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3D face reconstruction has witnessed considerable progress in recovering 3D face shapes and textures from in-the-wild images.
However, due to a lack of texture detail information, the reconstructed shape and texture based on deep learning could not be used
to re-render a photorealistic facial image since it does not work in harmony with weak supervision only from the spatial domain.
In the paper, we propose a method of spatio-frequency decoupled weak-supervision for face reconstruction, which applies the
losses from not only the spatial domain but also the frequency domain to learn the reconstruction process that approaches
photorealistic effect based on the output shape and texture. In detail, the spatial domain losses cover image-level and perceptual-
level supervision.Moreover, the frequency domain information is separated from the input and rendered images, respectively, and
is then used to build the frequency-based loss. In particular, we devise a spectrum-wise weightedWing loss to implement balanced
attention on different spectrums. ,rough the spatio-frequency decoupled weak-supervision, the reconstruction process can be
learned in harmony and generate detailed texture and high-quality shape only with labels of landmarks. ,e experiments on
several benchmarks show that our method can generate high-quality results and outperform state-of-the-art methods in
qualitative and quantitative comparisons.

1. Introduction

3D face reconstruction, which aims to recover 3D face
shapes from a single image or multiple-view images, has
been widely applied to face recognition [1], face animation
[2], and artistic editing [3]. Traditional methods involve
complex and costly optimization for accurate reconstruction
[4–7]. Since deep learning has significant advantages of
nonlinear fitting ability on complex tasks [8–12], there is an
increasing interest in reconstructing 3D faces from a single
image using deep convolutional neural networks [13–17].
However, the reconstruction accuracy is seriously affected by
the challenging cases, e.g., various illumination poses, oc-
clusions, etc.

Generally, deep learning-based methods could be
roughly divided into families of supervised learning
[16, 18, 19], unsupervised learning [20–22], and weakly
supervised learning [13, 23]. For supervised learning, 3D
ground-truth face data are needed as supervision

information, but a large amount of label data are not easily
accessible. For compromise, existing methods usually use
3DMM parameters [18] or traditional methods [19, 24] to
synthesize 3D shapes as ground-truth face data, which limits
the precision of reconstruction. Unsupervised and weakly-
supervised learning overcome the weakness of relying on 3D
ground-truth data and learning the reconstruction process
based on image data with only labeled landmarks if nec-
essary. Classically, based on the 3DMM model prior, Deng
et al. [13] devised a robust loss function combining image-
level and perception-level information as weakly supervised
information to improve 3D face reconstruction. However, it
could not handle the wrong texture when the face is oc-
cluded. Feng et al. [18] abandoned the 3DMM model and
regressed the 3D shape from the network straightly, but their
supervision data are still based on the 3DMM fitting, which
has limitations.

In our opinion, a key reason for the lack of high re-
construction accuracy is that the commonly used CNNs
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approach only considers spatial loss [13, 25, 26], e.g.,
landmark loss and pixel loss in the spatial domain, while
ignoring the impact of frequency. Some studies have shown
that DNNs tend to synthesize frequencies in order from low
to high [27–29]. So it is hard to urge neural networks to learn
the inconspicuous frequency of images and recover them
with merely spatial loss [16] since spatial loss focuses on
point-wise value and spatial associations but does not pay
enough attention to harmony in the frequency domain [30].

Based on the abovementioned points, we proposed a
spatio-frequency decoupled weak-supervision approach for
3D face reconstruction to address the unreality issue. We
first use a convolutional neural network (ResNet-50) to
regress 3DMM coefficients and render parameters. And
then, we build the weakly supervision between the input and
the re-rendered face image. Not limited to spatial domain
loss covering image-level and perceptual-level loss, fre-
quency spectrums are also separated from image pairs to
measure the gap in the frequency domain based on differ-
entiable discrete Fourier transformation. We devise the
patch-level frequency loss based on spectrum-wise weighted
Wing loss to capture further inconspicuous frequency af-
fecting reality. In particular, the loss motivates the network
to learn detailed textures and avoids the adverse effects of
occlusion. Experiments show that our method can generate
high-quality results and outperform several state-of-the-art
methods in qualitative and quantitative comparisons on
several benchmarks. To summarize, this paper makes the
following contributions:

(i) We propose a spatio-frequency decoupled weak
supervision method for 3D reconstruction with
high-fidelity textures from a single in-the-wild
image.

