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Abstract: Salvia miltiorrhiza (SM) is a common traditional Chinese medicine used in the treatment of
cardiovascular and cerebrovascular diseases. Endothelial dysfunction plays an important role in the
pathology of cardiovascular diseases. Endothelial dysfunction may induce inflammation and change
vascular tone and permeability. The main pathological mechanism of endothelial dysfunction is the
formation of reactive oxygen species (ROS). Mitochondria are the main source of energy and can also
produce large amounts of ROS. Recent studies have shown that extracts of SM have antioxidative, anti-
inflammatory, and antithrombus properties. In this review, we discuss the mechanism of oxidative
stress in the mitochondria, endothelial dysfunction, and the role of SM in these oxidative events.

Keywords: Salvia miltiorrhiza; mitochondria; endothelial dysfunction; oxidative stress; TCM; herbal
medicine; reactive oxygen species; cardiovascular disease

1. Introduction
1.1. Reactive Oxygen Species and Oxidative Stress

Free radicals may damage human health. There are many oxidative agents in our
environment (air, water, tobacco, alcohol, heavy or transition metals, drugs, industrial
solvents, radiation, etc.) and also produced inside the human body. Oxidative stress occurs
due to oxygen-related metabolic reactions. It originates from the disequilibrium between
reactive oxygen species (ROS) formation and enzymatic and nonenzymatic antioxidants in
living organisms [1].

ROS can be produced in compartments, such as the cytoplasm, mitochondria, peroxi-
somes, and endoplasmic reticulum [2]. While cells suffer from oxidative stress, ROS are
produced from the respiratory chain, leading to electron transfer. The superoxide radical
(O2
•−), which dismutates from hydrogen peroxide (H2O2) and molecular oxygen (O2), is

a toxic compound following ROS stimulation [3,4]. Oxidative stress causes cell damage
through three mechanisms: lipid peroxidation of membranes, oxidative modification of
proteins, and DNA damage [5]. In the challenge of physical stresses like genotoxic stress
and viral infection, ROS and reactive nitrogen species (RNS), as the intracellular signal
transducers, may lead to autophagy, which is a catabolic process by damaging organelles
and recycling cellular components [6].

Because of this, the results might cause aging and many human diseases, such as
cancer, cardiovascular disease, metabolic disease, and infectious disease [7].

1.2. Endothelium

The endothelium exists in blood vessels, lymphatic vessels, and cornea. In this review
article, we mainly discuss the endothelium in blood vessels. The arterial vessel is outlined
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by three distinct layers. The first layer is the tunica intima, a single layer of squamous en-
dothelial cells, covering the internal surface of vessels; the second layer is the tunica media,
which comprises vascular smooth muscle cells (VSMCs); and the final layer is the tunica
adventitia, an elastic lamina with terminal nerve fibers and surrounding connective tissue.
The endothelium [8] plays an extensive variety of essential roles in the control of vascular
function, not only as a barrier between blood and tissues but also as an endocrine organ.
The functions of the endothelium are as follows: (1) maintaining the balance between
coagulation and fibrinolysis to provide the proper hemostatic balance [9]; (2) regulating
coagulation [10,11]; (3) platelet adhesion and aggregation; (4) inflammation [12], (5) leuko-
cyte activation, adhesion, and transmigration [13,14]; (6) regulating the regional blood flow
to maintain the vascular tone and growth [15]; and (7) control of cell proliferation and
angiogenesis [16].

In the normal vascular endothelium, high levels of nitric oxide (NO) and prostacyclin
(PGI2) [17] and low levels of ROS, uric acid, endothelin-1 (ET-1), and angiotensin II (Ang II)
contribute to endothelium-dependent vasodilatation [18]. The levels of inflammation-related
factors, such as C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6
(IL-6), soluble intercellular adhesion molecule (sICAM), soluble vascular cell adhesion
molecule (sVCAM), and E-selectin, are low in physical conditions as well. When it comes
to the anticoagulative status in the endothelium, levels of von Willebrand factor (vWF),
plasminogen activator inhibitor-1 (PAI-1), and P-selectin are low [19,20].

