with regard to the time scale on which these
changes occur, since this time scale can be defined arbitrarily through the parameter b (learn-
ing rate) in Eq (3).

The model that we have presented makes no assumptions about the actual sources of noise.
It only assumes that salient network parameters are subject to stochastic processes, that are
qualitatively similar to those which have been studied and modeled in the context of Brownian
motion of particles as random walk on the microscale. One can scale the influence of these sto-
chastic forces in the model by a parameter T that regulates the “temperature” of the stochastic
dynamics of network parameters θ. This parameter T regulates the tradeoff between trying out
different regions (or modes) of the posterior distribution of θ (exploration), and staying for
longer time periods in a high probability region of the posterior (exploitation). We conjecture
that this parameter T varies in the brain between different brain regions, and possibly also
between different types of synaptic connections within a cortical column. For example, spine
turnover is increased for large values of T, and network parameters θ can move faster to a new
peak in the posterior distribution, thereby supporting faster learning (and faster forgetting).
Since spine turnover is reported to be higher in the hippocampus than in the cortex [50], such
higher value of T could for example be more adequate for modeling network plasticity in the
hippocampus. This model would then also support the hypothesis of [50] that memories are
more transient in the hippocampus. In addition T is likely to be regulated on a larger time scale
by developmental processes, and on a shorter time scale by neuromodulators and attentional
control. The view that synaptic plasticity is stochastic had already been explored through simu-
lation studies in [4, 51]. Artificial neural networks were trained in [51] through supervised
learning with high learning rates and high amounts of noise both on neuron outputs and syn-
aptic weight changes. The authors explored the influence of various combinations of noise lev-
els and learning rates on the success of learning, which can be understood as varying the
temperature parameters T in the synaptic sampling framework. In order to measure this
parameter T experimentally in a direct manner, one would have to apply repeatedly the same
plasticity induction protocol to the same synapse, with a complete reset of the internal state of
the synapse between trials, and measure the resulting trial-to-trial variability of changes of its
synaptic efficacy. Since such complete reset of a synaptic state appears to be impossible at pres-
ent, one can only try to approximate it by the variability that can be measured between differ-
ent instances of the same type of synaptic connection.

We have shown that the Fokker-Planck equation, a standard tool in physics for analyzing
the temporal evolution of the spatial probability density function for particles under Brown-
ian motion, can be used to create bridges between details of local stochastic plasticity pro-
cesses on the microscale and the probability distribution of the vector θ of all parameters on
the network level. This theoretical result provides the basis for the new theory of network
plasticity that we are proposing. In particular, this link allows us to derive rules for synaptic
plasticity which enable the network to learn, and represent in a stochastic manner, a desirable
posterior distribution of network parameters; in other words: to approximate Bayesian
inference.
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We find that resulting rules for synaptic plasticity contain the familiar term for maximum
likelihood learning. But another new term, apart from the Brownian-motion-like stochastic
term, is the term @

@yi
log pSðyiÞ that results from a prior distributions pS(θi), which could actu-

ally be different for each biological parameter θi and enforce structural requirements and pref-
erences of networks of neurons in the brain. Some systematic dependencies of changes in
synaptic weights (for the same pairing of pre- and postsynaptic activity) on their current values
had already been reported in [41, 52–54]. These can be modeled as impact of priors. Other
potential functional benefits of priors (on emergent selectivity of neurons) have recently been
demonstrated in [55] for a restricted Boltzmann machine. An interesting open question is
whether the non-local learning rules of their model can be approximated through biologically
more realistic local plasticity rules, e.g. through synaptic sampling. We have also demonstrated
in Figs 3 and 4 that suitable priors can model experimental data from [32] and [33] on the sur-
vival statistics of dendritic spines. The transient behavior of synaptic turnover in our model fits
a two-term exponential function, the long-term (stationary) behavior is well described by a
power-law. Both findings are in accordance with experimental data.