(ii) We propose a patch-based spectrum-wise weighted
Wing loss in the frequency domain to improve the
robustness of texture reconstruction to occlusion
and the reality of the re-rendered image.

2. Related Work

2.1. 3D Face Detail Reconstruction. Geometry Reconstruc-
tion. ,e 3DMM [31] makes it possible to recover the facial
shape from a single image by regressing 3DMM face shape
parameters. Some studies [14, 32] reconstructed a rough
shape using the 3DMM in the first stage and then refined the
shape by imposing some spatial domain constraints, e.g.,
asymmetric Euclidean loss [32] and identity consistency loss
[14]. ,e other methods [26, 33] used a collaborative ap-
proach by employing a synergy process between 3DMM
coefficients and 3D face landmarks [33] or an occlusion
segmentation network [26]. ,ese approaches narrow the
error in the spatial domain to synthesize more realistic facial
geometry with 3DMM. But 3DMM works well in the low-
frequency domain, neglecting the critical frequency infor-
mation that determines the realism. In contrast, we aim to
capture the key frequency in the frequency domain.
3D Re-Renderable Modeling. 3D Re-renderable modeling
makes the process of mapping a 3D face model to a 2D

portrait image [21, 34–37]. ,ese methods decompose a
single face image into reflectance, geometry, and lighting
and then render the face image by changing the lighting and
fixing the geometry and reflectance [38]. Yamaguchi et al.
[36] developed a deep learning method to estimate high-
resolution facial reflectance and normal. However, they
could not re-render the whole face image while leaving out
the eye, teeth, and hair regions. Dib et al. [34] introduced ray
tracing for face reconstruction within an optimization-based
framework to make the re-rendered faces robust to lighting
conditions. But the quality of their reconstruction is still
influenced by the initialization landmarks. Yang et al. [37]
proposed a novel, detailed illumination representation to
disentangle facial texture and lighting, resulting in high-
fidelity textures even with in-the-wild images. ,eir results
are good but also decoupled in the spatial domain. Different
from them, our method decouples illumination and albedo
in the frequency domain to obtain an anti-occlusion, anti-
illumination, and re-renderable face image.

2.2. Frequency Domain Studies of Neural Networks.
Several studies [27, 28] have begun to use Fourier analysis to
explore the neural network training process and found a
learning bias of neural networks towards low-frequency
components. Moreover, F-Principle [29] showed that the
frequency fitting priority is different throughout the training
process, usually from low to high. ,erefore, when using
CNN for reconstructing a 3D face shape, the network always
avoids high-frequency components, which will cause the
reconstructed 3D face to be too smooth, and some details
cannot be reconstructed.

Recently, Jiang et al. [30] introduced frequency domain
information into image synthesis to improve the effect of
image synthesis by guiding the network to synthesize hard
frequencies that are difficult to synthesize. Although the
paper demonstrated the influence of frequency domain
information on image synthesis, few studies have explored
the effect of frequency in 3D face reconstruction. Wang et al.
[39] are the first to introduce the concept of frequency
domain into 3D face reconstruction. It enhances self-su-
pervised learning by adding low-frequency albedo infor-
mation to guide the network for generating intact albedos.
However, the albedo model is still a linear subspace model
that concentrates on low-frequency, failing to synthesize
high-frequency information during training and address the
frequency bias problem of DNN training. Our method aims
to narrow the frequency gap during the training, i.e., by
transforming the image from the spatial domain to the
frequency domain based on a differentiable 2D Fourier
transform and then reconstructing more detailed 3D faces
and albedo.

2.3. Wing Loss. Wing loss is a supervised function for face
landmark alignment proposed by Feng et al. [40]. After
analyzing L1 loss, L2 loss, and smooth L1 loss function
empirically and theoretically, they found that large errors
easily dominate the step size of these loss functions so that
some outliers may mislead the network during training. So
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they proposed Wing loss to improve the resistance to large
errors and the ability to amplify small and medium-scale
errors during neural network training.