1.3. Mitochondria

Mitochondria are important for energy metabolism [21]. The mitochondrial respira-
tory chain, which takes place in the inner mitochondrial membrane, is vital for energy
metabolism. It is made of five compounds (complex I, II, III, IV, and V) [22], which catalyze
the phosphorylation of ADP to ATP by electron transfer between them [23]. In 1956, Den-
ham Harman first mentioned that free radicals, as by-products of the normal metabolism
of mitochondria, attack cell constituents [24]. The following studies also suggest that intra-
cellular ROS production is caused by the mitochondria. The production of mitochondrial
superoxide radicals occurs primarily at complex I (NADH) and complex III (ubiquinone-
cytochrome c reductase) [25]. In complex I, the electron transport chain of NADH and
FADH2 transfers electrons to oxygen and hydrogen, and ROS or RNS production might
occur during these electron transport steps. Under the general metabolic status, complex
III is the main place of ROS production [26].

Mitochondria are also involved in several cellular processes, such as signaling through
mitochondrial ROS (mtROS) [27], regulation of calcium storage [28], steroid generation [29],
cellular differentiation, mitophagy, and apoptosis [30]. These functions maintain and
control the cell cycle, cell growth, and cell death. The cytosolic Ca2+, which is released by
the endoplasmic reticulum, is internalized by mitochondria via the uniporter and released
by Na+/Ca2+ or H+/Ca2+ exchangers [31]. In both the intermembrane space and the matrix
of mitochondria, while Ca2+ is taken up, it regulates the activity of transporters, enzymes,
and proteins involved in organelle metabolism [32]. Steroidogenesis is a multistep process
for biosynthesis of steroid hormone from cholesterol. Mitochondria-associated endoplasmic
reticulum membranes (MAMs) play important roles in regulating steriodogenesis and
maintain many cellular functions, including lipid metabolism, calcium signaling, and
apoptosis [33]. During the cell cycle, mitochondrial membrane permeabilization (MMP)
is mainly the decisive event in cell death through the release of catabolic hydrolases and
enzymes [30].

1.4. Salvia miltiorrhiza

Salvia miltiorrhiza (SM) belongs to the Lamiaceae family and is a traditional Chinese
medicine (TCM), also known as Danshen, in its Chinese name. SM is widely used for the
treatment of circulatory diseases, including cardiovascular and cerebrovascular diseases.
It has multiple biological functions, such as antioxidative stress, anti-inflammation, and
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antithrombosis. Based on previous studies, there are more than 49 diterpenoid quinones,
and over 36 water-soluble phenolic acids and 23 essential oil components have been
identified and isolated from SM [34].

The predominant bioactive compounds in SM contain two major groups of chemi-
cals. One group includes lipophilic compounds (terpenoids), such as tanshinone I (Tan I),
tanshinone IIA (Tan IIA), acetyltanshinone IIA, cryptotanshinone, isocryptotanshinone, di-
hydrotanshinone, 15,16-dihydrotanshinone I, and miltirone. These terpenoids exhibit a spec-
trum of potential biological activities, including antioxidant, antibacterial, anti-inflammatory,
antiatherogenic, neuroprotective, antitumor, and antidiabetic effects. The other group in-
cludes hydrophilic phenolic acids, such as caffeic acid, danshensu, salvianolic acid A (SalA),
salvianolic acid B (SalB), lithospermic acid, and lithospermic acid B. These polyphenol struc-
tures protect the cardiovascular system via ROS scavenge, leukocyte–endothelial adherence
reduction, aortic smooth muscle cell inflammation, and metalloproteinase expression in-
hibition, as well as competitive binding of salvianolic acids to target proteins to interrupt
protein–protein interactions [35]. Our previous population-based studies also revealed that
SM is the most commonly used TCM for ischemic heart disease [36] and ischemic stroke [37]
treatment. Wang et al. [38] reviewed 39 clinical trials using SM treatment for cardiovascular
diseases and the conclusions supported that SM had beneficial therapeutic properties for
cardioprotective effects through different cell signaling pathways. Several reviews have
also provided the same conclusions not only in cardiovascular disease [39,40] but also in
metabolic syndrome patients [41].

