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Abstract: Molecular docking is widely used in computed drug discovery and biological target identi-
fication, but getting fast results can be tedious and often requires supercomputing solutions. AMIDE
stands for AutoMated Inverse Docking Engine. It was initially developed in 2014 to perform inverse
docking on High Performance Computing. AMIDE version 2 brings substantial speed-up improve-
ment by using AutoDock-GPU and by pulling a total revision of programming workflow, leading
to better performances, easier use, bug corrections, parallelization improvements and PC/HPC
compatibility. In addition to inverse docking, AMIDE is now an optimized tool capable of high
throughput inverse screening. For instance, AMIDE version 2 allows acceleration of the docking
up to 12.4 times for 100 runs of AutoDock compared to version 1, without significant changes in
docking poses. The reverse docking of a ligand on 87 proteins takes only 23 min on 1 GPU (Graphics
Processing Unit), while version 1 required 300 cores to reach the same execution time. Moreover,
we have shown an exponential acceleration of the computation time as a function of the number of
GPUs used, allowing a significant reduction of the duration of the inverse docking process on large
datasets.

Keywords: molecular docking; screening; AutoDock; parallelization; GPU; high performance
computing; Toxoplasma gondii

1. Introduction

Molecular docking consists of modelling the interaction between two molecules at
the atomic level. The primary process is to predict the position and the orientation of a
small molecule (ligand) relative to a biological target (receptor) and consequently their
affinity. The quality of the resulting interaction can then be used to hypothesize the
mechanism driving the formation of the complex. In this way, molecular docking can
highlight the potential biological activity of a compound on a specific target, and more
widely on an organism.

Docking can be used in several ways. The first is simple docking (one ligand, one
target) [1] to qualify and quantify the interaction between a small molecule and a known
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protein in order to confirm or explain a biological activity on a specific target. The second
one is known as virtual screening (multiple ligands, one target) [2]. This consists of selecting
the small molecules with the best predicted affinity for a known protein and identifying
the best complex. Such in silico protocol helps to characterize biological processes such as
the inhibition of a specific metabolic pathway. The third one is inverse virtual screening
(one ligand, multiple targets) [3]. The latter can be used in high-throughput screening
workflow to find hits for a chemical structure extracted from a chemical library and a
protein dataset [4].

The list of docking software is comprehensive and has grown during the last decades.
Some are open source (AutoDock, CABS-dock, FlexAID) [5–7], others are commercial
(Glide, GOLD, Surflex-Dock) [8–10] or are even linked to a web service (Click Docking,
AADS, DockingServer) [11–13]. They are generally suitable for classical docking, but they
are not designed for high throughput in silico screening, for instance, they involve time-
consuming and tedious manual steps for docking parameter selection. Therefore, some
projects exist to alleviate indicated counterparts, such as VirtualFlow orchestrator, which
is based on AutoDock 4.2 docking engine [14]. Nevertheless, this software still does not
support the newly released AutoDock-GPU [15]. Finally, even if the literature attests to the
development of many frameworks, most are in-house developed and not available online.

Inverse docking is a powerful tool in target discovery. However, since conventional
tools are mainly developed for simple docking or screening and do not directly allow
multiple receptors, most available tools suffer from a lack of speed in execution time and
thus prevent fast identification of relevant biological targets and pharmacological agents.
Time efficiency becomes a major issue in emergency situations such as searching for drugs
or vaccines against pandemic diseases (malaria, AIDS or SARS-CoV-2, for example).

AMIDE (AutoMated Inverse Docking Engine) [16] was initially reported in 2014. This
inverse virtual screening tool was based on AutoDock 4.2 [5]. The purpose was to bypass
the limitations presented above for large-scale molecular docking by automating many
tasks and optimizing the use of Information Technology (IT) resources. It was compatible
with conventional computers, but its use was more efficient on HPC (High-Performance
Computing) platforms. AutoDock 4.2 (autodock and autogrid) was initially chosen for
the primary development of AMIDE (named AMIDE v1 in this work) because it is in
constant development, and its reliability has been extensively tested and validated by the
scientific community [17]. It is also easy to access and highly configurable. AutoDock
4 allows evaluation of the free energy of binding and accelerates the search of relevant
solutions through Lamarckian Genetic Algorithms [5]. This software is described as giving
a fast prediction of bound conformations and free energy of binding based on molecular
mechanics equation added of entropic terms [18] as shown by Equation (1):

