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Glaucoma damages retinal ganglion cells, including intrinsically photosensitive retinal

ganglion cells (ipRGCs). These cells modulate various non-visual physiological and

psychological functions which are modulated by light. In patients with glaucoma, we

assessed the effect of daily bright light exposure (LE) on several melanopsin-dependent

functions, such as the pupil constriction, circadian rest-activity cycles, sleep and

subjective well-being including relaxation, alertness and mood. Twenty patients

participated in the study (9 women, 11 men, mean age= 67.6± 7.5 y). Pupillometry was

performed before the LE weeks and repeated on the last day of LE. The post-illumination

pupil response (PIPR) was calculated as a proxy for melanopsin-dependent activation.

Participants continuously wore an activity monitor and self-assessed sleep quality,

well-being and visual comfort for 7 days before and during 4 weeks of daily bright

LE (30min to 10,000 lux polychromatic bright white light). After the LE, there was a

significantly greater PIPR and higher subjective sleep quality when compared to the

pre-LE week (p < 0.05), but no significant changes in 24-h rhythms or sleep parameters.

A greater PIPR was correlated with an increase in circadian amplitude and higher

inter-daily stability (derived from rest-activity cycles; p < 0.05). In a small group of

patients with glaucoma, scheduled daily bright light exposure could improve subjective

sleep quality. These findings highlight the importance to evaluate and maintain non-visual

functions at different levels in patients with progressive loss of ipRGCs.

Keywords: light therapy, pupil, glaucoma, retinal ganglion cells, melanopsin, sleep, mood, circadian

INTRODUCTION

Glaucoma is a common optic neuropathy that results in retinal ganglion cell loss. In
patients with advanced glaucoma, loss of intrinsically photosensitive retinal ganglion cells
(ipRGCs) has been demonstrated (1). The ipRGCs express melanopsin and synapse centrally
to modulate a variety of non-visual physiological functions such as the pupil, circadian
rhythms, alertness and sleep (2). Reduced capacity to entrain to light and was first
shown in glaucomatous rats (3, 4). Extending those findings to patients with glaucoma,
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even those with mild visual dysfunction may demonstrate
abnormal light responses including reduced acute alerting
effects to light, reduced light-induced suppression of nocturnal
melatonin and reduced pupil light reflex to selected light stimuli
as these are effects mediated by melanopsin (5–10). Glaucoma
patients have also been shown to have a higher prevalence
for impaired executive daytime functions, depressive symptoms,
impairedmood (11, 12) and anxiety (13) and clinical implications
have been discussed [for a reviews see (14–16)].

Additionally, there is evidence that patients with glaucoma
have greater daytime sleepiness and/or decreased sleep quality
compared to age-matched control subjects (17–19). A large
cross-sectional study with more than 6,700 patients reported
an association between glaucoma and very long sleep duration
(20). Lanzani et al. reported increased wakefulness with lower
sleep efficiency at night (21) and similarly Gubin et al. found
later bed times and shorter sleep duration in primary open angle
glaucoma patients (22) suggesting a higher prevalence for sleep
disturbances in patients with glaucoma (13, 23, 24). There is some
evidence that obstructive sleep apnea might be a systemic risk
factor for glaucoma (25–28), even though not all study reports
confirmed this (20, 29).

One factor contributing to the mechanism of impaired
sleep in glaucoma may be related to loss of ipRGCs and
consequently, a reduction of the melanopsin-mediated light
signaling to the suprachiasmatic nuclei (SCN), the principal
biological pacemaker in the hypothalamus. Such reduced light
input due to glaucoma-related loss of ipRGCs (1) may be further
amplified by physiologically occurring age-related ipRGC loss
(30), and physiologic changes of circadian rhythm regulation and
sleep (31, 32), as glaucoma generally affects elderly persons (30,
33). Since light is the principal external zeitgeber on which the
biological circadian clock aligns to the 24-h day–night cycle, the
combination of inadequate light exposure during daytime and
loss of ipRGCs together may reduce the effectiveness of light as
a zeitgeber in patients with glaucoma. The potential consequence
is impaired circadian entrainment and adverse influence on well-
being, mood, 24-h rest-activity cycles and sleep (34).

We hypothesize that it is possible to enhance the external
zeitgeber strength by increasing daytime light exposure in
patients with glaucoma. This, in turn, will have beneficial effects,
particularly on sleep, 24-h rest-activity cycles, mood and well-
being. Because we presume the effect of light is mediated through
the melanopsin system, we also hypothesize that melanopsin
activity will change and will be detectable in the pupil response
(6, 35, 36). Thus, the aim of this study is to assess how
scheduled additional bright light exposure during daytime might
impact pupil light reflex, sleep, circadian rest-activity cycles and
subjective mood and well-being in patients with glaucoma.

