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Insect-borne diseases, such as malaria, and plant pathogens, like the tobacco mosaic
virus, are responsible for human deaths and poor crop yields in communities around
the world. The use of insecticides has been one of the major tools in pest control.
However, the development of insecticide resistance has been a major problem in
the control of insect pest populations that threaten the health of both humans and
plants. The overexpression of detoxification genes is thought to be one of the major
mechanisms through which pests develop resistance to insecticides. Hundreds of
research papers have explored how overexpressed detoxification genes increase the
resistance status of insects to an insecticide in recent years. This study is, for the first
time, a synthesis of these resistance and gene expression data aimed at (1) setting up
an example for the application of meta-analysis in the investigation of the mechanisms of
insecticide resistance and (2) seeking to determine if the overexpression detoxification
genes are responsible for insecticide resistance in insect pests in general. A strong
correlation of increased levels of insecticide resistance has been observed in tested
insects with cytochrome P450 (CYP), glutathione-S-transferase (GST), and esterase
gene superfamilies, confirming that the overexpression of detoxification genes is indeed
involved in the insecticide resistance through the increased metabolism of insecticides
of insects, including medically (e.g., mosquito and housefly) and agriculturally (e.g.,
planthopper and caterpillar) important insects.

Keywords: insecticide resistance, metabolic detoxification genes, diverse insect species, meta-analysis,
overexpression of detoxification genes

INTRODUCTION

There are thought to be approximately five million insect species worldwide with ∼80%
remaining to be discovered (Stork, 2018). Among these, agricultural (e.g., whitefly, armyworm, and
grasshopper) and medical (e.g., mosquito, housefly, and cockroach) pests can have a significant
negative impact on food supplies and human health. Globally, insect pests are responsible for
around 35% of potential crop yield losses (Popp et al., 2013; Mesterházy et al., 2020). Besides
damage and monetary loss, the transmission of plant viruses by insect vectors can also reduce
crop yield and quality (Fereres and Raccah, 2015). Likewise, medically important pests can transfer
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lethal pathogens capable of compromising human life (e.g.,
malaria, yellow fever, and dengue, all of which are transferred
by mosquitoes) and impose huge socio-economic burdens on
the affected populations (Bhatt et al., 2013; Kuehn, 2018;
Shaw and Catteruccia, 2019). For instance, the housefly is
capable of transmitting more than 100 human and animal
diseases, including cholera, typhoid fever, salmonellosis, and
polio (Ostrolenk and Welch, 1942; Feng et al., 2018). Common
pest management strategies include installing traps to monitor
and control the density of pests (Baldacchino et al., 2015), rearing
natural enemies to prey on the pests (Lazaro et al., 2015), or
spraying insecticide. All these methods are routinely employed
to control pest populations in an attempt to avoid production
and monetary losses, insect-borne disease outbreaks, and other
associated impacts.

Of these various pest management strategies, the use of
insecticides is still the most widely-used approach [i.e., roughly
two million tons of pesticides being sprayed on insect pests in
communities around the world every year (Sharma et al., 2019)]
because of its immediate and rapid reduction of pest populations
(Strode et al., 2012). However, this widespread overuse of
insecticides has led to the emergence of new problems. The first is
that insecticide resistance is rapidly becoming a serious obstacle
to the effective pesticide control of many pests. Moreover, and
there are only a very limited number of new insecticides being
commercialized for vector control (Liu, 2015). Because of the
frequent and long-term use of insecticides, pests that carry a
resistance gene can survive when exposed to an insecticide and
these genes can be inherited in the subsequent generations, thus
leading to the widespread development of insecticide resistance
in local populations (Liu, 2015; Smith et al., 2016). Crucially, the
greater the resistance ability of the pest to a particular insecticide,
and hence the survivability of the pest when exposed, the greater
the associated crop loss or the transmission of insect-borne
diseases (Atyame et al., 2019; Chen et al., 2021). The phenomenon
of insecticide resistance was first recognized by Dr. Melander in
1914 with sulfur lime (Melander, 1914). The resistance of both
medical and agricultural pests to a variety of insecticides has now
been reported in pest populations worldwide (Naveen et al., 2017;
Camara et al., 2018; Okia et al., 2018; Lopes et al., 2019).