∆G = ∆Gvdw + ∆Ghbond + ∆Gelec + ∆Gcon f orm + ∆Gtor + ∆Gsol (1)

Equation (1): Main equation of AutoDock 4 defining the free energy of binding.
The terms ∆Gvdw, ∆Ghbond, ∆Gelec and ∆Gconform are molecular mechanics terms (respec-
tively representing van der Waals, hydrogen bonds, electrostatic and conformational
energies) while ∆Gtor and ∆Gsol are AutoDock 4 added terms representing torsional and
desolvation energies.

Whereas the classical use of AutoDock needs the computation of a single pre-processing
grid, the AMIDE strategy consists of cutting the tridimensional receptor structures into
smaller grids. The grids are overlapping so that no information is lost through unexplored
regions. A slicing in 8 (2 × 2 × 2), 12 (3 × 2 × 2), or 27 (3 × 3 × 3) boxes is possible, but
the 12 overlapping boxes slicing showed optimal docking quality [16]. All the sub-docking
experiments are then simultaneously performed independently of each other thanks to
CPU (Central Processing Unit) parallelization. The calculation time is reduced since the
calculation is not batched on the single-threading instance but rather separated into multi-
core processes. This distribution depends on the number of processing cores or even on
the number of processors, as shown in Figure 1.
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Figure 1. Comparison of AutoDock 4.2 (CPU), AutoDock-GPU and the two versions of AMIDE framework. While Auto-
Dock standalone software can only dock one manually defined box at once (A), the AMIDE protocol automatically cuts 
the receptor into preselected overlapping boxes. AMIDE v1 boxes were independently sent to all available CPU cores (B). 
AutoDock-GPU is based on embarrassingly parallel capacities and can obtain multiple docking calculations in input (C). 

Figure 1. Comparison of AutoDock 4.2 (CPU), AutoDock-GPU and the two versions of AMIDE framework. While AutoDock
standalone software can only dock one manually defined box at once (A), the AMIDE protocol automatically cuts the
receptor into preselected overlapping boxes. AMIDE v1 boxes were independently sent to all available CPU cores (B).
AutoDock-GPU is based on embarrassingly parallel capacities and can obtain multiple docking calculations in input (C).
AMIDE v2 is now using GPU based parallelization, allowing time calculation decrease by computing multiple dockings at
once (D).
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However, this workflow leads to some limitations. Since AutoDock 4.2 was developed
for a CPU architecture, a docking job is performed on a single core, which implies the use of
several cores to obtain the expected performance. One side effect is the difficulty to obtain
a relevant speed calculation in personal computer, while the best approach is to use HPC
architecture. Besides, the demand for numerous cores increases the data flow, eventually
leading to input/output errors. Some errors are not intrinsically caused by AMIDE v1 and
are hardware or software dependent (for instance, global hardware capacity or workload
manager user limits).

Among the main drawbacks associated with AMIDE v1, the fact that slicing and grids
generation were performed for each couple of ligand and receptor led to considerable time
elongation even with grid generation parallelization. In addition, AMIDE v1 was only
able to perform inverse docking of one ligand at a time, which made tedious its use for
High-Throughput inverse docking (multiple ligands, multiple proteins). This limitation
could be bypassed by manual intervention at the end of each ligand inverse docking, but
was still not competitive for large ligands and receptors databases screening.

A new version, called AMIDE v2, was thus developed to speed up the inverse docking
process. This framework is now based on AutoDock-GPU [15] and has benefited from the
total revision of the programming workflow.

The advent of a new version of AutoDock based on calculation parallelization using
GPUs (Graphics Processing Units) was the start of AMIDE v2. The performance gains were
intended to be considerable. As previously mentioned, several front-end modifications to
AMIDE were made beyond the use of this latest version of AutoDock. All these improve-
ments led to better performances and reliability in inverse docking using AMIDE. This
new and optimized workflow can handle multiple ligands, and AMIDE is now adapted to
large scale double docking, i.e., multiple ligands on multiple targets simultaneously.