Mitochondrial oxidative stress may lead to endothelial dysfunction, which is known to
be associated with cardiovascular disease and aging. We review current studies in this field
to show the mechanisms of SM in protecting endothelial dysfunction against mitochondrial
oxidative stress.

2. Monograph of Mitochondrial Oxidative Stress, Endothelial Dysfunction, and
Salvia miltiorrhiza
2.1. Mitochondrial Oxidative Stress

Mitochondria are one of the main sources of oxidative stress, as they use oxygen for
energy production. ROS and RNS, generated by tightly regulated enzymes, are involved in
many processes of normal physiology, such as signaling transferring pathways, induction
of mitogenic response, and defense against pathogens. Excessive stimulation of NAD(P)H
and the electron transport chain leads to the overproduction of ROS, which results in
oxidative stress (Figure 1). Once oxidative stress is induced, it causes irreversible injury
to proteins, lipids, and mitochondrial nucleic acid components, leading to the release of
cytochrome c in the cytosol, which in turn causes apoptosis. These have been considered to
be the main causes of many diseases, including neurodegenerative diseases [42], malignant
tumor, ischemic heart disease, and diabetes [7].

Mitochondrial dysfunction triggered by any pathological situation can lead to a
significant increase in ROS levels. For instance, hypoxia is the deficiency of oxygen,
which is the terminal acceptor of electrons from the electron transport chain. Moreover,
xenobiotics or their metabolic by-products can also lead to mitochondrial dysfunction
through many kinds of mechanisms [43,44].

The basis of the free radial theory for aging in mitochondria is related to oxidative
stress, which leads to mitochondrial DNA mutations. The accumulation of mitochon-
drial DNA mutations causes oxidative phosphorylation malfunction, and imbalanced
antioxidant enzymes leads to overproduction of ROS and the formation of a vicious cy-
cle [31]. Oxidative stress also deranges the mitochondrial respiratory chain, affects Ca2+

homeostasis [32,45], and influences membrane permeability and mitochondrial defense
systems. It not only occurs in aging and age-related disorders, but also in cancer [5].
The by-products of lipid peroxidation can induce carcinogenesis. Mutations in complex I
subunit dehydrogenase subunit 6 (ND6) increase the metastatic potential by producing
excessive ROS, whereas an ND5 mutation enhances tumorigenesis by oxidative stress and
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Akt (also known as protein kinase B) activation [46,47]. Recent studies have also shown
that increased mitochondrial fission is a pro-tumorigenic phenotype [44].
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Figure 1. ROS/RNS formation during the electron transfer chain in the inner membrane of mitochon-
dria. Complex III is the main site of ROS production. ROS, reactive oxygen species; RNS, reactive
nitrogen species; e−, electron; Q, coenzyme Q; Cyc C, cytochrome c; SOD, superoxidase dismutase.

Cytochrome c oxidase (CcO), the terminal oxidase of the mitochondrial electron
transport chain, is a highly regulated enzyme that is involved in mitochondrial oxidative
metabolism and ATP synthesis. CcO dysfunction shows a consistently positive association
with increased mitochondrial ROS production and cellular toxicity [43].

Mitochondrial membrane permeabilization (MMP) is an important event in pathologi-
cal cell death induced by ischemia/reperfusion, xenobiotic intoxication, neurodegenerative
disease, and viral infection. Inhibition of MMP constitutes an important strategy for the
pharmaceutical prevention of unwarranted cell death. In contrast, the induction of MMP
in tumor cells constitutes the goal of anticancer chemotherapy [30].

In cancer cells, quality control and biogenesis are often upregulated in mitochondria.
Several pathologies and adverse environmental conditions disrupt mitochondrial function
in multiple ways, such as MtDNA mutations, deletions, or impaired DNA replication. A
few cancers produce oncogenic metabolites via mutations in nuclear-encoded mitochon-
drial tricarboxylic acid (TCA) cycle enzymes; in contrast, there is negative selection for
pathogenic mitochondrial genome mutations [48].

