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Abstract

Since the outbreak of SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, the viral genome has acquired numerous
mutations with the potential to alter the viral infectivity and antigenicity. Part of mutations in SARS-CoV-2 spike protein has
conferred virus the ability to spread more quickly and escape from the immune response caused by the monoclonal
neutralizing antibody or vaccination. Herein, we summarize the spatiotemporal distribution of mutations in spike protein,
and present recent efforts and progress in investigating the impacts of those mutations on viral infectivity and antigenicity.
As mutations continue to emerge in SARS-CoV-2, we strive to provide systematic evaluation of mutations in spike protein,
which is vitally important for the subsequent improvement of vaccine and therapeutic neutralizing antibody strategies.
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Introduction
The coronavirus disease 2019 (COVID-19), caused by a single-
stranded RNA virus called severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2), has become a pandemic disease
globally [1–4]. By 25 July 2021, nearly 194 million cases of COVID-
19 have been reported. What’s more, the number of COVID-
19 cases remains at the high level with over 3.8 million new
weekly cases according to the World Health Organization (WHO)
[5]. COVID-19 is a type of acute respiratory disease with varied
manifestations such as mild infection, pneumonia, lung failure
and even death [2]. As early as 30 January 2020, the WHO declared
COVID-19 as the sixth public health emergency of international
concern. Therefore, the epidemic status of COVID-19 requires
global cooperation to prevent its spread.

SARS-COV-2 is a new RNA virus strain belonging to the coron-
aviridae family, its whole genome consists of 29 903 nucleotides
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and shares a higher nucleotide sequence identity to a bat coro-
navirus RaTG13 (96.2%) rather than SARS-CoV (79.6%) [1, 6]. The
genome of SARS-CoV-2 encodes four structural proteins includ-
ing spike (S), envelope (E), membrane (M) and nucleocapsid (N)
[7]. Among those proteins, the spike protein is a type I fusion
protein that forms trimers on the surface of the virus and
mediates the process of coronavirus entering into host cells [8].
It can be cleaved by the protein convertase furin at the S1/S2 site
and the transmembrane serine protease 2 (TMPRSS2) at the S2′

site into S1 and S2 functional subunits [9]. S1 subunit contains
multiple domains including N-terminal domain (NTD), inter-
mediary domain (IND), C-terminal domain (CTD) and receptor-
binding domain (RBD) [10], and it is responsible for binding to
the host cell receptor (including ACE2 [8, 11], neuropilin-1 [12]
and CD-147 [13]) or cathepsin L/B in the endosome pathway. The
S2 subunit is responsible for the fusion of the viral and cellular
membranes [11]. As the spike protein is surface-exposed and
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mediates the process of coronavirus entering into host cells,
it is the main target of neutralizing antibodies (Abs) and the
most promising source of antigens for vaccine design [8]. Several
monoclonal antibodies (mAbs) [14–18] and vaccines [19–21] have
been developed according to the sequence of initial SARS-CoV-
2 strain, which have been proved to inhibit viral replication
and alleviate severe clinical symptoms effectively. Most of the
monoclonal antibodies and neutralizing antibodies induced by
infection or vaccination inhibit the viral by blocking the binding
of spike protein to its receptor [22–25].

As SARS-CoV-2 uses an intrinsically error-prone RNA poly-
merase for replication, it has a relatively higher mutation rate
than DNA viruses [7]. SARS-CoV-2 has accumulated a consider-
able amount of mutations in spike protein during the spread
of COVID-19 [26]. The great majority of those mutations are
either ineffective or detrimental to some aspect of virus function
and removed by natural selection [27]; however, there are still
some mutations in spike protein that have been reported to
significantly alter virus infectivity and antigenicity [7, 28]. The
mutations in spike may promote the viral fitness by increasing
the binding affinity to the hACE2 or conferring virus resistance to
immune response induced by mAbs and vaccination (Figure 1).
Consequently, these mutations bring great challenges to the
prevention of COVID-19 and the development of mAbs and
vaccines. Here, we summarize the spatiotemporal distribution
of mutations in SARS-CoV-2 spike protein, and present recent
efforts and progress in investigating the impact of mutations on
viral infectivity and antigenicity.