The updated AMIDE v2 version, whose performances are demonstrated in the present
paper, was applied to a test case mimicking the identification of new chemical structures to
tackle Toxoplasma gondii (T. gondii), responsible for a global parasitosis affecting a third of the
worldwide population [19]. Since this article focuses on the new features brought to AMIDE
and their consequences on general performances and workflow efficiency, the results
presented hereafter will not yet describe the detailed analysis of the docking experiments.

The remainder of this paper is organized as follows. Section 2 compares the perfor-
mance of the versions and the accuracy of the results. Section 3 presents our conclusions
and future works. Finally, Section 4 presents the comparison methodology, our study case
and the datasets preparation steps.

2. Results
2.1. Estimation of Performance Enhancement with AMIDE v2 Compared to AMIDE v1

AMIDE version performances were compared by computing the total calculation time
of docking of the ligand (4) on the 12 docking boxes of the calcium-dependent protein
kinase 1 from T. gondii (TgCDPK1, 6BFA ID in the Protein Data Bank). Three comparisons
were made for 1, 10, and 100 runs, the other parameters being kept constant. For AMIDE
v1, the grid preparation was also considered since it was part of the workflow process. For
this comparison, the calculation processes with AMIDE v1 and AMIDE v2 were distributed
on a 14 cores processor architecture and one GPU, respectively. In the case of AMIDE v1, all
the cores were used to prepare the grids, and 12 cores were used for the 12 boxes docking.

As highlighted in Figure 2, AMIDE v2 allowed a significant speed-up as compared to
AMIDE v1. For a number of runs of 1, 10, and 100, the speed-up factors (defined as the
ratio between the execution time of the AMIDE v1 and the execution time of the AMIDE
v2) were 5.2, 9.7, and 12.4, respectively. This improvement in terms of calculation time
will be of primary importance for massive inverse docking involving tens of proteins and
thousands of ligands.
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of docking runs. A log scale is used on the y-axis.

2.2. Inverse Docking with AMIDE v1 and AMIDE v2: Performance Enhancement Observed on the
Toxoplasma gondii Dataset

We also compared the computation time for the whole inverse docking process with
each AMIDE version for ligand (4) and the 87 proteins of the T. gondii dataset (Figure 3).
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Figure 3. Comparison of the calculation time between the two AMIDE versions. Data were graphed
for ligand (4) docked on the T. gondii dataset (87 proteins). The use of a personal PC was represented
through the consideration of 8 cores and 1 GPU in the case of AMIDE v1 and AMIDE v2, respectively.
The calculation time obtained with AMIDE v1 became as good as the one obtained with AMIDE v2
using 300 cores. The number of docking experiments per box was equal to 20.

Using AMIDE v2 with a single GPU requires 23 min to perform the complete reverse
docking process (one ligand and 87 proteins), while 300 cores are required to perform the
same tasks as quickly on AMIDE version 1. As a comparison, a PC-like configuration
(8 cores) led to a calculation time of 656 min.

2.3. Towards the Confrontation of Ligands and Proteins Databases: Performance of AMIDE v2 in
High Throughput Inverse Screening

AMIDE v2 was evaluated in a double screening process between the T. gondii target
dataset (87 proteins) and the database of nine ligands presented in Section 4 to evaluate the
potential of the improved AMIDE version for further high throughput inverse screening
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applications involving tens of proteins and thousands of ligands. The evolution of the
computation time with the number of GPUs is shown in Figure 4. Although the ligand
database could be considered small, and the T. gondii dataset of average size, the whole
process performed with AMIDE v2 generated a relatively significant number of output files
(AutoDock DLG format). Indeed 9396 DLG files (12 boxes × 87 proteins × 9 ligands) were
associated with 783 (9 ligands × 87 proteins) different protein-ligand docking experiments.
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Figure 4. Evolution of the time needed to complete the double screening as a function of the number
of GPUs. The experiments were realized with AMIDE v2, between the set of 9 ligands and the
T. gondii dataset. The number of docking experiments per box was set to 20.

