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Simple Summary: In China, ozone is a major air pollutant that has been linked to stroke incidence and
mortality. However, how long-term exposure to ozone affects the life quality among stroke survivors
is unknown. This study presents a longitudinal analysis of nationwide data of Chinese adults, and
shows that exposure to ozone can increase the risk of post-stroke disability. Taking ambient O3 under
control can delay the progression of neurological disability among stroke survivors.

Abstract: Exposure to ozone (O3) is associated with stroke incidence and mortality. However, whether
long-term exposure to O3 is associated with post-stroke neurological disability remains unknown.
This study investigated the relationship based on the longitudinal analysis of China National Stroke
Screening Survey (CNSSS), which included 65,778 records of stroke patients. All of the analyzed
patients were followed-up at least twice. Stroke disability was assessed using the modified Rankin
scale (mRS). Long-term exposure was assessed by the peak-season or annual mean of maximum
8-h O3 concentrations for 365 days before the mRS measurement. We used fixed-effect models to
evaluate the associations between O3 and mRS score, with adjustment for multiple confounders,
and found a 10 µg/m3 increase in peak-season O3 concentration was associated with a 0.0186 (95%
confidence interval [CI] 0.0115–0.0256) increment in the mRS score. The association was robust in
various subpopulations. For secondary outcomes, for each 10 µg/m3 increment in peak-season O3,
the odds ratio of an increased mRS score (vs. unchanged or decreased mRS score) increased by
23% (95% CI 9–37%). A nonlinear analysis showed a sublinear association between O3 exposure
and risk for post-stroke disability. A saturation effect was observed at an O3 concentration of more
than ~120 µg/m3. Our study adds to evidence that long-term exposure to O3 increases the risk of
neurological disability after stroke.

Keywords: stroke; disability; ozone; longitudinal study

1. Introduction

Stroke is recognized as one of the biggest causes of disability worldwide, yet its neu-
rological burden has been well under-recognized as it was classified as a cardiovascular
disease before the release of latest revision of the WHO International Classification of
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Disease (ICD-11) [1]. It is of significant public health interest to identify the risk factors
for stroke-related disability. Among the modifiable risk factors, air pollution is the third
leading contributor to the global stroke burden, accounting for 29.2% of the full burden [2].
Stroke accounts for an estimated 113 million disability-adjusted life-years (DALYs), which
integrates healthy life years lost due to both premature mortality and living with disabil-
ity [3]. It is estimated that stroke accounts for 2.07% (95% CI, 1.6–2.52%) of total years
lived with disability (YLDs) and 5.65% of total DALYs (95% CI, 5.14–6.17%) according to
the Global Burden of Disease (GBD) study in 2019 [4]. However, studies on risk factors
have focused on their effects on the incidence or the years of life loss (YLLs) due to stroke,
ignoring YLDs.

Increased concentrations of air pollution are strongly associated with risk for stroke [5–7].
Exposure to ozone (O3), a major air pollutant, also contributes to the risk for many neurolog-
ical diseases, such as stroke, Parkinson’s disease, dementia, and multiple sclerosis [5,8]. A
meta-analysis showed a weak association between short-term O3 and admission to hospital
for stroke or mortality from stroke, with a pooled relative risk of 1.001 (95% CI, 1.000–1.002)
per 10 ppb [9]. Although those studies were conducted in different regions, most evaluated
the effects of short-term exposure to O3 on stroke. Studies investigating the relationship
between short-term O3 exposure and stroke may have some inherited shortcomings. Ground-
surface O3 is produced by photochemical chemical reactions between primary air pollutants
(e.g., nitrogen dioxide and volatile organic compounds), and thus its short-term variations
are affected by climate conditions, such as temperature. Therefore, climate variables, which
directly affect human health in a complex nonlinear pattern, can be confounders for the
short-term effects of O3. Long-term exposure to O3 is less affected by short-term fluctuations
in climate, and its health effects can be stable. However, the relevant epidemiological evidence
is sparse. The World Health Organization released the revised Global Air Quality Guidelines,
which provide a recommended long-term, peak-season (i.e., maximum of 6-month moving av-
erages) O3 level of <60 µg/m3 based on all non-accidental mortality and respiratory mortality
studies [10], suggesting that the effects of O3 have been underestimated before. It is of public
health importance to evaluate the long-term effect of O3, particularly in an aging society.