The spatiotemporal distribution of mutations in
SARS-COV-2 spike protein

As of 1 June 2021, a total of 1 750 995 SARS-CoV-2 spike protein
sequences were available in GISAID, which were used to char-
acterize the spatiotemporal distribution of mutations in spike
protein. As is shown in Figure 2A, the mutations leading to an
amino acid change in spike protein show a steady increase
with each passing month. The mutations in spike protein were
uncommon at the beginning of the pandemic. By contrast, the
spike protein harbored an average of 10.24 ± 1.58 mutations
according to the new cases reported in May 2021. There were
as high as 6166 mutations in spike protein and their occur-
rence is in long-tail distribution (Figure 2B), which means most
mutations are specific existed in few SARS-CoV-2 strains and a
few mutations tend to occur frequently during the epidemic. It
coincides with the fact most mutations happened to appear and
are little to no impact on the virus’ properties. However, a few
mutations with relatively high mutation frequency may promote
the virus’ properties, such as infectivity, disease severity or the
performance of mAbs, convalescent plasma and vaccines.

To uncover the evolution of mutations along with virus
spread, we delineated the mutation frequencies of the cur-
rent 30 most common mutations (May 2021). As Figure 2C
(Supplementary Table S1) shows, D614G is the first mutation
that attracted worldwide attention and has become the most
prevalent mutation since its appearance. In addition to D614G,
both N501Y, P681H, T716I, S982A, D1118H, A570D, 70del and
144del show higher mutation frequency than other mutations.
Both of them are the characteristic mutations of B.1.1.7 lineage
[29], and the increase of their frequency is consistent with the
outbreak of B.1.1.7 lineage. According to mutation data, B.1.1.7
has become the most dominant lineage of SARS-CoV-2 by far.
What’s more notable is that the frequency of some mutations
(including L453R, E484K, T95I, etc.) continue to rise in recent

months, which is associated with the spread of other lineages
(especially B.1.617.2) [30]. The L18F maintains a higher frequency
during the latter half of 2020; however, its frequency starts
to descend with the pandemic of B.1.1.7 lineage. To further
characterize the present situation and spatial distribution
of mutations, we calculated the frequencies of mutations
among different countries with more than 100 samples during
May 2021 (Figure 2D and Supplementary Table S2). B.1.1.7
characteristic mutations are widely distributed in all countries.
On the contrary, the distribution of some mutations shows a
degree of region specific. For example, B.1.617.2 characteristic
mutations show a relatively high frequency in UK and Japan,
P.1 characteristic mutations are mainly distributed in Canada,
Mexico, the USA and Italy. W152R is still in part of Denmark
strains.

The method of evaluating the mutation impact

Molecular dynamics simulation

Molecular dynamics (MD) is a computer method to analyze the
equilibrium and transport properties of a classical many-body
system by simulating real experiments [31, 32]. At the early
stage of covid-19 epidemics, molecular dynamic simulations
revealed that SARS-CoV-2 spike protein mediates a higher recep-
tor affinity compared with SARS-CoV [33, 34]. Along with the
emergence of mutation, molecular dynamics simulations have
been utilized to elucidate its infectivity and antigenicity changes
by calculating the binding free energy between spike protein
and ACE2 or mAbs [35–37]. For example, the MD simulations
of spike-ACE2 complexes revealed that five mutations (A348T,
V367F, G476S, V483A and S494P) in the receptor binding domain
of spike protein alter the binding affinity of RBD with ACE2
[36]. Meanwhile, the MD simulations of spike-mAbs complexes
have been used to explore the structural mechanisms under the
neutralization activity change of mAbs [37].

Those MD findings are in congruence with the experimental
results and provide insights into the infection and neutralization
processes at the molecular level [35]. Significantly, as the SARS-
CoV-2 virus is expected to continue evolving in populations,
molecular dynamics simulation is characteristic of high speed
and low cost, which is especially suitable for high throughput
screening of high-risk mutations in spike protein.