The allocation of a single GPU led to a calculation time of 215 min. The latter was
divided by 3.4 and 19.5 when 3 and 9 GPUs were allocated, respectively. The exponential
nature of the performance gain as a function of the number of allocated GPUs confirms the
potential of AMIDE v2 to support in silico high throughput inverse screening.

Finally, to demonstrate the performance of the system, the 1018 compounds of the es-
sential National Chemical Library (NCL) were submitted to the complete receptor database
(87 proteins). A total of 50 GPUs was used, and it took 13 h and 30 min to AMIDE v2 to
achieve the 88,566 dockings. A total of 1,062,792 docking files were generated (12 grids ×
87 receptors × 1018 ligands) for 21,255,840 docking poses (1,062,792 dockings × 20 runs).

2.4. Analysis of High Throughput Screening

The analyses of high throughput screening of the 1018 compounds of essential NCL
against the 87 receptors of the dataset was performed and data analysis is presented
hereafter. Table 1 shows the top ten results of the protein-ligand complex ranking. The
free energies of binding and the population associated with these clusters indicate the
high affinity of these ligands towards the considered targets. Further bioassays will be
performed to investigate the in vitro activity of these compounds on Toxoplasma gondii.
Nevertheless, the comparison of top ligand 393 and co-crystallized ligand 9DG on protein
1FSG (Figure 5) shows that they are co-localized in the binding site. Due to structure
analogy, similar hydrogen bonds are highlighted as well as π-stacking interactions.
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Table 1. Top ten protein–ligand complexes from the virtual screening of the 1018 compounds of
essential NCL against 87 Toxoplasma gondii receptors. a.u. stands for arbitrary unit.

Protein Ligand POP dG
(kcal/mol) Score 1 (a.u.) Score 2 (a.u.)

1FSG 393 159 −9.42 0.3375 0.3425
3OTR 369 158 −9.11 0.3416 0.3537
1FSG 32 159 −8.41 0.3375 0.3729
1FSG 123 158 −8.47 0.3416 0.3748
2I44 344 159 −8.30 0.3375 0.3777

3Q5Z 393 156 −8.55 0.3500 0.3818
1FSG 460 157 −8.38 0.3458 0.3833
1FSG 439 159 −7.99 0.3375 0.3926
3STH 671 155 −8.32 0.3541 0.3965
1FSG 234 157 −8.08 0.3458 0.3969
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Superposition of the poses of the co-crystallized 9DG ligand and the top ligand 393 (c). Both are placed in the same pocket
and at least three hydrogen bonds (dashed yellow lines) are highlighted between ligands and residues LYS-178, TYR-205
and ASP-206. π-stacking is observed in the two cases for residue TRP-199.

2.5. Pose Comparison Obtained with the Two AMIDE Versions

Execution time is a crucial parameter when massive in silico screening workflows are
used for drug candidate discovery. The other determinant aspect of a docking approach is
its reliability and ability to accurately predict the 3D conformation of a molecular complex.
As a final validation step of the AMIDE v2 process, the results obtained for the complexes
“ligand (7)/TgCDPK1 (PDB ID 6BFA)” and “co-crystallized ligand (UW5)/TgCDPK1 (PDB
ID 6BFA)” were analysed. The poses corresponding to the most populated cluster with
the lowest free energy of binding with AMIDE v1 and AMIDE v2 were compared and
are shown in Figure 6. Cluster allocation was processed with an RMS tolerance of 2.0 Å
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between conformations. Figure 6 highlights that the best poses are in the co-crystallized
ligand binding site, confirming the relevance of the complexes being compared.
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Figure 6. Comparison of experimental and docked poses of the protein associated with 6BFA PDB
ID. The co-crystallized ligand is represented in green, and the best poses of ligand (7) are pictured in
blue (AMIDE v1) and orange (AMIDE v2). The insert is a zoom-in representing the theoretical poses
of ligand (7) in the binding site.

The free energies of binding determined with AMIDE v1 and v2 were equal to
−6.27 kcal/mol and −6.30 kcal/mol, respectively. The RMSD between the best poses
proposed by AMIDE v1 and AMIDE v2 was equal to 0.106 Å. These results allow us to
conclude that no significant differences exist between the docking results generated by the
two versions of AMIDE, thus confirming the interest in using the new, improved version,
especially for large sets of proteins and ligands.