Numerous papers have been published that address the
underlying mechanisms that govern the development of
insecticide resistance. Some have shown evidence to suggest that
gene mutations can decrease the sensitivity of the target site and
thus be responsible for increasing insecticide resistance (Dong,
2007; Xu et al., 2011; Tmimi et al., 2018; Zeidabadinezhad et al.,
2019; Yavaşoglu et al., 2021), while others have argued that the
overexpression of the detoxification gene is the most important
mechanism driving the development of insecticide resistance (Xu
et al., 2016; Feng et al., 2018; Jin et al., 2019). It is generally
agreed, however, that target site insensitivity and increased
insecticide metabolism are both involved. Consequently, these
two mechanisms have been intensively studied (Antonio-
Nkondjio et al., 2011; Liu, 2015; Dang et al., 2017). Hundreds
of papers have explored how overexpressed genes increase the
resistance status of insects to insecticides in recent years. This
study, for the first time, quantitatively synthesizes these data

using meta-analysis to provide an overview of the impact of
the overexpression of genes in diverse insect species against
different insecticides as well as identify the gene families and
clades responsible for the most widely observed examples of this
overexpression. This study could be used as an example to inspire
more researchers to use meta-analysis to answer more questions.

MATERIALS AND METHODS

Literature Search Strategy
To fully understand the metabolic detoxification mechanisms
conferred by the gene overexpression that are importantly
involved in the insecticide resistance development in general, we
quantitatively compared the gene expression between resistant
and susceptible strains and its correlation by conducting, a
literature search in Web of Science, PubMed, and AGRICOLA
(Ovid) using the following search terms: “gene overexpression”
AND “insecticide resistance” OR “pesticide resistance.” In
addition, “Culex” OR “Aedes” OR “Anopheles” OR “Aphid” OR
“Helicoverpa” OR “Spodoptera” OR “∗idae” (Sampson et al.,
2009) were used in conjunction with “gene overexpression”
AND “insecticide resistance” in Web of Science. The Boolean
truncation (∗) was used to capture all variations of a search
term. A schematic outline of the search strategy is illustrated
in Figure 1. A publication date range of 2000 to 2020 was
used and although no restrictions were placed on the country
of publication, only reports in English were included; a study
was included only if it was an original journal article (books,
review articles, and letters to the editor were excluded). The
literature search was performed between January and March
2020 (Figure 1).

Study Selection, Inclusion, and Exclusion
Criteria
To be considered eligible for inclusion, a study had to meet the
following criteria:

(1) Gene expression must have been measured through relative
mRNA abundance by applying qPCR or real-time PCR.
Protein-based or enzyme activity-based measurements
were excluded because real-time PCR is use for measuring
gene expression as well as validating Microarray and
RNAseq data, thus, we only use RT-PCR data in this
analysis. In addition, meta-analysis requires the similar
measurement methods for the data examination and the
mix of different gene expression testing methodology, such
as mix of microarray and RNAseq and RT-PCR, may
generate unexpected variation. Thus, we only chose RT-
PCR as our methodology in the study. Moreover, all the
genes should be annotated, the genes with Gene Bank
ID or vector base ID or other type ID will be excluded.
The gene expression should be measured on the level
of the whole body.

(2) A study must have contained a susceptible strain (or
susceptible field strain) as the control and a resistant
strain (or resistance field strain) as the measurement of
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FIGURE 1 | Flow diagram based on PRISMA.

comparison. Thus, studies measuring the gene expression
level of insects collected from different locations that did
not consider significant differences in the resistance levels
of insects from different populations were excluded. The
studies that measure the gene expression level before and
after insecticides exposure were excluded.

(3) A study must have reported either the mean value of the
gene expression level and some estimate of error (e.g.,
standard deviation, standard error, or 95% confidence
interval) around the mean estimates for the susceptible and
resistant strains or the ratio of these gene expression levels.

(4) A study must have reported no gene modification of the
strains. Thus, studies testing gene overexpression after
editing the genomes of the strains using RNAi, CRISPR-
Cas9, or other gene-editing methods were excluded.