Compared with its incidence and mortality, disability caused by stroke and long-
term prognosis of stroke, which may affect the quality of life, have been investigated
less intensively. A cross-sectional study conducted in Texas from 2000 to 2012 reported
that each 10 µg/m3 increment in daily exposure to O3 was significantly associated with
a 0.29 (95% CI 0.06–0.51) increment of initial stroke severity (assessed by NIH Stroke
Scale, NIHSS) [11]. A longitudinal study involving older Chinese adults found that each
10 µg/m3 increase in annual mean O3 exposure was associated with a 10.4% increased
risk for cognitive impairment, as assessed by the Mini-Mental State Examination [12].
A California study showed that increment in O3 was negatively associated with verbal
fluency and executive function [13]. Studies in China on the association between O3 and
neurological disability after stroke have been challenging for two reasons: First, there
are few studies that contain quantitative assessment of neurological function after stroke.
Second, regulatory measurements of O3 have been based on monitoring stations and were
not available for the full coverage of O3, hampering the assessment of population-level
long-term exposure. The Modified Rankin Scale (mRS) assesses disability in patients who
have suffered a stroke and is compared over time to check for recovery and degree of
continued disability or dependence in daily activities. Compared with other stroke scales,
mRS is easy to operate, can be scored by simple inquiry, and has good reliability and
authenticity [14]. In this study, we used a fixed-effect model to evaluate the association
between O3 and mRS score based on a national stroke survey in China. Our analysis
included 65,778 records of stroke patients. The participants were followed up at least
twice with valid mRS measurements. The potential effects of modifiers of the relationship
between O3 and mRS score were also examined.
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2. Methods
2.1. Exposure Assessment

We obtained the 10 × 10 km maximum daily 8-h averaged O3 concentrations in
China from 1 January 2013 to 31 December 2019, from the Tracking Air Pollution in China
Database (TAP; http://www.tapdata.org.cn; accessed on 9 June 2021). This database uses
a data-fusion algorithm for O3 estimation that combines in situ observations, satellite
remote-sensing measurements, and results from the community multiscale air quality
model. Details of the database and the accuracy of the model can be found elsewhere [4].
By linking the community address (longitude and latitude) of each participant derived
from the China National Stroke Screening Survey (CNSSS) to the nearest O3 grid, we
matched each participant to the 10 × 10 km grid. We calculated the peak-season or the
annual mean concentration during the year preceding the measurement of the mRS as
long-term exposure to O3. Therefore, this study only included the mRS records measured
from 1 January 2014, due to the limited availability of the exposure data. We also calculated
O3 exposure using different time windows to test whether the exposure time window
affected the estimated effect of O3.

2.2. Population Selection

The study population was obtained from CNSSS, an ongoing community-based stroke
surveillance program in mainland China that started in 2013 [15]. The design, methods,
and participants of the CNSSS program are available elsewhere [15–17]. Briefly, a two-stage
stratified cluster sampling method was adopted for each screening. The participants were
interviewed using a standardized face-to-face questionnaire to collect information on their
demographic characteristics, socioeconomic status, stroke history, and risk factors for stroke
by neurologists or physicians from community hospitals. The data can be obtained from
the Bigdata Observatory Platform for Stroke of China (BOSC; https://www.chinasdc.cn/;
accessed on 10 June 2021) [18]. Because the prevalence of stroke is relatively low among
younger adults [19], CNSSS only screens residents aged 40 years and older in each com-
munity. The inclusion criteria were patients diagnosed with stroke, stroke onset preceding
the mRS measurement, and at least two mRS measurements [20]. We did not exclude the
patients with stroke recurrences. Recurred stroke might be a pathway to explain why O3
increased the mRS score among the survivors, and air pollution has been evidenced to be a
risk factor of stroke incidences and recurrences. Therefore, the patients with a history of
recurrent stroke might be more susceptible to air pollution. Excluding them could lead to
an underestimated association. Additionally, the recurrent stroke patients might have a
high probability of death, and thus tended to be ignored by our study. We introduced a
method of inverse-probability weights to adjust for the missingness, as mentioned in the
statistical analyses section.