3. Discussion and Conclusions

The aim of this article is not related to the analyses of docking results but rather to the
enhancement of general performances and associated features. Thus, the conclusion and
related discussion focus solely on the workflow improvements.

This new version of AMIDE drastically increases the speed of docking calculations.
The combined use of a GPU version of AutoDock and the slicing in twelve grids of each
protein allowing the distribution of calculations on multiple GPUs allow more than ever
its use in reverse high-throughput screening. Cutting into 12 boxes is the opposite of a
pocket search on proteins. This process ultimately can rapidly screen millions of ligands on
dozens of proteins in record time without being limited to some regions of those proteins.

Contrary to the AMIDE v1 process, which suffered from performance reduction when
increasing reserved resources, the AMIDE v2 process displayed better performances, since
computation times ratios could be more than inversely proportional to allocated resources
ratios. Increasing the number of CPUs (AMIDE v1) leads to high data exchange and
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impaired computation speed. In contrast, the use of GPU (AMIDE v2) decreased the data
flow and thus led to better performances.

The local-search method (LSMET) initially embedded in AutoDock 4.2 was Solis-
Wets. AMIDE also uses this version even if AutoDock-GPU is now proposed with LSMET
ADADELTA [15]. The Solis-Wets method has been adapted to be run in parallel processing,
leading to increased performances (especially by the reduction in calculation time). It
has been shown that the modification of the algorithm did not alter the docking qual-
ity. Note that we have estimated that the use of Solis-Wets algorithm as LSMET from
AutoDock-GPU should stay the standard for AMIDE because the new implementation
of ADADELTA in AutoDock-GPU is still too recent and calculation times are slightly
longer. That said, ADADELTA could be employed later on AMIDE since it can improve
the docking results quality.

AMIDE was mainly used and intended for HPC. However, its use is also possible on
a classic PC equipped or not with a GPU card. The new AMIDE version depends directly
on AutoDock-GPU computing capabilities, therefore the parallelization of calculations
in CPU version also exists but is less powerful than in GPU version. In GPU version,
AutoDock-GPU made it possible to implement upper limits for docking parameters in
order not to exceed the few GBs of memory used to match a maximum of common (on-chip)
GPU cards. However, the use of an on-board graphics processor is still possible. In the case
of personal computing, the acquisition of GPU hardware is relatively affordable compared
to the use of several CPUs for equivalent computing capacities.

Although AMIDE was first designed for inverse virtual screening (one ligand against
multiple targets), it is also possible to use it in simple virtual screening (multiple ligands
against one specific target). The results presented in this study also demonstrated that
AMIDE has a high potential to solve high throughput inverse screening (multiple ligands
against multiple targets) issues. Future works will be focused on the implementation of
artificial intelligence (AI) in the workflow to focus the search only on the most relevant
areas of the proteins. AI could also be integrated in the post processing analyses as part of
a decision support tool supplemented by molecular dynamic simulations.

4. Materials and Methods
4.1. From AMIDE v1 to AMIDE v2: Modifications and Improvements

AutoDock-GPU is an OpenCL-accelerated version of AutoDock 4.2.6 that is also
CUDA compatible. It was advertised as capable of accelerating calculations up to 56x
in Solis-Wets local search method [20]. More and more sectors such as scientific drills,
financial simulations, and even AI in the broad sense have adopted GPGPU (General-
Purpose computation on Graphics Processing Units) calculation. Computing under GPU is
based on an embarrassingly parallel architecture consisting of grouping several hundred
calculation units (cores). A GPU architecture is based on the SIMT (Single Instruction
Multiple Thread) model, making it possible to launch parallel instances of a program
on n different datasets. The AMIDE v2 workflow has been made compatible with GPU
computing and can handle hundreds of calculations (see Figure 1) compared to mono-
tasked CPU cores. This leads to a drastic decrease in input/output errors by limiting data
flow overload. The amount of IT resources is then reduced, and workload manager user
limitations are lowered.