(5) A study must have reported no transformation of the gene
to other materials; studies testing gene overexpression after
the gene had been transferred to sf9 cell, Drosophila, or
some other materials were excluded.

Data Extraction and Analyses
To gather data from each study, a standardized form, including
author(s), publication year(s), insecticide(s), and species, was
utilized that facilitated the extraction of the important study
characteristics. To perform moderator analysis, the class of
insecticides, insect genus, and gene name were collected
from each study. The sample size, mean value, and variance
components (e.g., standard deviation, standard error, or 95%
confidence interval) of gene expression were also collected.
Where necessary, standard errors or 95% confidence intervals
were converted to standard deviation using sample sizes and
t-statistics. Data from the figures were extracted using R with
the metaDigitise package (1.0.0) (Pick et al., 2019). For figures
that presented linear gene expression data on a log10 transformed
scale, the data collected from each figure were estimated by
raising each data point by 10. Because of scaling constraints,
the error presented in the figures was estimated after recreating
the original figures with estimated data and then adjusting the
error bars until they were similar to those shown in the original
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figure. Only 30 observations (4.2% of all data) were collected
using this method.

Effect Size Calculation and Data
Analyses
For this study, the effect size reflected the strength of the
relationship between gene expression and insecticide resistance
(Kelley and Preacher, 2012; Schäfer and Schwarz, 2019). This
effect size was calculated for each experiment in a study by
comparing the relative gene expression values between the
control (susceptible) and the treatment (resistant) strains. The
effect size metric used in this study was the natural log response
ratio [LnRR; (Hedges et al., 1999)], which is calculated as the
natural log-transformed ratio of mean expression values between
the treatment (resistant) and control (susceptible) (Havird et al.,
2013). However, to more accurately estimate the magnitude of
gene expression involved in insecticide resistance, weighted effect
sizes that include the variance of LnRR are needed.

For the studies that only provided the relative expression
ratio (i.e., the gene expression ratio between resistant strain and
susceptible strain) but did not provide the exact gene expression
data for both strains (Bariami et al., 2012; Cifuentes et al., 2012;
Feng et al., 2018), LnRR was calculated by directly taking the
natural log of the relative expression ratio, and the variance was
assigned a value of 0.1. For the studies that provided a mean
and error for gene expression for both susceptible and resistance
strains (Zhang et al., 2012; Jin et al., 2019; Ma et al., 2019), the
LnRR effect size and variance was calculated through R using
the “metafor” package (Viechtbauer, 2010). An effect size (and
lower 95% CI) > 0 indicates that the detoxification gene is
overexpressed in the resistant strain compared to the susceptible
strain and thus provides evidence that gene overexpression is
indeed one of the mechanisms involved in the development of
insecticide resistance. On the contrary, the overexpression of
the detoxification gene may not be involved in the mechanism
of insecticide resistance. To facilitate the interpretation of the
natural log-transformed effect sizes, each was converted back to a
linear ratio scale. For example, an LnRR effect size of 0.41 would
represent a 1.5 fold overexpression of a detoxification gene in a
resistant strain (calculated as exp0.41 = 1.5, 1.5/1 = 1.5) compared
to the susceptible strain.

Since our dataset included some studies where error estimates
were not provided with mean gene expression, two separate
analyses were conducted to evaluate the robustness of our
findings. The first analysis was an unweighted analysis that
included mean gene expression for all of the studies. The second
analysis was a weighted analysis, which only included studies that
provided the mean gene expression data and the associated error
for both resistant and susceptible strains. Both of the two analyses
were conducted using a random-effects model for the gene
expression of the susceptible and resistant strain in R using both
the “metafor” (Viechtbauer, 2010) and “meta” (Balduzzi et al.,
2019) packages. The statistical heterogeneity, i.e., the magnitude
of the changes of the effect sizes in this study, of the treatment
effect among studies was assessed using the inconsistency (I2)
test, in which values above 30 and 50% were considered indicative

of moderate and high heterogeneity, respectively. To improve
the quality of our results, we conducted sensitivity analyses by
omitting each study in turn and re-calculating the effect size to
check the resulting difference in the effect size.