2.3. Outcome

The primary outcome was the change in mRS score. The mRS score (range 0–6) was
used to measure the degree of disability or dependence in daily activities of patients with
stroke: the higher the score, the greater the disability. A score of 0 means no symptoms;
1 indicates no significant disability despite symptoms; and scores of 2–4 mean slight,
moderate, moderately severe, and severe disability, respectively. A score of 6 indicates
death and thus didn’t appear in our surveys on stroke survivors. The secondary outcome
was the change in mRS score transformed into a dichotomous variable using cut-off values
of >0, >1, >2, >3, >4, or >5.

2.4. Covariates

Personal information of the participants was collected by questionnaires. Partici-
pants’ demographic characteristics were documented, including age (≤45, 46–55, 56–65,
66–75, 76–85, of >86 years), sex (male or female), and region (southwest, south, northwest,
northeast, north, east, or central China). Data on lifestyle-related factors were collected,

http://www.tapdata.org.cn
https://www.chinasdc.cn/
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including smoking status (yes or no), alcohol consumption (yes or no), exercise (yes or
no; no enough exercise: frequency <3 times/week and <30 min/time or less), BMI (under-
weight, <18.5; normal, 18.5–24; overweight, 24–28; obese, >28), and drinking milk (yes or
no; no enough milk intake: drinking <200 mL/day milk and <5 days/week or less) [21,22].
As both O3 concentration and status of neurological health can be seasonally varied, an
indicator of season was also created based on the date of mRS measurement. In addition, a
history of hypertension (yes or no), diabetes (yes or no), lipid disorders (yes or no), and
atrial fibrillation (yes or no), as well as years after stroke (<1, 1, 2, 3, 4, 5–10, 10–20, or
>20 years), were included as confounding factors. We used multiple imputation for the
missing covariate values.

2.5. Statistical Analyses

Linear fixed-effect models were used to examine the associations between the change
in mRS score and the ambient exposure to O3 with participant-specific intercepts. In the
main analysis, we used the peak-season or the annual mean of O3 during the year preceding
the mRS measurement (defined as the lag-1 year exposure) to assess the association. The
linear fixed-effect models can be specified as follows:

mRSi,j~β1O3,i,j + β2xi,j + η(i),

where i and j denote the indexes for subject and visit, respectively; mRSi,j denotes the diag-
nosed score of ith subject at the jth visit; xi, denotes the adjusted covariates; η(i) denotes the
fixed-effect term to characterize the participant-specific baseline risk of neurological disabil-
ity; and βs denote the regression coefficients. The association was quantified as the change
in mRS score for each 10 µg/m3 increment in O3. We also modeled dichotomous variables
(as described above) as the secondary outcomes, using fixed-effect logistic regressions. We
also created an additional dichotomous outcome to indicate mRS change (1: increased
mRS; 0: unchanged or decreased mRS). We calculated the odds ratio (OR) to assess the
association between the binary indicator of stroke disability and O3 concentrations.

The basic model (Model 1) only included O3 exposure and the progress in mRS score
with time as the only covariate, and the term was parametrized as the interaction term
between the temporal index and baseline age or years after stroke. We also conducted
several sensitivity analyses to evaluate the robustness of the model estimates. First, we
conducted four additional models, which sequentially included a series of covariates. On
the basis of Model 1, Model 2 additionally included season; Model 3 encompassed several
lifestyle-related covariates (i.e., smoking, drinking, exercise, BMI, and drinking milk);
Model 4 included annual average PM2.5 as an additional covariate; and Model 5 further
adjusted for hypertension, diabetes, and lipid disorders. Model 5 was considered as the
full model. Because the subjects might not be randomly distributed among baseline mRS
levels (a higher baseline mRS score might be associated with an increased risk for death,
which makes follow-up less likely), the inverse probability weight (IPW) method was used
to obtain representative estimates. Second, we explored the variation in the association
between O3 and mRS score by stratifying the patients by region, age, years after stroke,
sex, hypertension, diabetes, dyslipidemia, atrial fibrillation, drinking, smoking, physical
inactivity, and BMI. Third, we evaluated the cumulative effect of different time windows of
O3 exposure (lag of 1, 2, or 3 years) on the mRS score. A nonlinear model was applied to
analyze the exposure–response association between O3 concentration and mRS score using
smooth spline functions.