The management of ligand inputs/outputs, as well as the respective association files
(temporary and result files), were also optimized to favor the use of GPU acceleration.
A configuration script was created to facilitate AMIDE installation and deployment. In
addition, a specific python version and associated packages were also embedded so as not
to be confronted with dependency or incompatibility errors.

Pre-docking files’ (grids, atom map) generation time was also highly reduced. One
file was generated for each ligand and each protein grid, while universal (i.e., the grid
parameters for all available atom types) pre-docking files are now generated once for the
whole dataset.
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A script was written in bash to automatically submit ligand and protein file lists to
AutoDock GPU, preventing unsolicited errors during AMIDE calculations due to input-
output conflicts. This also means that large libraries of ligands can be screened automatically.

Another consequence of having a unique submission list is that it allows the use of a
SLURM Job Array. A job refers to a list of dockings to be performed and addressed to the
requested resources. In this way, the queue manager is not slowed down, and input/output
communications do not impact the AMIDE framework’s general performances.

Because AMIDE uses AutoDock, certain limitations, such as the constraint introduced
on certain types of ligands, have always to be considered. The extensive list of AMIDE v2
compatible atom types is available in Table 2.

Table 2. Atom type available for AMIDE based on AutoDock 4.2.6.

Name Atom Type Name Atom type

H Non H-bonding Hydrogen S Non H-bonding Sulphur

HD Donor 1 H-bond Hydrogen Cl or CL Non H-bonding Chlorine

HS Donor S Spherical Hydrogen

C Non H-bonding
Aliphatic Carbon Ca or CA Non H-bonding Calcium

A Non H-bonding
Aromatic Carbon

N Non H-bonding Nitrogen Mn or MN Non H-bonding
Manganese

NA Acceptor 1 H-bond Nitrogen

NS Acceptor S Spherical Nitrogen Fe or FE Non H-bonding Iron

OA Acceptor 2 H-bonds Oxygen

OS Acceptor S Spherical Oxygen Zn or ZN Non H-bonding Zinc

F Non H-bonding Fluorine

Mgor MG Non H-bonding Magnesium Br or BR Non H-bonding Bromine

P Non H-bonding Phosphorus I Non H-bonding Iodine

SA Acceptor 2 H-bonds Sulphur

4.2. Calculations

The v2018 supercomputer at URCA ROMEO Datacenter is based on a Sequana X1000
type solution (ATOS). Its equipment includes 115 servers composed of Intel® Skylake
6132 2.6 GHz processors totaling 3,220 cores and 280 accelerators Nvidia P100 SXM2. The
running SLURM daemon is version 16.05.11-Bull.1.3, running under RedHat 7.4 Maipo
and using CUDA 10.0 and gcc 7.4.0.

4.3. Receptors Dataset

The receptors set was generated from a list containing approximately 200 PDB struc-
tures from Protein Data Bank (PDB). A functional dataset of 87 structures was obtained
by selecting only X-ray structures with resolution less than 3 Å. Water and other crystallo-
graphic residues were removed. Only chains of interest were preserved according to global
stoichiometry. When necessary, apo-forms were generated from co factor-forms such as
NAD or AMP. Three proteins (PDB identifier 4OKR, 1QK5, 1DGM) include one mutation
compared to the reference sequence, and two mutations are present for the protein 4A5B.
No energy minimization was performed.

Polar hydrogen atoms were added prior to grid calculations, and the receptors were
divided into 12 boxes with the AMIDE dataset preparation function. Depending on the
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protein’s size, the spacing used to compute the grids ranged from 0.40 to 1.00 Å (see
Figure 7). All associated data are available in supplementary data (Table S1).
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Figure 7. T. gondii protein selection methodology. Protein structures were obtained from the Protein
Data Bank. About 200 structures of T. gondii proteins were selected and then filtered according to
their acquisition method (X-ray), resolution (less than 3 angstroms), and completeness. The final
dataset contains 87 structures whose resolution (graph on the left) and spacing (graph on the right)
distribution are presented.