Moderator Analysis
We classified genes into different gene families and clades and
insecticides into different classes according to the modes of action
recommended by the Insecticide Resistance Action Committee
(IRAC) (Sparks et al., 2020). Insect species were grouped
according to their genus that is classified as a medical vector or
agricultural pest. Medical vectors represent genera that threaten
human health; for example, insects in the genus Aedes transmit
the dengue virus to humans. Agricultural pests include genera
that threaten plant health such as Helicoverpa, which can damage
cotton and tomato crops. This made it possible to compare
the effect on insecticide resistance of overexpressed genes in
different gene families and different P450 gene clades, as well as
different insecticide classes, different genera, and different vector
types. Finally, moderator analyses were conducted to compare the
effect on insecticide resistance of overexpressed genes in different
gene families within specific medical or agricultural pests. All
moderator analyses were conducted utilizing unweighted meta-
analyses for all available effect sizes.

Publication Bias and Sensitivity Analysis
Publication bias, i.e., the bias of the authors, editors, and/or
reviewers to the publication of data, was evaluated by visually
analyzing funnel plots (metaviz R package), Egger’s tests (dmetar
R package), and regression tests and p-curves (metafor R package)
(Song et al., 2010). The sensitivity analysis, i.e., a method used
to test whether the results will be changed by a certain paper,
was performed using the “leave1out” analysis in the metafor R
package (Saltelli et al., 2008). GOSH (Graphic Display of Study
Heterogeneity) plot was performed in the metafor R package
(Olkin et al., 2012).

RESULTS

Overall Dataset
All data used in this study were provided in the online
Supplementary Material for transparency and future analyses
(Supplementary Table 1). Based on our search strategy and
inclusion criteria, 68 published papers were selected and analyzed
in this meta-analysis containing a total of 14 types of insecticides,
the three major classes of insecticides are neonicotinoids (13
papers), organophosphates (7 papers), and pyrethroids (31
papers). Three major gene families, P450 (58 papers), Esterase
(11 papers), and GST (16 papers) with over 200 genes and
CYP4 (35 papers), CYP6 (50 papers), CYP9 (16 papers), and
over 40 gene clades were included in the selected papers. The
data distribution includes 22 insect genera (in 68 papers) that
can transmit pathogens to either humans (medical vectors) or
plants (agricultural pests) (Table 1). The remaining papers were
excluded as they failed to meet one or more of the inclusion
criteria. Note that all effect sizes below are presented in the
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TABLE 1 | Number of studies in different categories.

# Papers # Papers

Total 68 P450 Gene
Clade

cyp4 35

Insecticide
Classes

Avermectins 2 cyp417 7

cyp425 6

Buprofezin 2 cyp439 8

Carbamates 1 cyp6 50

DDT 2 cyp418 6

Diamides 1 cyp408 3

Neonicotinoids 13 cyp427 4

Organophosphate 7 cyp18 6

Organochlorines 1 cyp304 9

Pyrethroid 31 cyp306 8

Phenlypyrazoles 2 cyp303 10

Spinosyns 1 cyp15 3

Sulfoxaflor 1 cyp305 9

Tetronic 1 cyp419 5

Mixture of insecticides 5 cyp302 5

cyp301 7

Vector Type Agricultural Vector* 44 cyp314 7

Medical Vector** 24 cyp404 4

Gene Family P450 58 cyp9 16

Esterase 11 cyp321 1

GST 16 cyp337 4

P450 Gene
Clade

CYP4 35 cyp332 2

CYP6 50 cyp353 8

CYP9 16 cyp426 2

Others 27 cyp307 3

Insect Genera Aedes 4 cyp315 5

Amsacta 1 cyp380 5

Anopheles 8 cyp340 1

Aphis 6 cyp3085 1

Apolygus 1 cyp3092 1

Bemisia 2 cyp2 1

Blattella 1 cyp3323 1

Ceratitis 1 cyp49 3

Culex 5 cyp3 1

Drosophila 1 cyp5 1

Diaphorine 1 cyp12 2

Frankliniella 1 cyp319 1

Helicoverpa 4 cyp325 1

Laodelphax 9 cyp3115 1

Leptinotarsa 2

Musca 5

Nilaparvata 6

Plutella 6

Rhopalosiphum 1

Sogatella 1

Spodoptera 1

Triatoma 1

**There are 20 papers, nine papers and four papers investigate about the gene
expression of P450, GST and Esterase in medical vector respectively.
*There are 38 papers, seven papers, and seven papers investigate about the gene
expression of P450, GST and Esterase in agricultural vector respectively.