Pseudotyped virus system

SARS-CoV-2 is highly pathogenic in humans and has been clas-
sified as a biosafety level 3 (BSL3) pathogen according to WHO
guidelines, impeding the basic research on live viruses [38]. The
pseudotyped virus system has been developed to overcome this
limitation; it is a chimeric virus consisting of a surrogate virus
core surrounded by surface spike protein of SARS-CoV-2 [39, 40].
This single-cycle pseudovirus is much safer due to the absence
of virulent viral components [40].

By utilizing the pseudotyped virus system, a study has inves-
tigated the biological significance of 80 natural mutations and
found that most mutations show less infectious than wild-type
[7]. However, there are still some mutations conferring virus
resistance against several neutralizing antibodies and enhanced
binding with ACE2 [7, 41–46], which bring serious challenges to
current prevention, antibody therapies and vaccine protection.
The SARS-CoV-2 pseudotyped virus system can mimic the infec-
tious and neutralization process of the live virus [39, 47], making
it an ideal serological tool to study the impact of mutations in
vitro.
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Figure 1. The schematic of the impact of mutations on viral fitness, including enhancement of infectivity (top), escape from neutralizing antibodies (middle) and

reduction of vaccine protection (bottom).

Cryo-electron microscopy technology

Cryo-electron microscopy (cryo-EM) is a mainstream tool
for the structural visualization of biological macromolecular
complexes and has been used to shed light on the infection
and neutralization mechanisms of SARS-COV-2 [48, 49]. For
example, although D614G seems to reduce affinity for ACE2
due to its faster dissociation rate, the crystal structure of
spike protein trimer shows that D614G can induce more open
conformation of its RBD region and increase the infectivity on
human lung cells [10], which is consistent with the current
high frequency of D614G. Moreover, K417N can decrease the
neutralization activity of mAbs by reducing the polar contacts
with complementarity determining regions [50]. Therefore,
crystal structural studies, particularly on the conformational
state of the mutant spike protein, are paramount for the
mechanism studies of mutations on viral infectivity and
antigenicity.

The impact of mutations on SARS-CoV-2 infectivity and antigenicity

Four lineages (including B.1.1.7, B.1.351, P.1 and B.1.617.2 lin-
eages) have been officially classified as variants of concern
(VOCs) by the WHO because of their risk to global public health
[30, 51]. Those four lineages harbor a considerable amount of
mutations in spike protein and show different levels of trans-
missibility, clinical presentation and severity changes. Thus, we
mainly focus on the mutations in those lineages and review their
impact on SARS-CoV-2 infectivity and antigenicity.

Mutations in B.1.1.7 lineage

The B.1.1.7 lineage, which is also known as 501Y.V1, was dis-
covered in the UK as early as September 2020 [52]. It appears
to be better at spreading between people and accounts for an
increasing proportion of cases in parts of England (about 26% of
cases in mid-November [53]). Besides D614G, which has already
been found, the genomic of B.1.1.7 lineage has acquired other
17 mutations (14 non-synonymous mutations and 3 deletions)
all at once. Even more worrying, nine mutations are located in
spike protein (Table 1). Among those mutations, D614G appears
earlier than B.1.1.7 lineage, and its frequency has increased from
10 to 67% on March 2020 and become the most prevalent muta-
tion in the global pandemic (Figure 2C) [54]. More importantly,
D614G can enhance viral replication [55, 56], induce more open
conformation [10] and increase the infectivity of virus. Fortu-
nately, the D614G mutation does not decrease the neutralizing
activity of the antibodies induced by current vaccines [56–58]
and the monoclonal antibodies [56, 57]. The N501Y, located in
key residues of the ACE2-RBD interface, increases the binding
affinity of the SARS-CoV-2 spike to ACE2 by inserting into a cavity
at the binding interface [59, 60]. Most antibodies induced by vac-
cines and monoclonal antibodies retain the ability to neutralize
the N501Y mutant [45, 61–63], but there are still some vaccines
and monoclonal antibodies that show reduced neutralization to
N501Y [45, 63]. The 69-70del and 144del mutations lead to the
deletion of amino acids in the NTD and may allosterically change
the S1 conformation of spike protein, which show a decreased
susceptibility to convalescent plasma and vaccines [41, 64].
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Figure 2. The spatiotemporal evolution of common mutations in SARS-COV-2 spike protein. (A) The average number of mutations in S protein since the beginning of