METHODS

Participants
Study participants were recruited from patients actively treated
for glaucoma at the Hôpital Ophtalmique Jules-Gonin in
Lausanne, Switzerland. Patients with the following conditions

were excluded: unilateral glaucoma, congenital glaucoma, non-
glaucomatous optic neuropathy, diabetes, past or present cancer,
sleep apnea, diagnosed mood disorder, recent use of recreational
drugs (e.g. cannabis, cocaine), alcohol dependency or pregnancy.
Other exclusionary criteria included night shift work within the
last three months, current use of sleeping pills or travel across a
time zone <1 month before study participation. All participants
provided oral and written informed consent and were approved
by their treating ophthalmologist to participate in the study. The
study was conducted at the Hôpital Ophtalmique Jules Gonin,
Lausanne, Switzerland according to the tenets of the Declaration
of Helsinki and received authorization from the local ethical
review board for human research (Commission d’Ethique de
Recherche sur l’être humain de Canton de Vaud, Switzerland
no. 2018-01749). All participants were clinically examined at
least once by their treating ophthalmologist during or after
study participation.

Twenty patients with glaucoma participated in the study. They
were 9 women and 11 men, mean age = 67.55 ± 7.45 years,
age range 53 to 79 years. The types of glaucoma were primary
open angle (n = 10), primary angle closure (n = 8) and pseudo
exfoliative glaucoma (n = 2). Eight patients had undergone laser
iridoplasty, and seven patients had undergone glaucoma filtration
surgery. Ten patients had undergone uncomplicated cataract
surgery with intraocular lens replacement. All procedures had
been performed at least 6 months prior to study participation.
These procedures did not affect the iris sphincter muscle
contractibility, as assessed at the slit lamp.

Study Design
From the medical charts, the following ophthalmologic
information was extracted for each eye: best-corrected visual
acuity, mean defect of the automated visual field, and thickness
of the peripapillary retinal nerve fiber layer (RNFL) from the
optical coherence tomography (see Supplementary Table 1).
If the ophthalmologic examination dated more than 6 months
before study participation, the participant underwent these tests
at the first study session. The study comprised 4 sessions at
the Hôpital Ophtalmique Jules Gonin (46.5197◦ N, 6.6323◦ E),
Switzerland over 5 consecutive weeks and was conducted from
January to July 2019.

At session 1, the participant came to the hospital, gave
informed written consent and completed six standardized
questionnaires: Horne-Ostberg [HO; (37)], Munich Chronotype
Questionnaire [MCTQ; (38)], Epworth Sleepiness Scale [ESS;
(39)], Pittsburgh Sleep Quality Index [PSQI; (40)], Seasonal
Pattern Assessment Questionnaire [SPAQ; (41)] and the Beck
Depression Inventory [BDI; (42)]. These questionnaires were
used to assess chronotype, daytime sleepiness, habitual sleep
quality (during the preceding 4 weeks), seasonal effects and
depressive symptoms (see Supplementary Table 2). At the end of
session 1, the participant received an activity monitor (Actiwatch
L, Camntech Cambridge, UK) to be continuously worn on
the non-dominant wrist during the next 5 weeks in order to
record 24-h rest-activity cycles. The participant was instructed
to maintain a daily sleep log (bedtime, wake up time) and note
subjective sleep quality (1 = very bad sleep, 10= excellent sleep)
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every morning. Also, the participant made a daily self-assessment
of well-being and visual comfort using a visual analog scale (see
section Methods).

After 1 week, the participant came again to the hospital
(session 2) and underwent pupillometry (see below). At the
end of session 2, the participant was given a commercially
available table-based light box (EnergyUp / HF3419TM Philips,
The Netherlands) for home use. The light source emits a
diffuse polychromatic bright white light at 10,000 lux [see light
measures according to the CIE Standard, (CIE S 026) in the
Supplementary Table 3]. The participant was instructed to sit
face-forward at 50 cm distance from the light box every morning
around the same time for 30min over the next 4 weeks. No
additional change of their usual lifestyle was requested.

After 2 weeks, participants were asked to come to the
laboratory for session 3 which served to verify compliance
with the light exposure at home and to download rest-activity
data of the first 3 weeks. The activity monitor was then
returned to participants. After another 2 weeks, participants
came to the laboratory for the final session 4 to complete
one questionnaire (second PSQI) and to undergo the second
pupillometry. Participants also returned the completed subjective
assessments, the activity monitor and the light box. An overview
of the study design is shown in Supplementary Figure 1.