In 3D face reconstruction work, the importance of high-
frequency and low-frequency components are different in an
image, and then it is also different in the difficulty of fitting
them via neural networks. In the early stage of training, the
frequency gap between the input and the re-rendered image is
large and becomes small in the middle and later stages of
training. However, the error in pixel level may be large when
occlusion occurs in the image, even though the frequency error
can be very small. To narrow the gap further and improve the
reconstructed face’s accuracy, we use Wing loss to solve the
problem. Inspired by theWing loss’s variant [41], we adjust the
spectrum-wise weighting experimentally so that the differences
could be suppressed even at the tiny frequency error by am-
plifying the spectrum-wise error. In this way, the effect brought
by occlusion frequencies can be significantly alleviated.

3. Method

3.1. Preliminaries. Our approach regresses the shape and
texture coefficients of the 3DMM model to reconstruct the
3D face shape, which is then rendered onto a 2D plane, using
spatial and frequency domain information as weak super-
vision signals to assist the network training. We will in-
troduce several foundation works involved in the procedure,
including the 3DMM, illumination, and camera models.

Face prior model. 3DMM [31] is our face prior model for
reconstructing face shape and texture based on principal
component analysis (PCA). As the original 3DMM could
not express facial expressions, we improved the 3DMM
model by fusing the expression bases Aexp built from Face-
Warehouse [42]. At last, the model is defined as:

S(α, β) � S + Aidα + Aexpβ,

T(δ) � T + Atδ,
(1)

where S andT represent themean shape and texture,Aid and
At are the PCA bases with a neutral expression. α ∈ R80,
β ∈ R64 and δ ∈ R80 are the shape, expression, and texture
parameters to be regressed in our model.

Camera model. We use a perspective model as the camera
model. It first converts any vertex v on S to a new position 􏽢v
under the camera coordinate system with orthogonal rotation
R ∈ SO(3) and translation t ∈ R3. And then 􏽢vi is projected to
pointu in an image plane. In particular, we set an empirical focal
in the camera to display the 2D face. On the whole, there are six
parameters in the perspective model.

Illumination model. Assuming the human face is a
Lambert surface, we use the spherical harmonic (SH)
function to represent scene illumination and then compute
the radiosity of the vertex [43]. With the surface normal ni at
􏽢vi, the radiosity Ii related to the pixel can be represented by
the SH illumination model with three bands:

Ii(l) � ti 􏽘

9

j�1
ljHj ni( 􏼁, (2)

where ti is one channel of texture at vi on T, and l is channel-
wise control coefficients, Hj􏽮 􏽯 is orthogonal bases in
spherical harmonic function. Generally, the SH model can
accurately estimate the illumination information in different
environments without estimating the direction of the light
source, which greatly simplifies the illumination estimation.

Unsupervised learning reconstruction. Under an un-
supervised schema, all the unknown parameters are pre-
dicted asΘ ∈ R257 that consists α, β, δ, R, t and li􏼈 􏼉i∈ r,g,b{ } by
a neural network for a given face image I, firstly. And thenΘ
is applied to a differentiable image formation layer to
generate a new rendered image I′. ,e shape and texture
could be learned by supervising I′ with input I:

minDist I, I′(Θ)( 􏼁,withΘ � NeurlNet(I). (3)

Under the formulation, skin masks [44, 45], and weak
supervision with landmarks [46, 47] could be introduced to
learn high-quality face.

3.2. Framework of Spatio-Frequency Decoupled Weak-
Supervision. We will introduce spatio-frequency decoupled
weak-supervision into equation (3). In our framework, the
learning process is applied with supervision in both spatial
domain and frequency domain, seeing in Figure 1. Firstly, a
convolutional neural network (ResNet-50) is used to regress
the parameters of shape, texture, pose, and illumination
from face image I. ,en it outputs rendered image I′
according to differentiable analytic synthesis.,e spatial and
frequency-domain losses are applied during the training
stage to learn high-quality shapes and textures.