2.2. Endothelial Dysfunction

Alterations in endothelial cells and vasculature play an important role in the patho-
genesis of human vascular diseases, such as coronary heart disease, peripheral vascular
disease, stroke, venous thrombosis, diabetes, tumor growth, and metastasis [20]. Endothe-
lial dysfunction includes impaired vasodilation with decreased vascular repair capacity,
increased oxidative stress, uric acid formation, increased lipid peroxide radicals, high
levels of nitrotyrosine, enhanced procoagulant phenotype, enhanced proinflammatory
phenotype, and increased endothelial microparticles and circulating endothelial cells [20].
Elevation of circulating endothelial cells (CECs) and reduction of endothelial progenitor
cells (EPCs) are potential diagnostic biomarkers for endothelial dysfunction and they have
been described in different kinds of cardiovascular diseases. CECs are mature cells that
are shed from blood vessels and are rare in normally present but increased in endothelial
dysfunction. The circulating endothelial progenitor cells, which arise from the bone mar-
row, are non-differentiated and immature endothelial cells, and contribute to the repair
and renewal of damaged endothelium [49]. One study concluded that the CEC level is a
more sensitive marker for vascular damage compared to the EPC level, which might be
increased secondarily as a repair mechanism due to more severe vascular damage [50].
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In the pathogenesis of atherosclerosis, multiple stimuli, such as oxidized low-density
lipoproteins (LDLs), high glucose level, uric acid, and homocysteine, damage the integrity
of the vascular endothelium, cause vessel leakage, increase leukocyte adhesion to the
clammy endothelium, induce VSCM contraction, lead to endothelial nitric oxide synthase
(eNOS) uncoupling, and decrease NO production [51].

Several studies showed an impairment of endothelial function in both macro- and
microvascular complications due to hyperglycemia in both animal models and human
participants [52–54]. Hyperglycemia results in oxidative stress via an increase of the
production of ROS and RNS, and affects vascular homeostasis by impairing vasorelaxation
and increasing vasoconstriction, eventually inducing endothelial dysfunction. Advanced
glycation end products (AGEs) also induce decreased NO synthesis, eNOS expression, and
increased ET-1 expression, leading to endothelial dysfunction [55,56]. The oxidative stress
in endothelial cells is shown in Figure 2.
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physical function.

Under the situation of endothelial dysfunction, inflammatory and procoagulant
biomarkers, such as IL-6, TNF-α, PAI-1, D-dimer, and vWF, are increased in diabetic
patients with micro- and macrovascular complications, including cardiovascular disease or
nephropathy [54]. These proinflammatory cytokines are also important for angiogenesis
and migration of endothelial cells [57]. It is interesting that TNF-α regulates both pro- and
antiangiogenic properties and interacts with two distinct transmembrane receptors: tumor
necrosis factor receptor 1 (TNFR1) and tumor necrosis factor receptor 2 (TNFR2). TNFR1 is
related to differentiation, cell death, and apoptosis, while TNFR2 cell maintains cell sur-
vival and proliferation. A recent report showed that human EPCs are immunosuppressive
and this effect was TNF-α/TNFR2 dependent [58,59].

Endothelial dysfunction of vessels was characterized by increased blood levels of
vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), P-selectin (PSel), homo-
cysteine (Hcys), nitrites (NO2), and cyclic guanosine monophosphate (cGMP), as well as
decreased PGI2 values. These indices of increasing VEGF and ET-1 and decreasing PGI2
were observed in most lung cancer cases. Disturbances of vascular endothelial function
were associated with the patient’s age, disease duration, morphological form, and lung can-
cer stage [60]. Angiotensin II (Ang II), as a powerful vasoconstrictor for controlling blood
pressure and vascular remodeling, has also been shown to have important inflammatory
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and oxidative actions in the endothelium [61,62]. Ang II promotes apoptosis in endothelial
cells by generating ROS, increasing NADPH oxidase (Nox) activity in endothelial cells,
and enhancing superoxide production via AT1R and AT2R [63,64].