4.4. Ligands Dataset

Nine small molecules were selected for this study according to their various chemical
classes (atom type, structure) and torsional degrees of freedom (TORSDOF). They were
chosen from PNMRNP (Predicted carbon-13 NMR data of Natural Products), a curated
and annotated small natural molecules database [21]. All the relevant characteristics are
presented in Table 3, and 2D structures are available in Figure 8. For high-throughput
screening assay, French essential National Chemical Library (essential NCL) (https://
chembiofrance.cn.cnrs.fr/en/composante/chimiotheque (accessed on 5 April 2021)) was
used. The NCL presents more than 75,000 compounds of natural, synthetic or hemisynthetic
origin deposited by French academic partner laboratories. The essential NCL represents the
chemical diversity of this database through 1040 compounds. These are the ones that have
been used here. Within this database, 22 compounds were identified as not compatible
with AMIDE because of TORSDOF too high or atypic atom types. Thus, 1018 compounds
of essential NCL were used.

4.5. Ligands Preparation

Ligands must be prepared according to AutoDock-GPU requirements. The output
must be a 3D representation in PDBQT format. The first step was to convert a 2D structure
of any format into a 3D structure. This was done using Schrödinger LigPrep 2020-3
software (LigPrep, Schrödinger, LLC, New York, NY, USA) with OPLS3e as force filed,
ionization ah pH 7, salt removal and without tautomer generation. Other tools such
as RDKit (https://rdkit.org/) or Avogadro (https://avogadro.cc/) could also be used.
The second step was to convert SDF output files from LigPrep into PDBQT format files.
This was done with Open Babel 3.1.1 [22]. Finally, AMIDE compatibility verification tool
(TORSDOF < 32 and compatible atom type) was used for ligand validation.

https://chembiofrance.cn.cnrs.fr/en/composante/chimiotheque
https://chembiofrance.cn.cnrs.fr/en/composante/chimiotheque
https://rdkit.org/
https://avogadro.cc/
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Table 3. Presentation of the dataset of the nine ligands used in this study with associated molecular
formula and TORSDOF. This last parameter represents the intrinsic flexibility of the ligands as
considered within the docking process of AutoDock.

ID Molecular Formula TORSDOF

(1) C27H42O7 5
(2) C25H24O2 11
(3) C11H12N6 0
(4) C21H26N2O3 3
(5) C14H10N2O3 2
(6) C20H14O6 2
(7) C16H18O3 2
(8) C15H14O10 10
(9) C16H22O3 4
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4.6. Grid Preparation

Grid parameter files required for the use of AutoDock 4.2 (generated by AutoGrid 4)
were generated for each ligand with AMIDE v1, which was time-consuming and tedious.
Moreover, for a given atom type, the files were the same from one ligand to another
one since the geometric definition (size and number of points) of the grid was strictly
protein-dependent. Henceforth, with the upgraded AMIDE protocol, the grid generation is
performed within a single unified preliminary step. The implemented strategy consists
of creating a dummy ligand that could be described as a universal ligand that contains
every AutoDock compatible atom type. During the docking step, AMIDE v2 uses only the
necessary grid parameter files associated to the considered “real” ligand. Table 2 presents
the list of all atom type available in AMIDE.

4.7. High Throughput Screening Analyses

The first step was to perform clustering of docking poses of each ligand-receptor
complex. A modified version of AutoDock Tools was used, and clustering was performed
using radius of gyration. Each identified cluster was then scored using Equation (2) (scoring
1) where dGmin is the minimal free energy of binding identified in the complex, dGx the
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free energy of binding of the considered cluster, Popmax the maximum cluster population
identified in the complex and Popx the population of the considered cluster.

Scoring 1 =

√
|dGmin − dGx|
|dGmin|

+
|Popmax − Popx|
|Popmax|

(2)

Scoring 2 =

√
|dGmin − dGx|
|dGmin|

+
|Popmax − Popx|
|Popmax|

+
|Score 1min − Score 1x|

|Score 1min|
(3)

The clusters were then sorted according to their rank. The lower the scoring, the
better the cluster. All clusters of all ligand-receptor complexes were then compared and
re-ranked using the scoring function presented in Equation (3) (scoring 2). This function is
similar with scoring 1 and includes an additional scoring term, where Score 1min is the score
corresponding to the best ligand-receptor complex among all the clusters. Thanks to this
method, there is no arbitrary threshold definition. Visualization of poses was performed
using PyMol 2 (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22147489/s1.
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