3.2.1. Spatial Domain Loss

Landmark-level. ,e alignment of facial landmarks is the
alignment of high-level semantics between pixels of face
images. To supervise the network, we usually project the
shape we get abovementioned into the 2D image and
minimize the difference between its 68 landmarks K

p
i and

the ground-truth 68 landmarks K
g
i . Moreover, we assign

different weights wi to different face parts.,e landmark loss
is defined as:

Llmk �
1
N

􏽘

N

i�1
wi K

g

i − K
p

i

����
����
2
. (4)

Image-level. Based on equation (3), we build the image-level
loss according to the photometric discrepancy between the
original image I and the reconstructed image I′. To weaken
the harmful effect brought by hair and face decoration, a skin
mask is introduced to guide the loss as follows:

Limg �
M⊙ I − M⊙ I′

����
����

‖M‖
. (5)

Perceptual-level. Some traditional methods use low-level
information as the supervision information of the network,
which results in smooth output images, so the appropriate
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selection of a layer of output features input perceptual loss
function can enhance the details. Influenced by recent work
[13], we also use a pretrained face recognition network to fit
this deep level of information during training. Perceptual
loss is defined as:

Lper � 1 −
f(I)f I′( 􏼁

‖f(I)‖ f I′( 􏼁
����

����
, (6)

where f(·) denotes deep feature encoding.

!e problem brought by spatial loss. Image-level loss learns
uncertain texture when severe occlusions exist on the face.
Figure 2 shows the output texture has black eyes when wearing
glasses on the face. ,e reason is that DNN learns weights from
high frequency to low frequency during the process of fitting
images, but it is challenging to work in harmonywithout explicit
guidance on the frequency domain [27].

3.2.2. Frequency-Domain Loss. Since the spatial domain loss
could not handle the issue of facial occlusion well, we
propose to use the frequency domain loss to alleviate it.
Inspired by [30], we convert the input image and the ren-
dered output image into their frequency representations and
model the supervision between them.

Frequency representation. ,e representation in the fre-
quency domain can be implemented by differentiable dis-
crete Fourier transformation (DFT) [30], being formulated
by:

F(u, v) � 􏽘
M−1

x�0
􏽘

N−1

y�0
f(x, y) · e

− i2π(ux/M+vy/N)
. (7)

Figure 3 shows that there is a certain gap between the
frequency spectrums with and without frequency supervi-
sion.,e frequency difference between Figures 3(a) and 3(b)
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Figure 1: Overview of our approach. Our network is a weak-supervision network that considers both spatial and frequency-domain loss.
,e entire architecture feeds a single 2D image into the convolutional neural network (ResNet-50) to regress the 3DMM coefficients α, β, δ
and rendering parameters I, p. With the parameters, we can reconstruct the 3D shape and texture, and synthesize the re-rendered image. A
spectrum-wise weighted Wing loss is devised for fine fitting in the frequency domain.

Figure 2: ,e shadow problem brought by using only spatial domain loss: in the mask map (middle), we found that when the occlusion
color is complex, the mask is correspondingly not good, so it will lead to the phenomenon of “under-eye dark circle” (right).
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and the frequency difference between Figures 3(c) and 3(b)
are reflected in Figures 3(d) and 3(e), respectively. It is not
difficult to find that after performing the differential cal-
culation in the frequency domain, the generated frequency
spectrum by our frequency domain supervision is closer to
the original input image. ,erefore, using the frequency
domain loss, a supervision signal to assist the reconstruction
of 3D faces, the network can synthesize frequencies that are
not easy to synthesize effectively.

Frequency-based wing loss. We devise a loss function based
on frequency representation for retrieving the missing
frequencies in the re-rendered image.

Moreover, to learn more subtle changes in the frequency
domain, the Wing loss [40] is adopted to design the fre-
quency loss based on local patches divided from images:

Lfreq �
􏽐

M−1
u�0 􏽐

N−1
v�0 􏽐

P−1
p�0Wing F

(p)
(u, v) − F′

(p)
(u, v)􏼒 􏼓

MNP
,

(8)

where M and N are height and width of image, and P is the
number of patches.F(u, v) is the spatial frequency value at the
spectrum coordinate (u, v) of the input image I, and F′(u, v)

is that of re-rendered image I′. ,e advantage of Wing loss is
that the gradient keeps high even at a minimal error.,us, the
low frequency that determines the realism of rendering could
be enlarged to improve the reconstruction quality.