The results reported in [56] suggest that learned neural representations integrate experience
with a priori beliefs about the sensory environment. The model presented here could be used
to further investigate this hypothesis. Also the Fokker-Planck formalism was previously applied
to describe the dynamics of dendritic spines in hippocampus [57]. The methods described
there to integrate experimental data into computational models could be combined with the
synaptic sampling framework to further improve the fit to biology.

Finally, we have demonstrated in Figs 4 and 5 that suitable priors for network parameters θi
that model spine volumes endow a neural network with the capability to respond to changes in
the input distribution and network perturbations with a network rewiring that maintains or
restores the network function, while simultaneously observing structural constraints such as
sparse connectivity.

Our model underlines the importance of further experimental investigation of priors for
network parameters. How are they implemented on a molecular level? What role does gene
regulation have in their implementation? How does the history of a synapse affect its prior? In
particular, can consolidation of a synaptic weight θi be modeled in an adequate manner as a
modification of its prior? This would be attractive from a functional perspective, because
according to our model it both allows long-term storage of learned information and flexible
network responses to subsequent perturbations.

Besides the use of parameter priors, dropout [58] and dropconnect [59] can be used to
avoid overfitting in artificial neural networks. In particular, dropconnect, which drops ran-
domly chosen synaptic connections during training, is reminiscent of stochastic synaptic
release in biological neuronal networks. In synaptic sampling, synaptic parameters are assumed
to be stochastic, however, this stochastic dynamics evolves on a much slower time scale than
stochastic release, which was not modeled in our simulations. An interesting open question is
whether synaptic sampling combined with stochastic synaptic release would further improve
generalization capabilities of spiking neural networks in a similar manner as dropconnect for
artificial neural networks.

We have focused in the examples for our model on the plasticity of synaptic weights and
synaptic connections. But the synaptic sampling framework can also be used for studying the
plasticity of other synaptic parameters, e.g., parameters that control the short term dynamics of
synapses, i.e., their individual mixture of short term facilitation and depression. The corre-
sponding parameters U, D, F of the models from [60, 61] are known to depend in a systematic
manner on the type of pre- and postsynaptic neuron [62], indicative of a corresponding prior.
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However also a substantial variability within the same type of synaptic connections, had been
found [62]. Hence it would be interesting to investigate functional properties and experimen-
tally testable consequences of stochastic plasticity rules of type Eq (5) for U, D, F, and to com-
pare the results with those of previously considered deterministic plasticity rules for U, D, F
(see e.g., [63]).

Early theoretical work on activity-dependent formation and elimination of synapses has
been used to model ocular dominance in the visual cortex [64, 65]. Theoretical models for
structural plasticity have also shown that simple plasticity models combined with mechanisms
for rewiring are able to model cortical reorganization after lesions [66, 67]. In [68] a model was
presented that combines structural plasticity and STDP. This model was able to reproduce the
existence of transient and persistent spines in the cortex. A recently introduced probabilistic
model of structural plasticity was also able to reproduced the statistics of the number of synap-
tic connections between pairs of neurons in the cortex [69]. Furthermore a simple model of
structural synaptic plasticity has been introduced that was able to explain cognitive phenomena
such as graded amnesia and catastrophic forgetting [70]. In contrast to these previous studies,
the goal of the current work was to establish a model of structural plasticity that follows from a
first functional principle, that is, sampling from the posterior distribution over parameters.

We have demonstrated that this framework provides a new and principled way of modeling
structural plasticity [10, 11]. The challenge to find a biologically plausible way of modeling
structural plasticity as Bayesian inference has been highlighted by [8]. In addition, the pro-
posed framework does not treat rewiring and synaptic plasticity separately, but provides a uni-
fied theory for both phenomena, that can be directly related to functional aspects of the
network via the resulting posterior distribution. We have shown in Figs 3 and 4 that this rule
produces a population of persistent synapses that remain stable over long periods of time, and
another population of transient synaptic connections which disappear and reappear randomly,
thereby supporting automatic adaptation of the network structure to changes in the distribu-
tion of external inputs (Fig 4) and network perturbation (Fig 5).