the SARS-COV-2. (B) The distribution of occurrence number of mutations. (C) The mutation frequencies of current 30 most common mutations with the evolution of

SARS-CoV-2. (D) The frequencies of mutations among different countries during May 2021.

Mutations in B.1.351 lineage

The B.1.351 lineage (also termed 501Y.V2) emerged in early
August 2020 from South Africa. It spread rapidly and has become
the dominant lineage in some provinces within weeks [65].
B.1.351 contains 10 mutations in the spike protein including
the deletion of three amino acids in the NTD (242-244del), three

substitutions (K417N, E484K and N501Y) in the RBD region and
a substitution (A701V) near the furin cleavage site (Table 1) [44].
Recent studies find single N501Y mutation increases affinity
for ACE 2.7-fold, and the co-mutation of K417N, E484K and
N501Y further increase the affinity for ACE 19-fold [66, 67]. Even
more striking, B.1.351 is particularly resistant to monoclonal
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Table 1. The impact of mutations on viral infectivity and antigenicity in different SARS-CoV-2 lineages

SARS-CoV-2 lineages First detected region First detected time Characteristic mutations in spike

B.1.1.7 (501Y.V1, Alpha) UK Sep 2020 69-70dela, 144dela, N501Ya,b, A570D, D614Gb, P681H, T716I,
S982A, D1118H

B.1.351 (501Y.V2, Beta) South Africa Aug 2020 L18F, D80A, D215G, 242-244dela, R246I, K417Na,b, E484Ka,b,
N501Ya,b, D614Gb, and A701V

P.1 (501Y.V3, Gamma) Northern Brazil Dec 2020 L18F, T20N, P26S, D138Y, R190S, K417Ta, E484Ka,b, N501Ya,b,
D614Gb, H655Y, T1027I, and V1176F

B.1.617.2 (478 K.V1, Delta) India Dec 2020 T19R, G142D, 157-158del, L452Ra, T478K, D614Gb, P681R, and
D950N

Other lineages — — W152 substitutionsa, and N439Ka,b

aThe mutations decrease the susceptibility to mAbs, convalescent plasma or vaccines.
bThe mutations increase infectivity of the SARS-CoV-2.

antibodies, convalescent plasma and vaccines [41, 44, 68–70].
The 242-244del mutation shows resistance to neutralization
of most monoclonal antibodies targeting the NTD. Meanwhile,
three substitutions in the RBD region, especially E484K, confer
SARS-Cov-2 resistance to monoclonal antibodies targeting the
RBD region [41, 44]. The B.1.351 lineage potentially increases the
risk of infection in immunized individuals as it is less sensitive
or even insensitive to antibodies.

Mutations in P.1 lineage

The P.1 lineage (also termed 501Y.V3) was first reported in North-
ern Brazil and counted for about 42% located COVID-19 patients
in December 2020 [71], and it exhibited more transmissible and
led to a large wave of infection in Brazil [72]. The P.1 lineage con-
tains 12 mutations spread throughout spike protein and shows
a similar RBD mutation profile (K417T/N, E484K and N501Y)
with the B.1.351 lineage (Table 1) [66], which are of the main
concern because of their potential to alter viral infectivity and
antigenicity [73]. Studies have indicated that the P.1 lineage
increases affinity for ACE2 as that observed in B.1.351. E484K
improves the electrostatic complementarity and N501Y induces
a favorable ring stacking interaction with ACE2 [66]. Fortunately,
the P.1 lineage shows lower resistance to monoclonal antibodies,
convalescent plasma, and vaccines than the B.1.351 lineage.
K417T, E484K, and N501Y are key mutations in conferring the
P.1 lineage resistance to antibodies targeting the RBD region [41].
Although P.1 does not harbor deletion (69-70del, 144del or 242-
244del), it also shows resistance to some mAbs targeting the
NTD, which reveals that multiple substitutions in the NTD region
may also disrupt its epitope [41, 66, 67].