Pupillometry
In this study, pupillometry was used as a quantitative method
to assess the functionality of the melanopsin-signaling pathway.
The pupillometer used for this study was a monocular device
(Neurolight, IDMed, Marseille, France) which presented light
stimuli and recorded the pupil of the stimulated eye at a
sampling frequency of 67Hz. The light stimulus was a narrow
bandwidth short-wavelength light stimulus (peak wavelength at
470 nm; “blue”) having a 1s duration. Two brightness intensities
(luminance: 56 cd/m2 and 170 cd/m2) were used with intention
of activating rod and cone photoreceptors as well as the
melanopsin photopigment of ipRGCs, as described in previous
studies (36, 43). The pupil test started with 3 s of darkness
followed by a blue light stimulus at lower luminance (56 cd/m2)
and then a second blue light stimulus at higher luminance (170
cd/m2). The inter-stimulus dark interval was 15 s. By convention,
the right eye was always tested first. Both eyes were tested under
photopic condition (prior adaptation to room light at 150 lux at a
vertical direction at eye level for 10min), and scotopic condition
(adaptation to darkness 0 lux for 20min). The non-tested eye was
covered by the participant’s hand. Pupils were measured twice,
once at session 2, that is, before the start of scheduled daily
bright light exposure from the light box and denoted as pre-light
exposure (= pre-LE), and again at session 4, that is, after 4 weeks
of daily bright light, denoted as post-light exposure (= post-LE).

From the pupillometer device, raw tracings were downloaded
with NL Viewer Software (v 1.2, IDMED, Marseille, France).
All recorded tracings were visually inspected and artifacts from
movement or blinking were removed by linear interpolation
in Excel (Microsoft Office, v 7). The following outcome
parameters were determined for each pupil recording: baseline

pupil size (BL), maximum contraction amplitude (MCA), post-
illumination pupil response (PIPR). The BL was calculated as the
averaged pupil size during 0.25 s before the first light stimulus.
Thereafter, pupil size was normalized by expressing absolute
pupil size in mm as a percentage of BL in mm (%). Normalization
of pupil size was important because BL of the pupil before the
second stimulus was often slightly smaller than BL before the
first stimulus. The MCA was identified as the smallest pupil size
within 3 s from light stimulus onset and expressed in % as the
difference from the baseline pupil size [maximum contraction
amplitude= (1 – smallest relative pupil size)× 100%]. The PIPR
(in %) was amount of pupil constriction 6 s after the stimulus
light was terminated and calculated as: [(1 – relative pupil size
at 6 s after light offset)× 100%].

Rest-Activity Recordings for 24-h Rhythms
and Sleep
After downloading the rest-activity data (sampling frequency =
1min), all recordings across 5 weeks were joined to one file per
participant and each 24-h epoch was visually inspected. Any
24-h days with more than 3 h of missing data were excluded
from further analysis (44). Missing data of <3 h were edited
with the mean activity of 24-h using the software Sleep Analysis
(v7, Camntech, Cambridge, UK) with an inbuilt algorithm
to detect sleep (at medium sensitivity of the device). Using
the non-parametric circadian rhythm analysis [NPCRA; (45)]
implemented in the software (Sleep Analysis, v7), the following
parameters were assessed: intra-daily variability (IV), inter-daily
stability (IS), the absolute amplitudes derived from rest-activity
oscillations (in arbitrary units) of 24 h (absolute amplitude, AMP)
and of the 5 h with least activity (L5) and the 10 h of highest
activity (M10) during a 24 h period. The M10 onset typically
occurs during daytime and L5 onset typically occurs during
nighttime. We also assessed the onset clock time of the 10
consecutive hours of greatest activity (M10on), the onset clock
time of 5 consecutive hours of least activity (L5on). The IV
evaluates the frequency of transitions between rest and activity
per day, which is an indicator of fragmentation of the 24-h rest-
activity rhythm. A lower IV score reflects less rest-activity rhythm
fragmentation. The IS evaluates the strength of coupling between
the rest-activity rhythm (45). A higher IS score is considered as
greater invariability between days. The relative amplitude (RA)
derives from the difference between M10 minus L5 expressed
relative to the 24 h activity, where a higher RA indicates more
consolidated high daytime and low nighttime activity.

In addition, bedtime (clock time), get-up time (clock time)
were determined semi-manually from the activity recordings
(and sleep logs). The sleep analysis tool of the same software
(Sleep Analysis, v7) was used to determine the following sleep
parameters, derived from rest-activity recordings (sampling
frequency = 1min epochs): time in bed (hours), sleep duration
(hours), actual wake time during scheduled sleep (hours), sleep
efficiency (sleep duration / time in bed x 100; %), sleep
latency (time range between bed time until the first episode of
consolidated sleep, as assessed by the sleep software).
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Subjective sleep quality was daily assessed for 5 weeks after
get-up (on the sleep log) by indicating a number between 1 (very
bad sleep) and 10 (excellent sleep) on a paper-based version and
individual scores were averaged per week.