Spectrum-wise weighting. Under original Wing loss, the
weights for different frequencies are equal and constant. In
our design, we hope to pay more attention to the high-
frequency part and less to the low-frequency. ,erefore, we
propose spectrum-wise weights for the frequency-based
Wing loss, defined as:

Wing(y, u, v) �

w(u, v)ln
1 + |y|

ϵ
􏼠 􏼡, if |y|<w(u, v),

|y| − C, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

where y � Δa + Δb · i, and C � w(u, v) − w(u, v)

ln(1 + w(u, v)/ϵ). Δa and Δb are the difference of real and
imaginary parts, respectively, between F(u, v) and F′(u, v).
And w(u, v) is also the spectrum-wise threshold between a
linear and nonlinear part of the wing curve, which is learned
adaptively during training. As Figure 4 shows, spectral
weighted Wing loss gets more saturated and closer to the
actual face texture. What’s more, different from Figure 2, the
neural network no longer only uses simple pixel-level su-
pervision information but also the supervision in the fre-
quency domain. It has a specific resistance to the
phenomenon of dark circles under the occlusion of
sunglasses.

w/0 freq

input image

w freq

freq difference

freq difference

(a)

(b)

(c)

(d)

(e)

Figure 3: ,e difference in frequency spectrum with and without frequency supervision: (b) is the input image’s spectrum. (a) and (c) are
the frequency spectrums of the re-rendered images without and with frequency supervision; (d) and (e) are the difference between the two
re-rendered spectrums, respectively.
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4. Experimental Results

Training data pipeline. In terms of training set, we
get ∼ 320 k face images from CelebA [48], FFHQ [49] and
Multi-PIE [50]. ,en we use the method of [51] to align and
crop facial images for model input.

Detailed setting. We follow the method of [13] which
trained a naı̈ve Bayes classifier with Gaussian mixture model
on a skin image dataset from [52] to generate the mask used
in image-level loss, and then preprocess the training set. We
use the Adam optimizer for ResNet-50 [53] that predicts Θ

and its initial learning rate is set to 1e− 4. ,e total loss
converges after about 200K iterations.

4.1. Qualitative Evaluation. Figures 5 and 6 shows the re-
rendered images and textures overlayed on original images,
respectively, by comparing the methods [13, 54, 55] on the
AFLW2000 dataset [17]. Ju et al. [55] used GAN to repair the
occlusion images after obtaining the textures from 3DMM
model, which did not use the image-level loss but the adver-
sarial loss. Deng et al. [13] used a robust loss including pixel
loss, for 3D face reconstruction. MGCNet [54] is a multi-view-
based 3D face reconstructionmethod. It shows that our texture

Figure 4: From left to right: the input image, the image rendered using the constant weighting, and the image rendered using the spectrum-
wise weight. ,e right image is much more colorful than the middle one.
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Figure 5: Comparison with Deng et al. [13], MGCNet [54]. and Ju et al. [55] Our re-rendered images are better in the details and are more
consistent with the input image. ,e images are from AFLW2000 [17].
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does not have black shadows in the presence of occlusions like
hair, glasses, and poor lighting. Moreover, our method can also
help the network reconstruct more detailed faces, such as the
reconstruction of the eyes in the third column of Figure 5.

Figure 7 shows our results in shape compared to recent
methods [13, 18, 25, 55, 56].,e 3D face shape reconstructed
by our method is very close to the input image in the case of
poor illumination and large occlusions. And we could

find that our results are more finely synthesized on the eyes
and mouth relative to Deep3DFaceRec [13], with a slight
advantage.

4.2. Quantitative Comparison

4.2.1. FaceScape Benchmark. FaceScape benchmark [16] is
an all-sided evaluation method that considers various poses,
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Figure 6: Comparison with Deng et al. [13], MGCNet [54] and Ju et al. [55]. Without illumination, the textures synthesized by our method
more closely match the original images and are resistant to occlusion colors. ,e images are from AFLW2000 [17].

Input 3DDFA_V2 Ju et al. Deep3DFace Rec DECA OursPRNet

Figure 7: Comparison to other recent reconstruction methods, from left to right: PRNet [18], 3DDFA_V2 [56], Ju et al. [55], Deep3-
DFaceRec [13], DECA [25] and Our method. ,e images are from AFLW2000 [17].
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expressions, environments, and focal lengths to evaluate the
accuracy of single-view face 3D reconstruction. It includes
two parts of data: FS-Wild data and FS-Lab data. ,e FS-
Wild data consists of 400 face images of 400 synthesized
subjects, each with a reference 3D face model, and is divided
into four groups according to the camera orientation and the
face orientation (0°–5°, 5°–30°, 30°–60°, and 60°–90°). ,e
FS-Lab renders 330 images using the 20 detailed 3D models
with three different focal lengths: 1200 (long focal), 600
(middle focal), 300 (short focal), and eleven different camera
locations, which one camera at exact front 0°, eight cameras
deflecting 30° and two cameras deflecting 60°.