Statistical analysis was performed using R (version 3.5.1; R Core Team; Vienna, Aus-
tria). Coefficient and odds ratio (OR) estimates with 95% confidence intervals were reported,
and p-values < 0.05 were considered indicative of statistical significance.
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3. Results
3.1. Study Sample

In total, 28,056 individuals (65,778 visits) were followed up. At baseline, the median O3
peak-season concentration was 107.50 µg/m3 (25th to 75th percentile, 93.70–123.27 µg/m3),
and the O3 annual mean concentration was 82.75 µg/m3 (25th to 75th percentile,
75.03–90.49 µg/m3). The distributions of O3 concentration for different time windows
are shown in Supplemental Table S1a,b. Table 1 shows the baseline characteristics of the
participants by peak-season O3 concentration quartile. Disease characteristics varied ac-
cording to the O3 concentration. Despite using different measurements of exposure to
O3, Table S2 shows the semblable characteristics. Supplementary Figure S1 shows the sur-
veyed locations in seven Chinese geographical zones; the sample covered most provincial
administrative regions in mainland China, except for Tibet.

3.2. Association between O3 Exposure and mRS Score

As shown in Figure 1, the effect of peak-season O3 was slightly weaker than that of the
annual mean O3 in each model. Each 10 µg/m3 increment of annual average O3 exposure
increased the mRS score by 0.020 points (95% CI, 0.010–0.030) in the fully adjusted model.
The effect was estimated to be 0.017 (95% CI, 0.010–0.024) in terms of peak-season O3. The
result was robust when adjusting for different covariates. For the secondary outcomes, there
was a significant association between O3 exposure and an increase in mRS score. For each
10 µg/m3 increment in peak-season and annual mean O3 exposure, the OR of an increased
mRS score (vs. unchanged or decreased mRS score) for peak-season and annual mean O3
was 1.23 (95% CI, 1.09–1.37) and 1.28 (95% CI, 1.09–1.52), respectively, in the fully adjusted
model (Supplemental Figure S2). However, there was no significant effect on individuals
with high levels of baseline mRS score (mRS > 2 points). In the sensitivity analyses, effect
estimates of air pollutants back-extrapolated to the year of baseline examination were
similar to or slightly higher than the main results (Figure 2).

3.3. Effect Modification

To identify the populations particularly susceptible to O3 exposure, we investigated
the potential effect modifications of baseline characteristics (Figure 3). There was no change
in effect stratified by age, years after stroke, sex, hypertension, diabetes, dyslipidemia, atrial
fibrillation, drinking, smoking, physical inactivity, or BMI. The results showed significantly
positive associations in northwest, northeast, and east China, with estimated effects of
0.060 (95% CI 0.039–0.081), 0.028 (95% CI 0.014–0.041), and 0.022 (95% CI 0.010–0.034),
respectively, but not for southwest China (−0.037; 95%CI −0.053–−0.021). The difference
across regions was statistically significant (p < 0.001). The relatively small sample size
in southwest China (n = 4221, compared with n = 14,891 in north China) is likely the
underlying reason; other possibilities are geographical differences in climate, lifestyle,
residential habit of heating, and baseline health status. For instance, southwest had a high
prevalence of stroke [15], which suggests a poor baseline level of cerebrovascular health.
Therefore, among the vulnerable stroke patients, exposure to air pollution may lead to a
fatal outcome rather than neurological disability. Further studies are warranted to confirm
the modification effect and to examine the biological mechanisms of the geographical
difference in the effect of O3 on disability after stroke.
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Table 1. Descriptive characteristics of the study participants at baseline by peak-season O3 concentra-
tion quartile.

Overall
O3 First
Quartile

O3 Second
Quartile O3 Third Quartile O3 Fourth

Quartile p-Value
(≤93.70 µg/m3) (93.70–107.50µg/m3) (107.50–123.27µg/m3) (>123.27 µg/m3)

Age Group <0.01
≤45 585 (2.09) 197 (2.49) 161 (2.29) 125 (1.78) 102 (1.46) ——
45–55 4288 (15.28) 1176 (14.84) 1016 (14.48) 1066 (15.15) 1030 (14.76) ——
55–65 9857 (35.13) 2438 (30.77) 2405 (34.27) 2486 (35.33) 2528 (36.22) ——
65–75 9681 (34.51) 2308 (29.13) 2447 (34.87) 2437 (34.64) 2489 (35.66) ——
75–85 3388 (12.08) 829 (10.46) 912 (13.00) 865 (12.29) 782 (11.21) ——
>85 257 (0.92) 76 (0.96) 76 (1.08) 57 (0.81) 48 (0.69) ——