Visual Analog Scales for Subjective
Well-Being and Visual Comfort
Participants were instructed to complete a paper-based visual
analog scale (VAS) for subjective well-being and visual comfort
every day around the same clock time in the morning
during 5 weeks. For subjective well-being, the VAS consists
of a vertical line from 0 and 100mm and represents the
extremes of relaxation, physical comfort, alertness: 0mm =

extremely relaxed/100mm= extremely tense; 0mm= physically
comfortable/100mm = physically not at all comfortable; 0mm
= extremely alert/100mm = extremely sleepy; 0mm = bad
mood/100mm = very good mood. The participant indicated the
current state of these parameters by marking a vertical line on
the scale.

For visual comfort, five specific items of lighting were assessed
[adapted from the Office Lighting scale (46)] and presented on a
VAS between 0mm and 100 mm: (1) I like the lighting (0mm)/I
do not like the lighting in this room (100mm); (2) the lighting is
pleasant (0mm)/the lighting is not pleasant at all (100mm); (3)
this room is too bright (0mm)/this room is too dark (100mm);
(4) there is too much light to read/work properly (0mm)/there
is not enough light to read/work properly (100mm); and (5) the
glare in this room is imperceptible (0mm)/the glare in this room
is intolerable (100mm). The participant indicated the current
state of these items by marking a vertical line on the VAS
scale. For analysis, a weekly average was determined from the
paper-based daily assessed VAS, for each parameter of well-being
(relaxation, physical comfort, alertness, mood) and for five items
of visual comfort.

Statistics
For differences between ophthalmological screening measures
(left and right eyes) two-tailed t-tests were applied. For pupil
data, a mixed linear model with the factor WEEK was applied
to compare the recording of the pre-LE with the recording after
the 4 weeks (= post-LE) with daily scheduled light exposure with
AGE, SEX and their interactions also added to the model. For
all analyses, AGE was used on dichotomized variables based on
median split (median = 69.5 years). For continuous rest-activity
and sleep data as well as subjective assessments, all averaged
per week, a generalized linear regression model was used with
the repeated factor WEEK (i.e., averages of pre-LE week 1 and
each of the LE weeks 2-5) and the fixed factors AGE, SEX,
and their interactions. Post-hoc tests were performed with the
Tukey-Kramer, adjusted for multiple comparisons. For tables,
averaged values of the pre-LE and the average of LE-weeks 2–5
are shown. For correlations Pearson’s correlation was used. The
SAS software (v. 9.4.; SAS Institute Inc., Cary, NC, USA) was used
for statistical analyses.

RESULTS

Participants
There was no significant interocular difference for visual acuity
(VA) and for mean deviation (MD) on automated perimetry (2-
sided t-tests; p> 0.09). The VA ranged from 0.3 to 1.5, mean 0.85
± 0.17 for both eyes (Supplementary Table 1). The mean MD
for both eyes was 5.41 dB ± 3.17 for both eyes, range −0.9 to
20 dB. On OCT, the peripapillary retinal nerve fiber layer (RNFL)
thickness was abnormal or borderline in all but one eye of 19
patients as OCT data from one patient was not available. The
descriptive statistics for the questionnaires (MCTQ, ESS, HO,
SPAQ, BDI and PSQI) are shown on Supplementary Table 2.
The post-LE PSQI was not significantly different (p = 0.67;
generalized linear model) from pre-LE.

Pupillometry
There were small, but statistically significant differences
between left and right eyes in scotopic baseline pupil size
(Supplementary Table 4). Because the right eye was always
tested first and reflects the most accurate photopic and scotopic
adapted condition, we used the pupil results from right eyes for
further analyses. Older participants had a smaller baseline pupil
size before the first light stimulus under scotopic conditions
(main effect of AGE; F1,20 = 5.49; p = 0.03; mean ± SD older:
4.83mm± 0.55mm; younger participants; 5.38mm± 0.84mm).
As expected, the pupil response (MCA and PIPR) to the 1s light
stimulus at higher luminance (170 cd/ m2) was greater (and BL
pupil size smaller) than the response to the 1s light stimulus at
lower luminance (56 cd/ m2; Table 1; F1,20 > 4.9; p < 0.038)
under photopic and scotopic testing conditions.

For all pupil parameters related to the 1s light stimulus at
lower luminance (56 cd/ m2) there was no statistically significant
difference between the pre-LE and post-LE (i.e., after 4 weeks
of daily scheduled bright light exposure; Table 1; F1,20 < 1.5; p
> 0.24).

As a main finding of this study, the scotopic post-LE PIPR
to the 1s light stimulus at higher luminance (170 cd/ m2) was,
however, significantly greater compared to pre-LE PIPR (Table 1
and Figure 1). The increase in the scotopic post-light PIPR was,
on average, 13% and was observed in 14 out of 20 patients (main
effect ofWEEK; F1,20 = 6.02, p= 0.02, Supplementary Figure 2).