Endothelial cells are coupled with malignant tumor cells in almost every stage of the
metastatic steps, including infiltration of cancer cells into the nearby tissue; endothelial
transmigration, also calls “intravasation”; survival in the blood stream; and extravasation
followed by colonization of the target organ. Dysfunctional blood vessels within the tumor
are heterogeneous and highly permeable, resulting from the activity of factors, such as
hypoxia and chronic growth factor stimulation [65]. Cancer metastasis and secondary
tumor initiation largely depend on circulating tumor cells and vascular endothelial cell
interactions. Endothelial glycocalyx (GCX) dysfunction may play a significant role in this
process [65,66]. One study showed that microvascular endothelial dysfunction, as defined
by a reactive hyperemia peripheral arterial tonometry index ≤2.0, was associated with
an increase of over two times the risk of solid tumor cancer. Besides its known ability to
predict cardiovascular disease, microvascular endothelial dysfunction may be a useful
index for solid tumor cancer prediction [67].

2.3. Salvia miltiorrhiza and Mitochondrial Oxidative Stress

Various oxidases, including xanthine oxidase, uncoupled NOS, cytochrome P450 en-
zymes, and mitochondrial and NADPH oxidases (Nox), produce superoxide, which is toxic
via univalent reduction [68,69]. Superoxide dismutases (SODs) are the major antioxidant
enzymes that degrade superoxide to the more stable ROS, H2O2, which is then converted to
water and oxygen by either catalase or glutathione peroxidase (GPx) [70]. There are three
isoforms of SOD in mammals: cytoplasmic Cu/ZnSOD (SOD1), mitochondrial MnSOD
(SOD2), and extracellular Cu/ZnSOD (SOD3) [71].

SM may reduce ROS production by inhibiting oxidases, reducing the production of
superoxide, inhibiting the oxidative modification of low-density lipoproteins (LDLs), and
ameliorating mitochondrial oxidative stress. SM also increases the activities of catalase,
manganese SOD, GPx, and eNOS [72]. In a previous study, SM hydrophilic extract could
reverse the induction of vascular endothelial growth factor (VEGF) expression by high
glucose levels through mitigation of mitochondrial oxidative stress [73].

The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related
factor 2 (Nrf2) system is central for mammalian cyto-protection against electrophilic and
oxidative stress [74]. In acetaminophen-induced hepatocyte injury, one study found that
the component salvianolic acid C exhibits a protective effect by ameliorating inflammatory
response, caspase-mediated anti-apoptotic effects, and mitochondrial oxidative stress
through inhibition of the Keap1/Nrf2/heme oxygenase-1 (HO-1) signaling axis [75].

Malondialdehyde (MDA) is one of the final products of polyunsaturated fatty acid
peroxidation in the cells. An increasing MDA level is recognized as a relevant biomarker of
oxidative stress with free radical overproduction [76,77]. In neurological areas, glutamate
excitotoxicity is related to several diseases, including cerebral ischemia and neurodegen-
erative diseases. One study [78] revealed that Tan IIA could suppress glutamate-induced
oxidative stress by reducing ROS levels and MDA, and by increasing the activities of
SOD and catalase. Tan IIA prevents glutamate-induced mitochondrial dysfunction by
enhancing the mitochondrial membrane potential and ATP content, and by decreasing the
mitochondrial protein carbonyl content. Furthermore, Tan IIA can suppress glutamate-
induced apoptosis through regulation of apoptosis-related protein expression, including
an elevation of B cell lymphoma 2 (Bcl-2) protein levels, reduction of Bcl-2-associated X
(Bax) and cleaved caspase-3 levels, and suppression of Jun N-terminal kinase (JNK)1/2,
and furthermore, p38 mitogen-activated protein kinase (MAPK) activation [79].