Sex <0.01
Female 13,094 (46.67) 3398 (48.38) 3353 (47.78) 3267 (46.43) 3076 (44.08) ——
Male 14,842 (52.90) 3610 (51.40) 3659 (52.14) 3713 (52.77) 3860 (55.31) ——
Missing 120 (0.43) 16 (0.23) 5 (0.07) 56 (0.80) 43 (0.62) ——

Atrial
Fibrillation <0.01

No 26,649 (94.99) 6661 (94.83) 6537 (93.16) 6736 (95.74) 6715 (96.22) ——
Yes 1401 (4.99) 363 (5.17) 480 (6.84) 294 (4.18) 264 (3.78) ——
Missing 6 (0.02) 0 (0.00) 0 (0.00) 6 (0.09) 0 (0.00) ——

Dyslipidemia <0.01
No 15,179 (54.1) 3484 (49.6) 3959 (56.42) 4068 (57.82) 3668 (52.56) ——
Yes 9715 (34.63) 1902 (27.08) 2242 (31.95) 2609 (37.08) 2962 (42.44) ——
Missing 3162 (11.27) 1638 (23.32) 816 (11.63) 359 (5.10) 349 (5.00) ——

Hypertension <0.01
No 9021 (32.15) 2493 (35.49) 2174 (30.98) 2249 (31.96) 2105 (30.16) ——
Yes 19,029 (67.83) 4531 (64.51) 4843 (69.02) 4781 (67.95) 4874 (69.84) ——
Missing 6 (0.02) 0 (0.00) 0 (0.00) 6 (0.09) 0 (0.00) ——

Diabetes Mellitus <0.01
No 20,847 (74.30) 4908 (69.87) 5289 (75.37) 5383 (76.51) 5267 (75.47) ——
Yes 5272 (18.79) 1027 (14.62) 1278 (18.21) 1484 (21.09) 1483 (21.25) ——
Missing 1937 (6.90) 1089 (15.50) 450 (6.41) 169 (2.40) 229 (3.28) ——

Smoke <0.01
No 18,217 (64.93) 4154 (59.14) 4626 (65.93) 4796 (68.16) 4641 (66.50) ——
Yes 7133 (25.42) 1779 (25.33) 1824 (25.99) 1793 (25.48) 1737 (24.89) ——
Missing 2706 (9.64) 1091 (15.53) 567 (8.08) 447 (6.35) 601 (8.61) ——

Drink <0.01
No 23,133 (82.45) 5812 (82.74) 5862 (83.54) 5845 (83.07) 5614 (80.44) ——
Yes 4910 (17.50) 1210 (17.23) 1152 (16.42) 1184 (16.83) 1364 (19.54) ——
Missing 13 (0.05) 2 (0.03) 3 (0.04) 7 (0.10) 1 (0.01) ——

Sport <0.01
No 11,147 (39.73) 2824 (40.21) 2673 (38.09) 2660 (37.81) 2990 (42.84) ——
Yes 16,901 (60.24) 4198 (59.77) 4344 (61.91) 4370 (62.11) 3989 (57.16) ——
Missing 8 (0.03) 2 (0.03) 0 (0.00) 6 (0.09) 0 (0.00) ——

Milk <0.01
No 17,073 (60.85) 3837 (54.63) 4264 (60.77) 4304 (61.17) 4668 (66.89) ——
Yes 4449 (15.86) 973 (13.85) 1130 (16.10) 1090 (15.49) 1256 (18.00) ——
Missing 6534 (23.29) 2214 (31.52) 1623 (23.13) 1642 (23.34) 1055 (15.12) ——