form of back-transformed linear scale ratios to facilitate the
interpretation of the results (Figure 1).

Effect Size Summary
The linear scaled effect sizes (i.e., the number used to reflect
the strength of the relationship between the two variables
statistically) of the unweighted and weighted analyses (including
studies both with and without susceptible strain) were 1.82 (95%
confidence interval: 1.65–2.00, P-value < 0.01) and 1.50 (95%
confidence interval: 1.35–1.67, P-value < 0.01), respectively.
Overall, the expression level of detoxification genes tested
was over 1.5 that seen in the resistant strains compared to
the susceptible strains, suggesting that the overexpression of
detoxifying genes is indeed associated with increased insecticide
resistance (Supplementary Table 2).

To further investigate overexpression of which gene family
or clade is responsible for increased insecticide resistance,
the overexpression of cytochrome P450, esterase, and GST
(glutathione S-transferase) was analyzed. Given the small
number of studies on the overexpression of esterase genes,
all esterase-related genes, including carboxylesterase (COE)
and acetylcholinesterase (AchE), were classified simply as the
“esterase” gene. None of the effect sizes for these three gene
families overlapped with the null group: the expression level of
the esterase gene was 3.46 fold (P-value < 0.01) higher in resistant
strain compared to the susceptible strain; the expression level of
the GST gene was 1.97 fold (P-value < 0.01) higher in resistant
strain compared to susceptible strain; and the expression level of
the P450 gene was 1.73 fold (P-value < 0.01) higher in resistant
strain compared to susceptible strain. All three gene families were
clearly involved in insecticide resistance through upregulated
gene expression (Figure 2). This abundance of studies made it
possible to further split the P450 gene group into different clades,
in which the expression level of the CYP4, CYP6, and CYP9
genes in the resistant strains were further analyzed showing to
be 1.37 fold (P-value < 0.01), 2.17 fold (P-value < 0.01), and 4.67
fold (P-value < 0.01), higher compared to the susceptible strains,
respectively (Figure 3). In contrast, the gene expression for the
rest of the clade did not significantly contribute to insecticide
resistance, with the sole exception being CYP332, which exhibited
a significant difference in just two studies (P < 0.01) (Brun-
Barale et al., 2010; Xu et al., 2016; Supplementary Table 2). There
was, however, a large proportion of heterogeneity in the overall
summary effect size (I2 > 94%), suggesting that a single summary
effect size may not be as informative. To further explore this
heterogeneity, these data were further partitioned into various
groups using specific moderators.

Factors Contributing to Heterogeneity
Between Studies
First, the papers and effect sizes were classified based on
the type of insecticide used when measuring the resistance
level of a specific insect strain. If a study involved more than
two insecticides, it was classified as “mix-insecticide” (Elzaki
et al., 2016; Goindin et al., 2017; Zhang et al., 2017; Sun
et al., 2018 Tchigossou et al., 2018). The detoxification genes
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FIGURE 2 | Meta-analytical, sub-group estimate of gene expression related to
insecticide resistance, with 95% CI in the P450, GST, and esterase gene
families. The overall effect represents the collective effect of all the studies in
terms of their unweighted analyses.