24-h Rest-Activity Cycles and Sleep
Results from rest-activity recordings were averaged per week (see
also methods; for one participant, the first 2 weeks of rest-activity
data with daily bright light exposure were missing, and for one
participant the rest-activity data during the last LE week was only
available for 2 days). For 24-h rest-activity variables, there was no
significant difference between the pre-LE week and the LE weeks
values (Table 2; F4,60 < 1.8, p > 0.17), except for the RA which
dropped in week 5 (0.84± 0.09) when compared to week 4 (0.87
± 0.06; main effect of WEEK; F4,59 = 3.1, p = 0.02). However,
there was no difference for RA between the pre-LE week and any
single week during the daily light exposure (p > 0.48).

The sleep variables did not reveal significant changes between
pre-LE and LE weeks for any of the parameters (see means± SD
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TABLE 1 | Mean values (± SD) across patients (for right eyes) for baseline pupil

size (BL), maximum contraction amplitude (MCA) and post-illumination pupil

response (PIPR).

Pre-LE week Post-LE weeks

BL photopic low (mm) 3.50 (0.73) 3.59 (0.72)

BL photopic high (mm) ∧ 3.41 (0.73) 3.51 (0.72)

BL scotopic low (mm) 5.07 (0.76) 5.14 (0.77)

BL scotopic high (mm) ∧ 4.61 (0.73) 4.64 (0.64)

MCA photopic low (%) 23.86 (8.79) 23.88 (7.97)

MCA photopic high (%) ∧ 29.33 (8.56) 29.29 (7.98)

MCA scotopic low (%) 40.74 (6.11) 40.32 (6.37)

MCA scotopic high (%) ∧ 46.02 (6.51) 46.40 (6.39)

PIPR photopic low (%) 4.17 (3.33) 3.26 (2.87)

PIPR photopic high (%) ∧ 9.48 (5.90) 9.07 (3.92)

PIPR scotopic low (%) 19.14 (8.66) 20.35 (10.15)

PIPR scotopic high (%) ∧,* 25.07 (9.53) 28.71 (10.46)

BL in mm = 100 %; MCA in % difference to BL and PIPR in % difference to BL. All

mean values are shown for recordings before the pre-light exposure (pre-LE) week and

the post-light exposure (post-LE), that is, the pupil recording immediately at the end of

4 weeks of scheduled daily bright light exposure. Photopic low = 1s short-wavelength

narrow bandwidth light stimulus (= blue light stimulus) at lower luminance (56 cd/m2 )

under photopic conditions (i.e., after 10min of room light adaptation); photopic high = 1s

blue light stimulus at higher luminance (170 cd/m2 ) under photopic conditions; scotopic

low= 1s blue light stimulus at lower luminance (56 cd/m2 ) under scotopic conditions (i.e.,

after 20min of dark adaptation); scotopic high= 1s blue light stimulus at higher luminance

(170 cd/m2 ) under scotopic conditions; ∧ = p < 0.05, indicate differences between light

stimuli used for pupil measures at higher (170 cd/m2 ) and lower luminance (56 cd/m2 ).

* = p < 0.05, shows difference between pupil tests pre-light exposure and post-light

exposure; n = 20.

FIGURE 1 | Mean (solid lines) pupil recordings for 20 subjects with glaucoma

(right eyes, SEM shown as dotted lines). The pre-LE recordings (taken in week

1) are shown in black; the post-LE recordings (taken immediately after 4 weeks

after daily scheduled bright light exposure) are shown in blue (SEM = dotted

black and blue lines). LE = light exposure. The two vertical bars indicate when

the two blue light stimuli are given (1s duration). The first 1s light stimulus is at

lower (56 cd/m2 ) and the second 1s light stimulus at higher luminance (170

cd/m2). The arrow and asterisk designate the PIPR after the second (brighter)

light stimulus with a significant difference between pre- and post-LE measures

(p < 0.05). The data is shown relative to baseline (= 100 %).

for the pre-LE week and averaged LE weeks on Table 3). There
was a decrease in sleep efficiency from week 3 and 4 to week
5 (main effect of WEEK; F4,62 = 3.3, p = 0.02) from 87.6 ±

TABLE 2 | Mean values (and SD in brackets) for variables from the circadian

rest-activity cycles.

Variable Pre-LE week LE weeks

IS 0.58 (0.11) 0.59 (0.11)

IV 0.82 (0.28) 0.82 (0.22)

L5 1,434 (759) 1,600 (926)

L5on 24.78 (1.30) 24.92 (1.33)

M10 21,477 (8,100) 21,979 (8,450)

M10on 8.83 (1.63) 8.67 (1.71)

AMP 20,043 (7,935) 20,378 (8,271)

RA ∧ 0.87 (0.07) 0.86 (0.08)

IS= inter-daily stability; IV= intra-daily variability; L5= 5 h with lowest activity; L5 onset=

onset time of the 5 h with least activity; M10 = 10 h with highest activity oscillations; M10

onset = onset hours of the 10 h with greatest activity. AMP = absolute amplitude; RA =

relative amplitude (see method section for more explanations). Averaged values across

participants are shown with SD (in brackets) for the pre – LE week and the LE weeks

(i.e., the 4 weeks with scheduled daily bright light; weeks 2–5). ∧ = p < 0.05, indicating

higher RA during week 4 than 5 (main effect of week; for mean values in weeks 4 and 5

separately see also text); n = 20.