BMI <0.01

(−Inf,18.5] 545 (1.94) 163 (2.32) 175 (2.49) 124 (1.76) 83 (1.19) ——

(18.5,24] 10,580 (37.71) 3092 (44.02) 2850 (40.62) 2435 (34.61) 2203 (31.57) ——
(24,28] 11,849 (42.23) 2786 (39.66) 2906 (41.41) 3105 (44.13) 3052 (43.73) ——
(28, Inf] 5055 (18.02) 967 (13.77) 1082 (15.42) 1370 (19.47) 1636 (23.44) ——
Missing 27 (0.10) 16 (0.23) 4 (0.06) 2 (0.03) 5 (0.07) ——
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Figure 1. Associations of O3 exposure with mRS score based on different model settings. Model 1
was only adjusted for the interaction of the follow-up period with age at baseline and the interaction
of the follow-up period with years after stroke at baseline. Model 2 was additionally adjusted for
season. Model 3 was additionally adjusted for smoking, drinking, physical activity, milk intake, and
body mass index. Model 4 was additionally adjusted for PM2.5. Model 5 was additionally adjusted
for hypertension, diabetes, dyslipidemia, and atrial fibrillation. mRS, modified Rankin Scale.
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Figure 2. Associations of O3 exposure with mRS score using different exposure time windows.
(a) Peak-season O3. (b) Annual mean O3. Models were adjusted for the interaction of the follow-up
period with age at baseline, the interaction of follow-up period with years after stroke at baseline,
season of the study, smoking, drinking, physical activity, milk intake, body mass index, hypertension,
diabetes, dyslipidemia, and atrial fibrillation. mRS, modified Rankin Scale.
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Figure 3. Subpopulation-specific effect of O3 exposure with mRS score outcomes for per 10 ug/m3

increment of O3 by demographic subgroups. (a) Peak-season O3. (b) Annual mean O3. Models
were adjusted for the interaction of the follow-up period with age at baseline, the interaction of the
follow-up period with years after stroke at baseline, season of the study, smoking, drinking, physical
activity, milk intake, body mass index, hypertension, diabetes, dyslipidemia, and atrial fibrillation.
mRS, modified Rankin Scale.
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3.4. Exposure−Response Relationship

When using splines for the annual mean O3 term in the nonlinear model, the exposure–
response curve was similar to the curve using peak-season O3 exposure (Figure 4). The
directions of the overall effects estimated by the nonlinear models were consistent with the
linear results. The effect was almost linear at concentrations of ≤100 µg/m3 for peak-season
O3. The estimated curvatures showed a saturated effect of O3 on post-stroke disability at
high concentrations.

Figure 4. Exposure−response curves for O3 exposure levels with mRS score. The solid line represents
the point estimates; the dashed line represents the confidence intervals. The distribution of O3

concentration of the baseline and revisit population are shown in the box plot. (a) Peak-season O3.
(b) Annual mean O3. Models were adjusted for the interaction of the follow-up period with age at
baseline, the interaction of the follow-up period with years after stroke at baseline, season of the
study, smoking, drinking, physical activity, milk intake, body mass index, hypertension, diabetes,
dyslipidemia, and atrial fibrillation. mRS, modified Rankin Scale.

4. Discussion

China bears the highest burden of stroke globally [23]. However, few studies have
evaluated the influence of the outdoor environment on stroke prognosis [24]. To the best
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of our knowledge, this is the only national longitudinal study to date to investigate the
influence of O3 exposure on mRS score in China. We found that long-term exposure to
O3 was associated with an elevated risk of neurological disability after controlling for
potential confounders. Each 10 µg/m3 increment in peak-season O3 was associated with a
0.017 (95% CI 0.010–0.024) increment in the mRS score. The estimate was robust in various
subpopulations. The exposure–response curve showed a sublinear function between the
increased risk for post-stroke disability and an increased O3 concentration.

The risks of stroke mortality and hospital admission are associated with acute effects of
O3 in China. A meta-analysis showed a weak association between short-term O3 and admis-
sion to hospital for stroke or mortality from stroke (relative risk, 1.001; 95% CI 1.000–1.002)
per 10 ppb [9]. Previous reports on long-term O3 exposure and incidence of stroke are
inconsistent. A study in the southeast United States revealed that the annual mean O3
was associated with an increased risk of stroke mortality with a hazard ratio (HR) of 1.012
(95% CI 1.012–1.013) [5]. Zhao et al. [8] reported an HR of 1.08 (95% CI 1.06–1.10) for each
interquartile range increase in O3 (10.1 ppb) in a Canadian cohort. However, another study
reported that warm-season O3 was not associated with an increase in the incidence of
stroke (HR 0.96; 95% CI 0.91–1.01) [25]. The possible reasons for the discrepancy include
the different study designs, exposure concentrations, and populations. Few studies have
reported an association between exposure to O3 and an increased risk for disability. A
cross-sectional study conducted in Texas from 2000 to 2012 reported that each 10 µg/m3

increment in daily exposure to O3 was significantly associated with a 0.29 (95% CI 0.06–0.51)
increment of initial stroke severity (NIHSS).