We compared our methods with publicly available
methods, i.e., Deep3DFaceRec [13], MGCNet [54], DECA
[25], 3DDFA_V2 [56], PRNet [18], FaceScape_deep [16],
and UDL [20]. Since the FaceScape benchmark has 3D
ground-truth data, Chamfer Distance (CD) measures the
error between the predicted and ground-truth mesh. Mean
normal error (MNE) measures the intersection of the valid
region distance between the predicted normal map and
ground-truth normal map, which are obtained from the
corresponding mesh rendered in the cylindrical coordinate.
,e complete rate (CR) measures the completeness of the
reconstruction results.

4.2.2. Comparison on FS-Wild Datasets. Figure 8 shows the
values of CD and MNE under different pose angles in the FS-
Wild datasets. ,e Chamfer distance measured shows the
overall error distance in Figure 8(a). Ourmethod performswell
in frontal and side views, especially for the frontal and small
pose angle views.,e results of MNE are shown in Figure 8(b),
although, we are not as good as Deep3DFaceRecon [13] at a
small pose angle, our effect is much better than as the face angle
increases. Furthermore, in the case of large pose angle, our
performance is third only to MGCNet [54] which used 3D-
ground truth supervision, and 3DDFA_V2 [56] which, we
exceed its performance on small pose angle.

4.2.3. Comparison on FS-Lab Datasets. ,is section reports
the values of CD, MNE, and CR of several methods at
different pose angles on FS-Lab datasets.

In Table 1, We can see that most methods perform well
in the frontal view but severely degrade in the side view. And
our method is not only relatively stable for side view but also
has the best performance results.

In addition, it is worth noting that CR measures the
completeness of the reconstruction results, which is defined
as: η � S(Pp ∩Pg)/S(Pg). ,e position map Pp and Pg are
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Figure 8: Charts to visualize the quantitative evaluation on FS-wild dataset: (a) Chamfer distance and (b) Mean normal error.

Table 1: Quantitative evaluation on FS-lab benchmark categorized by pose angle.

Pose angle 0° 30° 60°
Method CD MNE CR CD MNE CR CD MNE CR
Deep3DFaceRec [13] 2.30 0.080 91.8 3.95 0.092 87.3 4.80 0.122 79.5
MGCNet [48] 3.45 0.085 92.7 3.91 0.092 90.1 3.65 0.090 83.2
DECA [25] 3.30 0.093 99.8 4.14 0.100 97.4 4.20 0.106 97.1
3DDFA_V2 [56] 3.05 0.093 95.2 3.41 0.096 93.8 3.82 0.096 88.1
PRNet [18] 2.94 0.132 92.5 3.40 0.125 90.1 3.74 0.121 85.1
FaceScape_deep [16] 2.40 0.086 96.7 7.27 0.124 87.7 3.87 0.108 90.5
UDL [20] 2.21 0.092 79.5 5.33 0.122 71.3 5.63 0.167 62.0
Ours 2.12 0.077 92.1 2.30 0.079 89.8 3.28 0.109 85.2
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the predicted mesh and the ground-truth mesh rendering in
the cylindrical coordinate. S(P) is the function that returns
the area of the positionmap P. Limited by the 3DMMmodel,

our method uses the BFMmodel, excluding the ear and neck
region, to reconstruct the actual face area as much as
possible. However, 3DDFA_V2 [56] used the MFF [57]

w
 fr
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w

/o
 fr

eq
In

pu
t

Figure 9: Ablation study on the proposed frequency-domain loss. ,e frequency-domain method has a better synthesis effect on the eyes,
lips, etc. From up to down: the input, the result without frequency loss, and that with frequency loss.

Input w/o Wing loss w/o adaptive w full Frequency loss

Figure 10: Ablation study of each key component for the frequency loss, i.e., Wing loss and spectrum-wise weight. From left to right: the
input, with l2 loss (w/o Wing loss), the re-rendered results with constant weighting (w/o adaptive w), and with full loss. ,e input samples
are from [58].
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algorithm to fit 3DMM parameters and further completed
the model to a complete headmodel with ears and neck. And
the DECA [25] reconstructed the entire head with the
FLAME model. Obviously, our 3D reconstruction is com-
parable with other methods.