TABLE 3 | Sleep variables derived from rest-activity recordings.

Pre – LE week LE weeks

Bedtime (clock time) 23.59 (1.19) 23.67 (1.31)

Sleep onset (clock time) 23.79 (1.18) 23.89 (1.32)

Wake time (clock time) 7.24 (0.99) 7.31 (1.05)

Get-up time (clock time) 7.33 (0.99) 7.39 (1.05)

Time in bed (h) 7.72 (0.74) 7.71 (0.77)

Sleep duration (h) 7.44 (0.73) 7.41 (0.77)

Wake duration (h) 0.68 (0.39) 0.69 (0.34)

Sleep efficiency (%) ∧ 87.43 (6.42) 87.14 (5.77)

Sleep latency (h) 0.21 (0.16) 0.22 (0.16)

All values are indicated as means and SD (in brackets) for the pre – light exposure (LE)

week and LE weeks (i.e., average of weeks 2–5 when patients were exposed to bright

light); n = 20. Bedtimes, sleep onset, wake and get-up times are indicated as clock time

(h.mm), and time in bed as well as sleep duration and wakefulness during sleep episodes

in hours (h.mm). Sleep efficiency (SE) derived from the ratio of sleep duration / time in bed

is expressed as percentage (%). Sleep latency indicates the time range between bedtime

and consolidated sleep (indirectly assessed via the inbuilt algorithm of the sleep analysis

software). There were no statistically significant differences between pre-LE and LEweeks.

∧ = p < 0.05, indicating higher SE during weeks 3 and 4 than 5 (main effect of week; for

mean values in weeks 3–5 separately see also text); n = 20.

5.6 and 87.5 ± 5.8 (weeks 3 and 4) % to 86. 1 ± 6.8 % (week
5). When sleep analysis was performed only between pre-LE
and LE week 5, there were no significant differences (p > 0.36;
Supplementary Table 5) for any of the parameters.

Subjective Sleep Quality and Well-Being
Subjective sleep quality became significantly better for week 4
of the LE weeks (7.5 ± 1.5 mean ± SD) when compared to
the pre-LE week (6.8 ± 1.5; F4,63 = 2.7, p = 0.04; main effect
of WEEK). Table 4a shows the values for the pre-LE week and
the average of all LE weeks. For the time course of subjective
sleep quality, see Figure 2. The Supplementary Figure 2 shows
individual increases of subjective sleep quality in 15 of 20

Frontiers in Neurology | www.frontiersin.org 5 January 2021 | Volume 11 | Article 584479

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kawasaki et al. Light Exposure, Sleep, and Glaucoma

TABLE 4a | Subjective assessments for sleep quality [score 1 (very bad) – 10

(excellent)], and results from visual analog scales for relaxation (0 = extremely

relaxed, 100 = extremely tense), physical comfort (0 = physically comfortable,

100 = physically not at all comfortable), alertness (0 = extremely alert, 100 =

extremely sleepy) and mood (0 = bad mood and 100 = very good mood) on

visual analog scales (0–100mm).

Pre – LE week LE weeks

Subjective sleep quality* 6.83 (1.53) 7.25 (1.53)

Relaxation 37.6 (19.0) 36.6 (22.1)

Physical comfort 32.2 (17.7) 34.2 (20.3)

Alertness 35.9 (23.2) 32.7 (19.2)

Mood* 71.3 (16.7) 66.5 (18.2)

LE = light exposure; all values are indicated as means and SD (in brackets) for the pre –

LE week and the light LE weeks (i.e., average of weeks 2–5 when patients were exposed

to bright light); n = 20; * = p < 0.05, main effect WEEK.

FIGURE 2 | Subjective sleep quality score (1 = very bad sleep, 10 = excellent

sleep) averaged per week during 5 weeks for 20 subjects with glaucoma.

Mean values (black filled circles) and SEM are shown; LE = light exposure;

week 1 = pre-LE week; weeks 2–5 = LE weeks. * = significant differences

between weeks 1 and 4 (see text for mean value during week 4; p < 0.05).

participants during the LE weeks (subjective sleep quality data
for week 3 was missing from one participant).

For relaxation, physical comfort and alertness there was no
significant difference between pre-LE and LE weeks values. Mood
decreased in the first LE week compared to pre-LE, but was not
significantly different from pre-LE for the other 3 weeks (main
effect of WEEK, F4,62 = 2.7, p= 0.04).