On a more general level we propose that a framework for network plasticity where network
parameters are sampled continuously from a posterior distribution will automatically be less
brittle than previously considered maximum likelihood learning frameworks. The latter require
some intelligent supervisor who recognizes that the solution given by the current parameter
vector is no longer useful, and induces the network to resume plasticity. In contrast, plasticity
processes remain active all the time in our sampling-based framework. Hence network com-
pensation for external or internal perturbations is automatic and inherent in the organization
of network plasticity.

The need to rethink observed parameter values and plasticity processes in biological net-
works of neurons in a way which takes into account their astounding variability and compensa-
tion capabilities has been emphasized by Eve Marder (see e.g. [9, 47, 71]) and others. This
article has introduced a new conceptual and mathematical framework for network plasticity
that promises to provide a foundation for such rethinking of network plasticity.

Methods

Details to Learning a posterior distribution through stochastic synaptic
plasticity
Here we prove that p�(θ) = p(θj x) is the unique stationary distribution of the parameter
dynamics Eq (3) that operate on the network parameters θ = (θ1, . . .,θM). Convergence to this
stationary distribution then follows for strictly positive p�(θ). In fact, we prove here a more
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general result for parameter dynamics given by

dyi ¼ bðθiÞ
@

@yi
log pSðθÞ þ bðyiÞ

@

@yi
log pN ðxjθÞ þ T b0ðyiÞ

� �
dt

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TbðyiÞ

p
dW i

ð12Þ

for i = 1, . . .,M and b0ðyiÞ :¼ @
@yi
bðyiÞ. This dynamics includes a temperature parameter T and

a sampling-speed factor b(θi) that can in general depend on the current value of the parameter
θi. The temperature parameter T can be used to scale the diffusion term (i.e., the noise). The
sampling-speed factor controls the speed of sampling, i.e., how fast the parameter space is
explored. It can be made dependent on the individual parameter value without changing the
stationary distribution. For example, the sampling speed of a synaptic weight can be slowed
down if it reaches very high or very low values. Note that the dynamics Eq (3) is a special case
of the dynamics Eq (12) with unit temperature T = 1 and constant sampling speed b(θi)� b.
We show that the stochastic dynamics Eq (12) leaves the distribution

p�ðθÞ � 1

Z
q�ðθÞ ð13Þ

invariant, where Z is a normalizing constant Z =
R
q�(θ) dθ and

q�ðθÞ ¼ pðθ j xÞ1T : ð14Þ

Note that the stationary distribution p�(θ) is shaped by the temperature parameter T, in the
sense that p�(θ) is a flattened version of the posterior for high temperature. The result is for-
malized in the following theorem, which is proven in detail in S1 Text:

Theorem 1. Let p(x,θ) be a strictly positive, continuous probability distribution over continu-
ous or discrete states x = x1, . . ., xN and continuous parameters θ = (θ1, . . .,θM), twice continu-
ously differentiable with respect to θ. Let b(θ) be a strictly positive, twice continuously
differentiable function. Then the set of stochastic differential Eq (12) leaves the distribution p�(θ)
invariant. Furthermore, p�(θ) is the unique stationary distribution of the sampling dynamics.

Online approximation. We show here that the rule Eq (5) is a reasonable approximation
to the batch-rule Eq (3). According to the dynamics Eq (12), synaptic plasticity rules that
implement synaptic sampling have to compute the log likelihood derivative @

@yi
log pN ðxjθÞ. We

assume that every τx time units a different input xn is presented to the network. For simplicity,
assume that x1, . . ., xN are visited in a fixed regular order. Under the assumption that input pat-
terns are drawn independently, the likelihood of the generative model factorizes

pN ðx; jθÞ ¼
YN
n¼1

pN ðxnjθÞ: ð15Þ

The derivative of the log likelihood is then given by

@

@yi
log pN ðxjθÞ ¼

XN
n¼1

@

@yi
log pN ðxnjθÞ : ð16Þ

Using Eq (16) in the dynamics Eq (12), one obtains

dyi ¼ bðyiÞ
@

@yi
log pSðθÞ þ bðyiÞ

XN
n¼1

@

@yi
log pN ðxnjθÞ þ T b0ðyiÞ

 !
dt

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TbðyiÞ

p
dW i:

ð17Þ
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Hence, the parameter dynamics depends at any time on all network inputs and network
responses.