Tan IIA administration resulted in a significant decrease in the mitochondrial fusion
proteins, mitofusin (Mfn) 1/2 and Optic atrophy 1 (Opa1), as well as an increase in the
fission protein dynamin-related protein 1 (Drp1) in human osteosarcoma cells [80].
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2.4. Salvia miltiorrhiza in Endothelium Dysfunction

Dihydrotanshinone, cryptotanshinone, Tan I, and Tan IIA, as new acetylcholinesterase
(AChE) inhibitors, have the potential to penetrate the blood–brain barrier and may be used
to treat Alzheimer’s disease [81].

Dihydrotanshinone exerts a vasorelaxant effect by inhibiting Ca2+ influx in VSMCs,
and it is independent of pathways involving the endothelium, muscarinic receptors, beta-
adrenoceptors, adenylyl cyclase, and guanylyl cyclase [82].

Cryptotanshinone (CTS) possesses anti-inflammatory properties by suppressing the
TNF-α-induced increase in endothelial permeability, monocyte adhesion, intercellular
cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and
monocyte chemoattractant protein-1 (MCP-1), and restoring NO production [83]. CTS
significantly inhibited sodium-nitroprusside (SNP)-induced cell toxicity and the genera-
tion of ROS and RNS, and improved the mitochondrial membrane potential (MMP) in
neuro-2a (N2a) cells. CTS significantly inhibited SNP-induced peroxidation of lipids and
proteins and the expression of glutamate-cysteine ligase catalytic subunit (Gclc) mRNA.
CTS elevated Akt and cyclic AMP response element-binding protein and further blocked
SNP-induced activation of nuclear factor-kappa B (NF-κB), extracellular signal-regulated
kinase (ERK)1/2, and JNK/MAPK pathways. Additionally, the increase in the mitochon-
drial Bax/Bcl-2 ratio, activation of cytosolic procaspase-3, and release of cytochrome c from
mitochondria to the cytosol were significantly reduced by CTS [84].

Tan IIA reduced intracellular oxidative stress and increased NO generation by restor-
ing high glucose-induced eNOS uncoupling by targeting the NADPH oxidase, heat shock
protein 90 (HSP90) [85], GTP cyclohydrolase-1 (GTPCH1) [86], dihydrofolate reductase
(DHFR) [87], and Phosphoinositide 3-kinases (PI3K) pathways [88,89]. Endothelial injury
and subsequent atherogenic events may be provoked by chronic oxidative stressors like
H2O2 and methylglyoxal. Tan IIA has the potential to stabilize atherosclerotic plaques
by inhibiting LDL oxidation, monocyte adhesion to the endothelium, smooth muscle cell
migration and proliferation, macrophage cholesterol accumulation, proinflammatory cy-
tokine expression, and platelet aggregation [90]. In vivo, the atherosclerotic change region
decreases by 3.5 times after Tan IIA treatment. Intracellular chloride channel 1 (CLIC1) is in-
volved in the oxidative stress and inflammatory process. Tan IIA reduced MDA production,
increased SOD activity, decreased TNF-α and IL-6 levels, and suppressed the expression
of CLIC1, ICAM-1, and VCAM-1 in atherosclerotic mice. In vitro, the antioxidative and
anti-inflammatory effects of Tan IIA were dose dependent, further confirming this result.
Moreover, CLIC1 depletion abolished the Tan IIA-mediated decrease in ROS and MDA
production in human umbilical vein endothelial cells (HUVECs). Additionally, Tan IIA
inhibited both CLIC1 membrane translocation and the chloride ion concentration [91].

The endothelial protective effects of Tan IIA derivatives enhanced efficacy against
H2O2-induced injury via Nrf2 activation and excellent hydrophilic activity [92]. CD31, also
known as platelet endothelial cell adhesion molecule (PECAM-1) [93], was suppressed
in Tan IIA-treated xenografts, indicating antineovascularization. Tan IIA facilitates Bcl-2
translocation to the mitochondrial outer membrane, prevents mitochondrial permeability
transition pore opening, decreases cytochrome c release, prevents caspase-3 activation, and
restrains apoptosis [94].