Visual Comfort
In general, the enhanced daily bright light exposure was well-
tolerated by all participants and there were no negative reports
from the light exposure such as headache, discomfort glare or eye
strain. None of the 5 items of the visual comfort changed between
the pre-LE week and the LE weeks (main effect of WEEK; F4,61 <

1.5, p > 0.22). All visual comfort scores were on average in the
first half, that is, better comfort (item 1, 2, 5) or neutral (items 3,
4; i.e., in the middle, around 50; Table 4b). Visual comfort (and

TABLE 4b | Subjective daily assessments for visual comfort (five items) on visual

analog scales (1 – 100mm).

Pre – LE week LE weeks

I like the light in this room (yes – no) 31.4 (17.0) 30.0 (17.3)

The light is comfortable (yes – no) 30.7 (17.0) 30.1 (17.4)

This room is too bright/too dark 50.7 (13.3) 47.2 (11.5)

There is too much light to read/there is not

enough light to read

51.8 (13.8) 48.2 (10.6)

The glare in this room is

imperceptible/intolerable

35.4 (16.4) 34.1 (20.5)

LE = light exposure.

All values are shown as mean values and SD (in brackets) for the pre-LE week and LE

weeks (i.e., average of weeks 2–5 when patients were exposed to scheduled daily bright

light); n = 20.

well-being) data from one participant was missing for 2 weeks
during light exposure.

Correlations
To correlate changes between the pre-LE and the LE week, values
of the pre-LE week were subtracted from mean values of 4 LE
weeks for the circadian and sleep related parameters as well as the
subjective sleep quality and the VAS. Also, the difference between
pre-LE and post-LE was used for all pupil parameters from two
recordings, and the same was also done for the PSQI. There were
significant correlations for increased PIPR (at lower luminance;
56 cd/m2) during LE weeks with greater inter-daily stability (IS;
R2 = 0.275; p= 0.018; Figure 3, upper graph) and greater relative
amplitude of 24-h rest-activity cycles (RA; R2 = 0.296; p= 0.013;
Figure 3, lower graph) during LE-weeks. A statistical trend in
the same direction was observed for the higher luminance PIPR
(170 cd/m2) and relative amplitude (p = 0.07; R2 = 0.17). An
increase in subjective sleep quality during LE was correlated with
a lower global PSQI score post LE (a lower PSQI is better),
which suggests, that both assessments went in the same (positive)
direction (p = 0.04; R2 = 0.21; see Supplementary Figure 3,
upper graph). An increase in subjective mood during the LE
weeks was correlated with earlier wake time (p= 0.03; R2 = 0.23;
see Supplementary Figure 3, lower graph).

DISCUSSION

In a small group of patients with glaucoma of heterogeneous
types and without severe visual loss, we found that increasing
their daily light exposure during daytime by adding a table-
based light box in their home had a favorable effect on subjective
sleep quality and increased their melanopsin dependent pupil
response (PIPR). This effect was observed after only 4 weeks.
The scheduled bright light exposure, which was added to habitual
light exposure for 30min daily, did not alter or interfere with the
daily activities of the participants. The additional light exposure
did not alter timing or duration of habitual sleep nor did it change
24-h rest-activity cycles (both assessed from activity recordings).
There was an increase in PIPR at the end of 4 weeks of light
exposure and there was a significant correlation between the
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FIGURE 3 | Scatterplots (and regression lines) for significant correlations

between changes of the scotopic PIPR (to the lower luminance 1s light

stimulus at 56 cd/m2 ) and inter-daily stability (IS; upper graph; R2
= 0.275) and

with relative amplitude of rest-activity cycles (RA; lower graph; R2
= 0.296;

Pearson’s correlation; n = 20). Positive numbers indicate higher IS and RA as

well as greater scotopic PIPR (to the 1s light stimulus at lower luminance; 56

cd/m2) during LE weeks (compared to pre-LE; p < 0.05; n = 20.

change in PIPR and the change in 24-h amplitude and inter-daily
stability of rest-activity cycles during light exposure.

In line with our hypothesis, we found the melanopsin-
mediated pupil response, the PIPR, was greater after 4 weeks of
additional daytime light exposure. This change in PIPR suggests
that in patients with glaucoma, the melanopsin activity in viable
ipRGCs can adapt to different light levels if sustained over a
certain period. Why might we think that additional daytime
light exposure over 4 weeks is an adaptation response of the
melanopsin system? In a previous study, we had demonstrated
that the PIPR to a bright narrow-bandwidth short wavelength
light modulates with long-term changes in light timing, such as
seasonal changes of daylight (36, 47). In the current study, we did
not change the light exposure timing, but enhanced brightness
of light exposure in the morning over 4 weeks. We found a
greater PIPR at the end of 4 weeks without any substantial change
in timing of rest-activity, sleep duration or 24-h amplitude as
assessed from rest-activity recordings. The significant correlation

with higher relative amplitude and inter-daily stability (both
derived from rest-activity cycles over 4 weeks) with higher PIPR
after LE weeks suggests that there may be a common mode of
action conveyed by melanopsin, even though this correlation is
not taken as evidence for causality.