FIGURE 3 | Meta-analytical, sub-group estimate of gene expression related to
insecticide resistance, with 95% CI in the P450 gene families classified by
gene clade. The overall effect represents the collective effect of all P450
studies.

in the strains that were resistant to buprofezin, carbamates,
neonicotinoids, organophosphates, and pyrethroid were 1.54
fold (P-value < 0.01), 4.11 fold (P-value < 0.01), 1.60 fold
(P-value < 0.01), 2.68 fold (P-value < 0.01) and 3.35 fold
(P-value < 0.01) higher compared to the susceptible strain,
respectively. In contrast, the overexpression of detoxification
genes was not significantly influenced by the insect’s resistance
to other classes of insecticides, such as Avermectins, DDT,
Diamides, Organochlorines, Phenlypyrazoles, Spinosyns,
Sulfoxaflor, and Tetronic (Figure 4 and Supplementary Table 2).

FIGURE 4 | Meta-analytical, sub-group estimate of the gene expression
related to insecticide resistance, with 95% CI across different insecticide
classes. The overall effect represents the collective effect of all the relevant
studies.

Next, the studies and their effect sizes were classified based
on their target species to investigate whether the positive
relationship between gene expression and insecticide resistance
exists across species. The analysis revealed that Aedes (4.74
fold, P value < 0.01), Anopheles (3.99 fold, P value < 0.01),
Apolygus (15.85 fold, P value < 0.05), Ceratitis (18.60 fold, P
value < 0.05), Culex (1.96 fold, P value < 0.01), Drosophila (11.14
fold, P value < 0.01), Diaphorine (3.12 fold, P value < 0.01),
Helicoverpa (7.55 fold P value < 0.01), Laodelphax (1.25 fold, P
value < 0.05), Leptinotarsa (1.71 fold, P value < 0.01), Musca
(5.15 fold, P value < 0.01), Plutella (1.58 fold, P value < 0.05),
Sogatella (1.48 fold, P value < 0.05), and Spodoptera (2.52
fold, P value < 0.05) all showed significant differences between
gene expression in susceptible and resistant strains, while other
genera, such as Amsacta, Aphis, Bemisia, Blattella, Frankliniella,
Nilaparvata, Rhopalosiphum, and Triatoma, did not (Figure 5
and Supplementary Table 2).

Finally, the insect genera were grouped according to their
role as medical or agricultural vectors. For both medical and
agricultural vectors, the expression of detoxification genes in
resistance strains are significantly higher than the susceptible
strains (3.59 fold in medical vectors group with P-value < 0.01,
and 1.55 fold in agricultural group with P-value < 0.01).
To investigate which gene families are involved in insecticide
resistance in both the agricultural pests group and medical
vectors group, each group was further classified into three
groups based on their gene families. In the medical vector
group, the expression of detoxification genes in all three gene
families was higher in the resistant strains than in the susceptible
strains by 4.28 fold in the GST genes (P-value < 0.01), 5.35
fold in the esterase genes (P-value < 0.01), and 3.29 fold
in the P450 genes (P value < 0.01), respectively (Figure 6
and Supplementary Table 2). Similarly, across the agricultural
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FIGURE 5 | Meta-analytical, sub-group estimate of the gene expression
related to insecticide resistance, with 95% CI in different insect genus and
vector types. The overall effect represents the collective effect of all the
relevant studies.

FIGURE 6 | Meta-analytical, sub-group estimate of the gene expression
related to insecticide resistance, with 95% CI in the medical vector with
different gene families and the P450 gene clade. The overall effect represents
the collective effect of all the studies investigating the medical vector.

vectors, the expression levels of the GST genes, the esterase genes,
and the P450 gene were 1.72 fold (P-value < 0.01), 2.30 fold (P-
value < 0.01), and 1.50 fold (P-value < 0.01) higher.(Figure 7 and
Supplementary Table 2).