This “batch” dynamics does not map readily onto a network implementation because the
weight update requires at any time knowledge of all inputs xn. We provide here an online
approximation for small sampling speeds. To obtain an online learning rule, we consider the
parameter dynamics

dyi ¼ bðyiÞ
@

@yi

log pSðθÞ þ NbðyiÞ
@

@yi
log pN ðxnjθÞ þ T b0ðyiÞ

� �
dt

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TbðyiÞ

p
dW i:

ð18Þ

As in the batch learning setting, we assume that each input xn is presented for a time interval of
τx. Integrating the parameter changes Eq (18) over one full presentation of the data x, i.e., start-
ing from t = 0 with some initial parameter values θ(0) up to time t = Nτx, we obtain for slow
sampling speeds (Nτx b(θi)� 1)

yiðNtxÞ � yið0Þ � Ntx bðyiÞ
@

@yi
log pSðθÞ þ bðyiÞ

XN
n¼1

@

@yi

log pN ðxnjθÞ þ T b0ðyiÞ
 !

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TbðyiÞ

p ðWNtx
i �W0

i Þ :

This is also what one obtains when integrating Eq (17) for Nτx time units (for slow b(θi)).
Hence, for slow enough b(θi), Eq (18) is a good approximation of optimal weight sampling.
The update rule Eq (5) follows from Eq (18) for T = 1 and b(θi)� b.

Discrete time approximation. Here we provide the derivation for the approximate dis-
crete time learning rule Eq (7). For a discrete time parameter update at time t with discrete
time step Δt during which xn is presented, a corresponding rule can be obtained by short inte-
gration of the continuous time rule Eq (18) over the time interval from t to t + Δt:

Dyi ¼ Dt bðyiÞ
@

@yi
log pSðθÞ þ NbðyiÞ

@

@yi

log pN ðxnjθÞ þ T b0ðyiÞ
� �

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TbðyiÞ

p ðW tþDt
i �W t

iÞ

¼ Dt bðyiÞ
@

@yi
log pSðθÞ þ NbðyiÞ

@

@yi

log pN ðxnjθÞ þ T b0ðyiÞ
� �

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TDt bðyiÞ

p
nti ;

ð19Þ

where nti denotes Gaussian noise nti � NORMALð0; 1Þ. The update rule Eq (7) is obtained by
choosing a constant b(θ)� b, T = 1, and defining η = Δt b.

Synaptic sampling with hidden states. When there is a direct relationship between net-
work parameters θ and the distribution over input patterns xn, the parameter dynamics can
directly be derived from the derivative of the data log likelihood and the derivative of the
parameter prior. Typically however, generative models for brain computation assume that the
network response zn to input pattern xn represents in some manner the value of hidden vari-
ables that explain the current input pattern. In the presence of hidden variables, maximum
likelihood learning cannot be applied directly, since the state of the hidden variables is not
known from the observed data. The expectation maximization algorithm [7] can be used to
overcome this problem. We adopt this approach here. In the online setting, when pattern xn is
applied to the network, it responds with network state zn according to pN(z|x

n, θ), where the
current network parameters are used in this inference process. The parameters are updated in
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parallel according to the dynamics

dyi ¼ bðyiÞ
@

@yi

log pSðθÞ þ NbðyiÞ
@

@yi
log pN ðxn; znjθÞ þ T b0ðyiÞ

� �
dt

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TbðyiÞ

p
dW i:

ð20Þ

Note that in comparison with the dynamics Eq (18), the likelihood term now also contains the
current network response zn. It can be shown that this dynamics leaves the stationary distribu-
tion

p�ðθÞ � 1

Z
pðθ j x; zÞ1T ; ð21Þ

invariant, where Z is again a normalizing constant (the dynamics Eq (20) is again the online-
approximation). Hence, in this setup, the network samples concurrently from circuit states
(given θ) and network parameters (given the network state zn), which can be seen as a sam-
pling-based version of online expectation maximization.