We cannot exclude the possibility that the increase in
subjective sleep quality is a “placebo” effect or linked to other
behavioral factors as it may be the decrease of mood between the
pre-LE week and the first week with LE. The absence of change in
the objective sleep (or circadian) parameters, assessed from the
activity recordings, when compared to the pre-LE week might be
taken as support for a placebo effect, especially since we did not
ask participants to adhere to a certain sleep-wake schedule. We
would argue that this seeming discrepancy in the subjective vs.
objective sleep evaluation may be a methodologic one. Given the
nature of this field study, we used rest-activity recordings as an
indirect objective measure of sleep whereas the studies assessing
sleep in a laboratory setting with standardized means, that is,
polysomnography, have demonstrated that improved subjective
sleep quality implicates objectively improved sleep. These studies
found that sleep continuity and rapid eye movement (REM) sleep
were correlated with subjective sleep quality (48) and that slow
wave sleep (“deep sleep”) was the best predictor for subjective
sleep quality (49).

Another minor but interesting result of our study was the
correlation between changes toward earlier wake times during
the LE weeks and better subjective mood when compared to
pre-LE. This goes along with well-established evidence for light
therapy outcomes for patients with mood disorders. Benedetti
and colleagues for example showed, (50) that a combination of
light therapy and sleep deprivation resulted in antidepressant
effects which were correlated with circadian phase advances of
rest-activity acrophases. Even though our patients with glaucoma
were not depressed, and we did not determine circadian phase
or found a difference in their sleep timing over 4 weeks, the
correlation with an earlier wake time and better mood during
the LE weeks (compared to pre-LE) points in a similar direction,
but will certainly need further consideration to confirm improved
non-visual functions in patients with ipRGC loss. We recognize
that 10 of 20 patients had an artificial intraocular lens (non-
blue-light blocking) which permits greater transmission of the
light into the eye compared to the natural lens of the other 10
patients. However, a previous study had shown no correlation
between lens transmission of blue light and pupil response (51).
The current study assessed the change in pupil response before
and after additional daytime light in a within subject-design, thus
lens status is not likely to be a confounding variable to our results.

A potential concern regarding use of a light box might
be the “blue light hazard.” Indeed there is a photochemical
risk to the retinal tissues of the eye associated with ocular
exposure to bright light sources such as the sun or welding
arcs (52). The term “blue light hazard” defines the optical
radiation risk for photochemical injury which peaks in the short-
wavelength (“blue”) part of the optical radiation spectrum around
435 to 440 nm. The International Commission on Illumination
(Commission Internationale de l’ Eclairage, CIE) published a
standard on this [as part of the CIE S 009:2002 “Photobiological
safety of lamps and lamp systems,” (53)] and states in its position
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statement:. . . ’There is no evidence in humans of any adverse
health effects from occasional exposure to optical radiation at the
exposure limits.’. . . (54). The lamps in our study emitted a broad
spectrum white light and exposure followed the manufacturer
guidelines. Clinical follow-up of patients within months of study
participation did not demonstrate evidence of retinal toxicity.

This study is not a call for the use of light therapy for patients
with glaucoma. Rather, the study results lend further support
to the notion that patients in whom ipRGCs are damaged or
dysfunctional due to glaucoma (or other neuroretinal disorders)
may benefit from enhanced daytime light exposure which serves
as a more effective zeitgeber. In turn, better distinction of their
biological day and night may influence active synchronization
of the internal circadian clocks with the external 24-h day (also
called entrainment). While more daytime light may seem like
obvious good advice, it is not always apparent and in practice.
Most persons are indoors during many hours of the day (school,
workplace, home) and office lighting is far less bright than natural
daylight. Elderly persons tend to remain indoors for a variety of
reasons: medical problems such as unsteady gait or poor vision,
social issues such as fear of public transport, social isolation or
confined living in an institution and personal comfort such as
getting cold easily. This study has demonstrated that even a rather
short duration of added light exposure (30min) in a room is
beneficial and supports the general advice to elderly persons to
sit outdoors or go outside for 30min each morning.

Thus, while glaucoma patients can never recover the vision
lost from damaged retinal ganglion cells, they may be able
to maintain a robust day–night cycle and concomitant good
circadian entrainment which helps maintain high sleep quality.
This will indirectly support good daytime performance and

a sense of well-being. All these effects together might reduce
vulnerability for other co-morbidities such as depression and
disordered sleep. For this reason, further studies examining
optimized light (intensity and timing) for glaucoma patients
are needed.
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