Ursolic acid, an aqueous extract of SM, also reduced the expression of the NADPH ox-
idase subunit Nox4 and suppressed the production of ROS in human endothelial cells [95].
The vasodilatation mechanisms of SM aqueous extract and salvianolic acid B were pro-
duced by the inhibition of Ca2+ influx in VSMCs. The opening of K+ channels had a
minor contribution to their effects, but endothelium-dependent mechanisms were not
involved [96].

Salvianolic acid A (SalA) treatment inhibited the toll-like receptor 4 and nuclear factor
kappa B pathway, and prompted a lowering of proinflammatory mediators including
IL-1β, IL-6, TNF-α, ICAM-1, and VCAM-1. In addition, SalA treatment significantly
decreased oxidative stress by increasing antioxidant enzyme activity, upregulating the
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nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway, and downregulating
the expression of p47phox and p22phox in vivo. p47phox, known as neutrophil cytosol
factor 1, relates to activation of NADPH oxidase and is required for atherosclerosis lesion
progression in ApoE−/− mice [97,98]. p22phox, also known as the human neutrophil
cytochrome b light chain, is an essential component of the membrane-associated enzyme
phagocyte NADPH-oxidase and exists in endothelial and vascular smooth muscle cells.
Furthermore, SalA suppressed oxidized LDL-induced expression of lectin-like oxidized
LDL receptor-1, the phosphorylation of nuclear factor kappa B (p65), ICAM-1, and VCAM-
1, and inhibited NADPH oxidase subunit 4-mediated ROS generation in HUVECs [99].
SalA protects HUVECs against tert-butyl hydroperoxide-induced oxidative injury via
a mitochondria-dependent pathway [100]. SalA inhibits endothelial dysfunction and
vascular remodeling in spontaneously hypertensive rats. Therefore, Sal A could be a
potential drug therapy to prevent further targeted organ damage induced by vascular
remodeling [101].

Salvianolic acid B (SalB) prevents oxidative stress-induced endothelial dysfunction
by downregulating Nox-4, eNOS, and nicotinamide adenine dinucleotide phosphate
(NADPH)-oxidase expression. During apoptosis, mitochondria take over multiple apop-
totic signals. The Bcl-2 family of proteins regulate the promotion or inhibition of apop-
tosis [102]. Bax and Bak, as proapoptotic members, result in the release of cytochrome
c from mitochondria [103], whereas Bcl-2 and Bcl-extra large (Bcl-xL) are the common
antiapoptotic proteins that promote cell survival [104]. SalB decreased the Bax/Bcl-xL
ratio and caspase-3 activation after H2O2 induction. One study revealed that activation
of the mTOR/p70S6K/4EBP1 pathway is required for both SalB-mediated angiogenic
and protective effects against oxidative stress-induced cell injury in human bone marrow-
derived endothelial progenitor cells (BM-EPCs). SalB suppress mitogen-activated protein
kinase 3 and 6 (MKK3/6)-p38 MAPK-ATF2 and ERK1/2 signaling pathways, reduces
intracellular ROS levels and apoptosis, and further protects BM-EPCs against oxidative
stress-related cell injury [105]. Sal B decreased the Ang II-induced elevation of arterial
systolic blood pressure in mice, increased the impaired endothelium-dependent relaxation,
and attenuated the endothelium-dependent over-contractions in both the aorta and renal
arteries of Ang II-infused mice. Furthermore, Sal B treatment stabilized the elevating AT1
receptors, NADPH oxidase subunits (Nox-2 and Nox-4), and nitrotyrosine in the arteries of
Ang II-infused mice or in Ang II-treated HUVECs [106] (Table 1).

Table 1. The antioxidative mechanisms of Salvia miltiorrhiza.