Details to Improving the generalization capability of a neural network
through synaptic sampling
For learning the distribution over different writings of digit 1 with different priors in Fig 2, a
restricted Boltzmannmachine (RBM) with 748 visible and 9 hidden neurons was used. A detailed
definition of the RBMmodel and additional details to the simulations are given in S3 Text.

Network inputs. Handwritten digit images were taken from the MNIST dataset [72]. In
MNIST, each instance of a handwritten digit is represented by a 784-dimensional vector xn.
Each entry is given by the gray-scale value of a pixel in the 28 × 28 pixel image of the handwrit-
ten digit. The pixel values were scaled to the interval [0, 1]. In the RBM, each pixel was repre-
sented by a single visible neuron. When an input was presented to the network, the output of a
visible neuron was set to 1 with probability as given by the scaled gray-scale value of the corre-
sponding pixel.

Learning procedure. In each parameter update step the contrastive divergence algorithm
of [27] was used to estimate the likelihood gradients. Therefore, each update step consisted of a
“wake” phase, a “reconstruction” phase, and the update of the parameters. The “wake” samples
were generated by setting the outputs of the visible neurons to the values of a randomly chosen
digit xn from the training set and drawing the outputs zni of all hidden layer neurons for the
given visible output. The “reconstruction” activities x̂n

j and ẑ
n
i were generated by starting from

this state of the hidden neurons and then drawing outputs of all visible neurons. After that, the
hidden neurons were again updated and so on. In this way we performed five cycles of alternat-
ing visible and hidden neuron updates. The outputs of the network neurons after the fifth cycle
were taken as the resulting “reconstruction” samples x̂n

j and ẑ
n
i and used for the parameter

updates Eqs (22)–(24) given below. This update of parameters concluded one update step.
Log likelihood derivatives for the biases bhidi of hidden neurons are approximated in the con-

trastive divergence algorithm [27] as @
@bhid

i
log pN ðxn; znjθÞ � zni � ẑ ni (the derivatives for visible

biases bvisj are analogous). Using Eq (7), the synaptic sampling update rules for the biases are

thus given by

Dbhidi ¼ ZN ðzni � ẑni Þ þ
ffiffiffiffiffi
2Z

p
nti ; ð22Þ

Dbvisj ¼ ZN ðxnj � x̂n
j Þ þ

ffiffiffiffiffi
2Z

p
ntj : ð23Þ
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Note that the parameter prior does not show up in these equations since no priors were used
for the biases in our experiments. Contrastive divergence approximates the log likelihood
derivatives for the weights wij as @

@wij
log pN ðxn; znjθÞ � zni x

n
j � ẑni x̂

n
j . This leads to the synaptic

sampling rule

Dwij ¼ Z
@

@wij

log pSðwÞ þ N zni x
n
j � ẑ ni x̂

n
j

� � !
þ

ffiffiffiffiffi
2Z

p
ntij : ð24Þ

In the simulations, we used this rule with η = 10−4 and N = 100. Learning started from random
initial parameters drawn from a Gaussian distribution with standard deviation 0.25 and means
at 0 and -1 for weights wij and biases (bhidi , bvisj ), respectively.

To compare learning with and without parameter priors, we performed simulations with an
uninformative (i.e., uniform) prior on weights (Fig 2C and 2D), which was implemented by set-
ting @

@wij
log pSðwÞ to zero. In simulations with a parameter prior (Fig 2E and 2F), we used a local

prior for each weight in order to obtain local plasticity rules. In other words, the prior pS(w) was
assumed to factorize into priors for individual weights pS(w) = ∏i, j pS(wij). For each individual
weight prior, we used a bimodal distribution implemented by a mixture of two Gaussians

pSðwijÞ ¼ 0:5 NORMALðwij j m1; s1Þ þ 0:5NORMALðwij j m2; s2Þ ; ð25Þ

with means μ1 = 1.0, μ2 = 0.0, and standard deviations σ1 = σ2 = 0.15.