Publication Bias and Sensitivity Analysis
Publication bias (i.e., the bias about the direction or significance
of the manuscripts from authors, editors and reviewers when
they are submitting or accepting manuscripts) was assessed
using multiple approaches, including funnel plot evaluations,
regression and Egger’s tests (Egger et al., 1997). The Egger’s test

FIGURE 7 | Meta-analytical, sub-group estimate of the gene expression
related to insecticide resistance, with 95% CI in the agricultural vector with
different gene families and the P450 gene clade. The overall effect represents
the collective effect of each insecticide class in all the relevant studies.

revealed the funnel plot asymmetry with P value < 0.05, while
the regression test of the funnel plot of the weighted meta-
analysis showed symmetry (P = 0.23), (Figure 8), indicating
there is no clear publication bias in this study. To further
address the potential for publication bias, a P-curve analysis was
used to check whether any studies showed false positives [i.e.,
findings that statistics suggest are meaningful when they are
not (Simonsohn et al., 2014)]. The resulting curve was right-
skewed with > 95% of the studies showing p < 0.01, suggesting
truly significant p-values dominated the dataset (Supplementary
Figure 1). A leave-one-out sensitivity analysis (i.e., the method
used to examine whether the result will change significantly due
to one certain paper) was also conducted for both weighted
and unweighted meta-analyses to determine whether individual
studies influenced the overall results. The sensitivity analysis
showed that no single effect size significantly biased the overall
effect size (Supplementary Tables 3, 4). Consequently, a Graphic
Display of Study Heterogeneity (GOSH) plot was created to
visually depict the heterogeneity, showing it to be equally
distributed across the dataset (Supplementary Figure 2; Olkin
et al., 2012).

DISCUSSION

We further confirmed that the overexpression of detoxified
genes is indeed responsible for insecticide resistance through
the rigorous analysis of data from 68 studies, including three
major detoxification gene families (P450s, GSTs, and Esterases),
various species (e.g., Aedes, Anopheles, Plutella, Helicoverpa,
etc.), and different type of insecticides (e.g., permethrin,
neonicotinoids, organophosphates, etc.). Plenty of studies have
proven the importance of the overexpression of detoxified
genes in insecticide resistance (Feyereisen, 1999; Enayati et al.,
2005; Liu, 2015) and confirmed their large responsibility for
enhancing the metabolic detoxification of insecticides (Plapp,
1976; Liu, 2015; Lu et al., 2020). There is also a review focusing
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FIGURE 8 | Funnel plot of the weighted meta-analysis of the studies, including both susceptible and resistant expression data. The dark blue area means represent
the 95% confidence interval.

on the Spodoptera, which also confirms the importance of
the overexpression of detoxified genes in insecticide resistance
(Amezian et al., 2021).

However, resistance was not associated with significant
differences in gene expression for all insecticides. For
example, traditional classes of insecticide (e.g., pyrethroid,
organophosphate, carbamates, and etc.) exhibited significant
differences, while some insecticides (e.g., diamides, avermectins,
sulfoxaflor, and etc.) showed little difference between resistant
and susceptible strains. As we have known, the long-term and
overuse of an insecticide can lead to resistance due to diverse
mechanisms (Liu, 2015). Thus, the insecticides that were not
shown to have large differences in detoxification gene expression
in resistant and susceptible strains maybe because they are not
as widely used as traditional insecticides. So, even if resistance
develops, resistance may be due to other mechanisms than the
high expression of detoxification genes. Most species were found
to be able to upregulate the expression of detoxification genes
against insecticides, as most insecticides are broad-spectrum
and are used to control multiple insect species (Ahmad et al.,
2002; Sparks et al., 2020). Both medical and agricultural pests
show the higher detoxified gene expression in resistance strain
compared with susceptible strain. This proves that both medical
and agricultural pests received similar insecticide pressure.
Besides, all the detoxified gene families (GST, Esterase, P450) in
the medical and agricultural pests are significantly overexpressed
in resistance strains compared with susceptible strains.

This paper demonstrates a new method in the investigation
of the mechanism of insecticide resistance. Based on this
example, we conclude that the overexpression of detoxified gene
is involved in insecticide resistance. The following researchers
could focus on other different questions through meta-analysis,

for example, what kind of fitness cost happened in resistance
strain compared to the susceptible strain? Although there is no
experiment be done in the meta-analysis, the result of meta-
analysis is based on numerous experimental papers with the real
experimental data. Otherwise, one experimental paper can only
focus on one insect species to one or several insecticides with the
expression of several detoxified genes. In the meta-analysis, we
can combine and analyze the data from 22 insect genera to 14
types of insecticides with the expression of over 200 genes in a
total of 68 papers.
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