4.3. Ablation Study. To verify the effectiveness of our fre-
quency-domain loss, we perform ablation experiments on
Now datasets [58] and AFLW2000-3D [17] datasets.

Frequency domain loss. To show the importance of our
frequency-domain loss, we train our model with and
without frequency-domain loss and compare the results.
Figure 9 shows that the frequency loss can assist the
convolutional neural network in synthesizing some details
that are not easy to synthesize. More detailed face features
can be captured in the areas of the eyes, mouth, etc.
Moreover, the reconstruction is also very accurate when the
face is occluded.

Wing loss and spectrum-wise weighting. Figure 10 shows
that the full patch-based spectrum-wise weighted Wing loss
achieves the best performance. If we use l2 loss instead of
Wing loss, it could not amplify some smaller frequencies
error, resulting in underfitting the reconstructed frequency
for face synthesizing. ,us, the facial texture is not uniform
enough on the whole face.

Moreover, it is noteworthy that the occlusion part will
be overfitted when the face is occluded. Wing loss can
remove shadows caused by occlusion for two reasons. On
the one hand, we use the generated mask to make the
network pay little attention to the occlusion part. On the
other hand, we use spectrum-wise weighted Wing loss to
amplify the error of the high-frequency part and suppress
the large frequency difference. Generally, the mask could
not perfectly cover some complex, occluded parts of the
face. If we only used the pixel-level loss, the color of the
occluder would still be fitted. Actually, in the later stage of
network training, the frequency gap of occluded parts
between the input and reconstructed image will be much
larger than that of the unoccluded parts. Spectrum-wise
weighted Wing loss guides the network to synthesize
frequencies that are not easy to synthesize rather than the
shadow parts.,ereby, the reconstruction can be learned in
harmony, and the shadow effect caused by occlusion is
alleviated to a certain extent.

On the contrary, if we useWing loss with fixed weighting,
it ignores that different parts of the face have different fre-
quency compositions. In that case, some face parts’ frequency
domain synthesis is insufficient, resulting in the facial texture
appearance with spots. Moreover, the reconstructed face is
not very fine for some details like the eyes.

Patch size for DFT. We also explored the effect of different
patch sizes on the reconstruction results. We show this effect
by rendering the reconstruction results on a 2D plane and
comparing the similarity between the rendered and input
images. Structural similarity (SSIM) [59] is an indicator
proposed to measure images’ similarity, which can be ap-
plied to luminance, contrast, and structure. Peak Signal-to-
Noise Ratio (PSNR) is defined as: PSNR �

10∗ log10(MAX2
I/MSE〈Ii,Ir〉), where MAX2

I is the maxi-
mum pixel value of the picture and MSE〈Ii,Ir〉 is the mean
square error of the input image Ii and the rendered image Ir.
Learned perceptual image patch similarity (LPIPS) metric
[60] uses the deep feature to measure the similarity of
images. We also report SSIM, PSNR, and LPIPS between re-
rendered images and original images under four patch sizes
on the AFLW2000 dataset [17] and Now dataset [58] in
Table 2. According to the result, we can see that the patch
size of 4× 4 shows the best performance.

5. Conclusion

We propose a spatio-frequency decoupled weak-supervision
for 3D face reconstruction and build the weakly supervision
by applying both spatial domain loss and frequency domain
loss to enhance the reality of re-rendered facial images based
on the reconstructed shape and texture. ,e key contribu-
tion is the designed spectrum-wise weightedWing loss based
on frequency loss on image patches, which narrows the gap
between input and output in the frequency domain and
captures inconspicuous frequency affecting reality. Experi-
ments show the effectiveness of our method and comparable
results with several state-of-the-art methods.
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Table 2: Ablation studies of different patch sizes are important for
the frequency loss.

Patch size
Indicator

AFLW2000 Now dataset
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

1× 1 0.744 12.008 0.232 0.869 23.245 0.126
2× 2 0.743 11.977 0.226 0.870 23.241 0.128
4× 4 0.762 12.558 0.221 0.871 23.088 0.122
8× 8 0.753 12.161 0.226 0.868 23.392 0.126
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