Details to Fast adaptation to changing input statistics
Spike-based Winner-Take-All network model. Network neurons were modeled as sto-

chastic spike response neurons with a firing rate that depends exponentially on the membrane
voltage [73, 74]. The membrane potential uk(t) of neuron k is given by

ukðtÞ ¼
X

i

wki xiðtÞ þ bkðtÞ ; ð26Þ

where xi(t) denotes the (unweighted) input from input neuron i, wki denotes the efficacy of the
synapse from input neuron i, and βk(t) denotes a homeostatic adaptation current (see below).
The input xi(t) models the influence of additive excitatory postsynaptic potentials (EPSPs) on

the membrane potential of the neuron. Let tð1Þi ; tð2Þi ; � � � denote the spike times of input neuron
i. Then, xi(t) is given by

xiðtÞ ¼
X
f

�ðt � tðf Þi Þ; ð27Þ

where � is the response kernel for synaptic input, i.e., the shape of the EPSP, that had a double-
exponential form in our simulations:

�ðsÞ ¼ YðsÞ e
� s
tf � e�

s
tr

� �
; ð28Þ

with the rise-time constant τr = 2 ms, the fall-time constant τf = 20 ms. Θ(�) denotes the Heavi-
side step function. The instantaneous firing rate ρk(t) of network neuron k depends exponen-
tially on the membrane potential and is subject to divisive lateral inhibition Ilat(t) (described
below):

rkðtÞ ¼
rnet

IlatðtÞ
exp ðukðtÞÞ ; ð29Þ
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where ρnet = 100 Hz scales the firing rate of neurons. Such exponential relationship between
the membrane potential and the firing rate has been proposed as a good approximation to the
firing properties of cortical pyramidal neurons [73]. Spike trains were then drawn from inde-
pendent Poisson processes with instantaneous rate ρk(t) for each neuron. We denote the result-
ing spike train of the kth neuron by Sk(t).

Homeostatic adaptation current. Each output spike caused a slow depressing current,
giving rise to the adaptation current βk(t). This implements a slow homeostatic mechanism
that regulates the output rate of individual neurons (see [75] for details). It was implemented as

bkðtÞ ¼ g
X
f

kðt � tðf Þk Þ; ð30Þ

where tðf Þk denotes the f-th spike of neuron k and κ is an adaptation kernel that was modeled as
a double exponential (Eq (28)) with time constants τr = 12 s and τf = 30 s. The scaling parame-
ter γ was set to γ = -8.

Lateral inhibition. Divisive inhibition [39] between the K neurons in the WTA network
was implemented in an idealized form [36]

IlatðtÞ ¼
XK
l¼1

exp ðulðtÞÞ: ð31Þ

This form of lateral inhibition, that assumes an idealized access to neuronal membrane poten-
tials, has been shown to implement a well-defined generative network model [36], see below.

Synaptic sampling in spike-based Winner-Take-All networks as stochastic STDP. It
has been shown in [37] that the WTA-network defined above implicitly defines a generative
model that is a mixture of Poissonian distributions. In this generative model, inputs xn are
assumed to be generated in dependence on the value of a hidden multinomial random variable
hn that can take on K possible values 1, . . ., K. Each neuron k in the WTA circuit corresponds
to one value k of this hidden variable. In the generative model, for a given value of hn = k, the
value of an input xni is then distributed according to a Poisson distribution with a mean that is
determined by the synaptic weight wki from input neuron i to network neuron k:

pN ðxni jhn ¼ k;wÞ ¼ POISSONðxni jaewkiÞ; ð32Þ

with a scaling parameter α> 0. In other words, the synaptic weight wki encodes (in log-space)
the firing rate of input neuron i, given that the hidden cause is k. For a given hidden cause,
inputs are assumed to be independent, hence one obtains the probability of an input vector for
a given hidden cause as

pN ðxnjhn ¼ k;wÞ ¼
Y
i

POISSONðxni jaewkiÞ: ð33Þ

The network implements inference in this generative model, i.e., for a given input xn, the firing
rate of network neuron zk is proportional to the posterior probability p(h

n = kjxn, w) of the cor-
responding hidden cause. An online maximum likelihood learning rule for this generative
model was derived in [37]. It changes synaptic weights according to

@

@wki

log pN ðxn jwÞ � SkðtÞ xiðtÞ � a ewkið Þ ; ð34Þ

where Sk(t) denotes the spike train of the postsynaptic neuron and xi(t) denotes the weight-
normalized value of the sum of EPSPs from presynaptic neuron i at time t (i.e., the summed
EPSPs that would arise for weight wki = 1). To define the synaptic sampling learning rule
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completely, we also need to define the parameter prior. In our experiments, we used a simple
Gaussian prior on each parameter pS(θ) = ∏k,i NORMAL (θki|μ, σ

2) with μ = 0.5 and σ = 1. The
derivative of the log-prior is given by

@

@yki

log pSðθÞ ¼ 1

s2
m� ykið Þ: ð35Þ

Inserting Eqs (34) and (35) into the general form Eq (10), we find that the synaptic sampling
rule is given by

dyki ¼ b
1

s2
m� ykið Þ þ Nwki SkðtÞ xiðtÞ � a ewkið Þ

� �
dt þ

ffiffiffiffiffi
2b

p
dWki ; ð36Þ

which corresponds to rule Eq (11) with double indices ki replaced by single parameter indexing
i to simplify notation.

Simulation details for spiking network simulations. Computer simulations of spiking
neural networks (Figs 3, 4 and 5) were based on adapted event-based simulation software from
[38]. In all spiking neural network simulations, synaptic weights were updated according to the
rule Eq (11) with parameters N = 100, α = e−2, and b = 10−4, except for panel Fig 3F where
b = 10−6 was used as a control. In the simulations, we directly implemented the time-continu-
ous evolution of the network parameters in an event-based update scheme. Before learning, ini-
tial synaptic parameters were independently drawn from the prior distribution pS(θ).

For the mapping Eq (9) from synaptic parameters θki to synaptic efficacies wki, we used as
offset θ0 = 3. This results in synaptic weights that shrink to small values (< 0.05) when synaptic
parameters are below zero. In the simulation, we clipped the synaptic weights to zero for nega-
tive synaptic parameters θ to account for retracted synapses. More precisely, the actual weights
ŵki used for the computation of the membrane potential Eq (26) were given by
ŵki ¼ max f0;wki � exp ð�y0Þg . To avoid numerical problems, we clipped the synaptic
parameters at -5 and the maximum amplitude of instantaneous parameter changes to 5b.

Network inputs. The spatiotemporal spike patterns in Fig 4 are realizations of Poisson
spike trains, each representing a certain point in the 3-dimensional sensory environment (a
unit cube). Each of the 1000 input neurons was assigned to a Gaussian tuning curve with σ =
0.3. Tuning curve centers were independently and equally scattered over the unit cube. For
each sensory experience the firing rate of an individual input neuron was given by the support
of sensory experience under the neuron’s tuning curve (normalized between 0 Hz and 80 Hz).
In addition an offset of 5 Hz background noise was added. The patterns had a duration of 200
ms. During that time the firing rates of input neurons were kept fixed and independent Poisson
spike trains were drawn.