Our results indicated that the effect of peak-season O3 was more concise than that of
annual mean O3 with a narrower confidence interval. In some studies, O3 concentrations
were calculated for the “peak” or warm season, whereas others used the annual average
or median as an exposure indicator. The WHO has updated the Air Quality Guidelines to
provide guidance on the health risks of O3. According to a meta-analysis concerning the
long-term effect of O3 on mortality, the pooled OR from studies using annual mean metrics
showed estimated effects for all-cause and respiratory mortality of 0.97 (95% CI 0.93–1.02)
and 0.99 (95% CI 0.89–1.11) for each 10 µg/m3 increment of O3, respectively. In studies
using peak-season O3 metrics, the pooled OR was estimated to be 1.01 (95% CI 1.00–1.02)
for all-cause mortality and 1.02 (95% CI 0.99–1.05) for respiratory mortality. Although
the meta-analysis identified high levels of heterogeneity, the error of the estimated effects
measured using peak-season O3 was lower than annual mean O3, which is consistent with
our findings. Therefore, peak-season mean may be useful for assessing the health effect of
long-term O3 exposure.

Although the biological mechanisms underlying the adverse effects of O3 on the
central nervous system remain unclear, some studies have implicated a few plausible
pathways, including inflammation and oxidative stress. First, as an oxidizer, O3 can
activate respiratory inflammatory responses directly, and cause systemic inflammations
after entering the bloodstream [26,27]. Second, exposure to O3 can also induce endothelial
dysfunction and increase the risk of thrombosis [28,29]. Third, because of oxidative stress,
O3 exposure can introduce the formation of free radicals in cells and tissues, which furthers
DNA damage and lipid peroxidation [30,31]. Finally, O3 has been found to change the
permeability of the blood–brain barrier (BBB) and even to cause dysfunctions, which may
further lead to persistent damage in the central nervous system [31,32].

This study had several limitations. First, in terms of exposure matching, O3 concen-
trations were estimated at a resolution of 10 km × 10 km. The geographic addresses were
confined to the community-hospital level for confidentiality, possibly leading to exposure
misclassification due to measurement error. Moreover, because stroke survivors spend
more time indoors and we could not take into account indoor O3 concentration due to
the inaccessibility of data, further research with a portable individual-level O3 exposure
testing instrument is expected to validate our results. Second, except for PM2.5, we could
not estimate the potential confounding or interactive effects of other ambient air pollutants
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such as NO2 and black carbon, which might be correlated with O3. After adjusting for
PM2.5 as a covariate, the effect remained robust. Therefore, we assumed that the effect of O3
was independent of PM2.5. Third, the individual-level information was self-reporting, pos-
sibly introducing recall bias. Moreover, unmeasured confounders (e.g., medication history)
might bias the results in an unknown direction. Fourth, the unbalanced age structure of
participants (≥40 years) and sampled counties (more concentrated in the eastern part of the
country) make this study less representative of the whole population. The participants that
were excluded due to having no follow-up measurements might also lead to selection bias.
In addition, people with a higher baseline mRS score may have a higher risk for death and
thus be less likely to be followed up. In the sensitivity analysis, the results obtained with
and without weighting were similar, demonstrating the robustness of the findings. Fifth,
the mRS score might be influenced by stroke severity and recurrence, and the precise times
of stroke or transient ischemic attack (also known as mini stroke) are unknown, which
might have biased the results. However, we stratified the studied population by years
after stroke in the sensitivity analysis, but did not find a significant difference between the
subpopulation-specific associations. The results of the sensitivity analysis indicated that
the history of stroke did not considerably affect our results.

5. Conclusions

Long-term exposure to O3 was associated with a higher risk for post-stroke neuro-
logical disability among middle-aged and elderly Chinese people. Taking ambient O3
under control might delay the progression of neurological disability among the aging
population. Our findings point to the urgent necessity for implementing stringent clean air
policies to reduce ambient O3 pollution, which might bring great public health benefits in
an aging society.
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Figure S2. Associations of O3 exposure with different categorical mRS score outcomes for per
10 µg/m3 increment of O3. a: Peak season O3. b: Annual mean O3. Model 1 was only adjusted
for the interaction of follow-up period with age at baseline, and the interaction of follow-up period
with years after stroke at baseline. Model 2 was additionally adjusted for season. Model 3 was
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