Bioactive Compounds Preventing Mechanism Reference

SM
↓ ROS, O2

•−

	 oxidases, oxLDL, and ameliorating mitochondrial oxidative stress.
↑ catalase, SOD, GPx, and coupled eNOS

[72]

SM hydrophilic extract
	 VEGF expression, Ca2+ influx in VSMC

⊕ vasorelaxant
ameliorating mitochondrial oxidative stress

[73]

Salvianolic acid A

↑ SOD, Nrf2/HO-1 pathway
↓ IL-1β, IL-6, TNF-α, ICAM-1, VCAM-1

	 TLR4/NF-κB pathway, oxLDL, p47phox and p22phox, LOX-1, NF-κB p65
phosphorylation, Nox4

[99]

Salvianolic acid B

↓ Nox4, eNOS
	 Ca2+ influx in VSMC, Bax/Bcl-xL ratio, caspase-3, MKK3/6-p38

MAPK-ATF2 and ERK1/2 signaling pathways
⊕ vasorelaxant, mTOR/p70S6K/4EBP1 pathways

[96,105]

Salvianolic acid C ↓ Inflammation, oxidative Stress, and apoptosis
	 Keap1/Nrf2/HO-1 signaling axis [75]

Ursolic acid ↓ Nox4, ROS [95]
Tanshinone I 	 AChE [81]
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Table 1. Cont.

Bioactive Compounds Preventing Mechanism Reference

Tanshinone IIA

↑ Bcl-2, mitochondrial membrane potential and ATP, SOD, catalase, NO, ratio
of BH4 to BH2, Drp1

↓ ROS, Bax, caspase-3, eNOS uncoupling, atherosclerotic lesion, MDA, Mfn1/2
and Opa1, cytochrome c release

⊕ HSP90, GTPCH1, DHFR, Nrf2, 14-3-3η
	 JNK, p38 MAPK, AChE, O2

•−, Nox4, PI3K, LDL oxidation, monocyte
adhesion, SMC migration and proliferation, macrophage cholesterol

accumulation, proinflammatory cytokine expression, platelet aggregation,
CLIC1, ICAM-1, VCAM-1, CD31, mitochondrial permeability transition

pore opening

[78–81,88,91,92,94]

Dihydrotanshinone 	 Ca2+ influx in VSMC, AChE [81,82]

Cryptotanshinone
	 AChE, TNF-α

↓ endothelial permeability, monocyte adhesion, ICAM-1, VCAM-1 and MCP-1
⊕ NO

[81,83]

↑: increase; ↓: decrease; 	: inhibit; ⊕: promote SM, Salvia miltiorrhiza; ROS, reactive oxygen species; oxLDL, oxidized low-density lipopro-
tein; SOD, superoxide dismutase; GPx, glutathione peroxidase; VEGF, vascular endothelial growth factor; AChE, Acetylcholinesterase;
BH4, tetrahydrobiopterin; BH2, 7,8-dihydrobiopterin; HSP90, heat-shock protein of 90 kDa; GTPCH1, GTP cyclohydrolase-1; DHFR,
dihydrofolate reductase; VSMC, vascular smooth muscle cells; IL-1β, interleukin-1β; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α;
ICAM-1, intercellular cell adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; TLR4/NF-κB, toll-like receptor 4/nuclear
factor kappa B; LOX-1, Lectin-like oxidized low-density lipoprotein receptor-1; NO, nitric oxide; O2

•−, superoxide; SMC, smooth muscle
cell; MDA, malondialdehyde; CLIC1, Intracellular chloride channel 1; Nrf2, nuclear fac-tor (erythroid-derived 2)-like-2 factor; Drp1,
dynamin-related protein 1; Opa1, Optic atrophy 1; Mfn1/2, Mitofusin 1/2.

3. Conclusions

Through this review, we found that SM has antioxidative, anti-inflammatory, and
antithrombotic effects. SM can decrease ROS formation in the mitochondria, preventing
endothelial cell dysfunction. Endothelial dysfunction may be related to many cardiovascu-
lar and cerebrovascular diseases, such as stroke, acute myocardial infarction, peripheral
vascular disease, and Alzheimer’s disease. Both lipophilic and hydrophilic components of
SM can protect the endothelium against mitochondrial oxidative stress. More research is
needed to discover the mechanism of SM in preventing oxidative stress in the endothelium.
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