The two environments (SE and EE) in Fig 4 were realized by Gaussian mixture models. The
means of the Gaussians were randomly placed around the center of the unit cube (each compo-
nent was independently drawn from NORMAL(0.5, 0.2)). The covariance matrices of the Gauss-
ian cluster centers were randomly given by 0.04I + 0.01ξ, where I is the 3-dimensional identity
matrix and ξ is a matrix of randomly drawn values from NORMAL(0, 1). Sensory experiences
were generated by randomly selecting one Gaussian cluster (with equal probability) and then
drawing a sample position from the corresponding multivariate Gaussian.

Learning schedule and data analysis. The network was first exposed to samples from the
standard environment (SE, Fig 4D) for 3 hours (54000 input sample presentations). In the sec-
ond learning phase input samples from the enriched environment (EE, Fig 4E) were given for 1
hour (18000 samples). In the third phase samples from either SE (EE-SE condition) or EE
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(EE-EE condition) were presented for additional 5 hours (90000 samples, the two cases are
compared in Fig 4G).

Formation rates of synaptic connections shown in Fig 4F represent the number of spines
that were formed during a time window of Δt = 30 minutes, i.e. the number of synaptic connec-
tions that were not present (θi	 0) at time t − Δt but at time t. The SE condition in Fig 4F was
evaluated at the end of learning phase 1, the EE condition was evaluated at the beginning of EE
exposure.

For the survival plots in Fig 4G the newly formed synaptic connections at the end of the EE
condition were taken into account (see above). Networks from the EE-EE or EE-SE condition
were compared. The presence of synaptic connections (θi > 0) was evaluated in intervals of 30
minutes. The plot in Fig 4E and 4F show mean values and standard deviations over 5 individual
trial runs.

Details to Inherent compensation capabilities of networks with synaptic
sampling
Here we provide details to the network model and spiking inputs for the recurrent WTA cir-
cuits (Fig 5). Additional details to the data analysis and performance evaluation are provided in
S6 Text.

Network model. In Fig 5 two recurrently connected ensembles, each consisting of four
WTA circuits, were used. The parameters of neuron and synapse dynamics were as described
in the previous section. All synapses, lateral and feedforward, were subject to the same learning
rule Eq (11). Lateral connections within and between the WTA Circuit neurons were uncon-
strained (allowing potentially all-to-all connectivity). Connections from input neurons were
constraint as shown in Fig 5. The lateral synapses were treated in the same way as synapses
from input neurons but had a synaptic delay of 5 ms.

Network inputs. Handwritten digit images for Fig 5 were taken from the MNIST dataset
[72]. Each pixel was represented by a single afferent neuron. Gray scale values where scaled to
0–50 Hz Poisson input rate and 1 Hz input noise was added on top. These Poisson rates were
kept fixed for each example input digit for the duration of the input presentation.

The spoken digit presentations in Fig 5 were given by reconstructed cochleagrams of speech
samples of isolated spoken digits from the TI 46 dataset (also used in [40, 76]). Each of the 77
channels of the cochleagrams was represented by 10 afferent neurons, giving a total of 770.
Cochleagrams were normalized between 0 Hz and 80 Hz and used to draw individual Poisson
spike trains for each afferent neuron. In addition 1 Hz Poisson noise was added on top. We
used 10 different utterances of digits 1 and 2 of a single speaker. We selected 7 utterances for
training and 3 for testing. For training, one randomly selected utterance from the training set
was presented together with a randomly chosen instance of the corresponding handwritten
digit. The spike patterns for the written digits (see above) had the same duration as the spoken
digits. Each digit presentation was padded with 25 ms, 1 Hz Poisson noise before and after the
digit pattern.

For test trials in which only the auditory stimulus was presented, the activity of the visual
input neurons was set to 1 Hz throughout the whole pattern presentation. The learning rate b
was set to zero during these trials. The PETH plots were computed over 100 trial responses of
the network to the same stimulus class (e.g. presentation of digit 1). Spike patterns for input sti-
muli were randomly drawn in each trial for the given rates. Spike trains were then filtered with
a Gaussian filter with σ = 50 ms and summed in a time-discrete matrix with 10 ms bin length.
Maximum firing times were assigned to the time bin with the highest PETH amplitude for
each neuron.
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