Mutations in B.1.617.2 lineage

The B.1.617.2 lineage (also called 478 K.V1), a sub-lineage of
B.1.617, was first detected in India in December 2020 [74]. B.1.617
appears to have a higher rate of transmission and has been
spread across the globe [51]. In particular, the B.1.617.2 lineage
shows a clear competitive advantage compared with B.1.1.7,
B.1.351 and P.1, and includes a notable increase in the UK
recently [75]. The B.1.617.2 possesses multiple characteristic
mutations in its spike protein including T19R, �157–158, L452R,
T478K, D614G, P681R and D950N (Table 1) [51]. Although some
studies suggested that B.1.617.2 shows some degree of resistance
to convalescent plasma, vaccines and part of mAbs [76–79], two
doses of vaccine can still provide protection against the B.1.617
lineage [74, 79–81]. The mechanisms under high transmission
and antibody resistance remain unknown. Multiple mutations in

the NTD region may be responsible for the reduced neutralizing
activity of mAbs targeting the NTD region [79]. L452R and T478K
may have an impact on mAbs and vaccines directing towards
the RBD region [7]. P681R is at the S1/S2 cleavage site may
result in higher transmissibility [51]. Further robust studies are
also required to validate the efficacy of the currently available
mAbs and vaccines against B.1.617.2 lineage and understand the
phenotypic impacts of these mutations.

Mutations in other lineages

In addition to the above-mentioned mutations in SARS-CoV-2
variants of concern, other mutations have been proved to alter
the viral infectivity and antigenicity. For example, the mutations
in W152 (including W152L, W152R, and W152C) are indepen-
dently recruited numerous times across diverse geographical
locations. The substitutions of W152, a residue present in the
NTD of spike protein, promote virus immune escape by removing
an important interaction point for multiple potent neutralizing
antibodies [82]. N439K is most present in late 2019 and early
2020 (accounts for 3.37% of global SARS-CoV-2 in Dec 2020)
and has been found across multiple countries. N439K, located
in the spike receptor binding motif region, has been reported
to enhance binding affinity to the hACE2 receptor and confer
resistance against several mAbs [83, 84]. Fortunately, our data
show that the percentage of N439K has fallen to 1�. Here, we
summarized the impact of common mutations on viral infec-
tivity and antigenicity, however, there will be more mutations
with the potential to alter viral infectivity and antigenicity as
the COVID-19 pandemic.

Conclusion
The COVID-19 pandemic has become a main threat to human
health and prosperity; the mutations in the SARS-COV-2 spike
are making matters worse by altering viral infectivity and
antigenicity. We summarize the spatiotemporal distribution of
mutations and point that mutations in spike protein change
gradually over time. The current viruses have accumulated
more than 10 mutations on average by far. Although there
are numerous mutations located in spike protein, only a few
mutations tend to occur frequently which should be paid more
attention to.

Considering the increasing proportion of mutant lineages,
mutations in spike protein have posed a challenge to the existing
mAbs and vaccines. Since the emergence of D614G, the scientific
community has begun to investigate the impact of mutations
on viral fitness and their underlying mechanisms using various
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bioinformatics and experimental methods. Many mutations in
spike protein have been reported to promote the virus’ prop-
erties by increasing affinity to ACE2 or providing resistance to
the immune response induced by mAbs, natural infection or
vaccination. These findings are crucial for the prevention of
SARS-CoV-2 and the next period of vaccine and therapeutic
antibody development.

The recent emergence of B.1.617.2 lineage has been detected
across the globe and shows a clear competitive advantage. To
prevent a further spread of B.1.617.2 lineage, more studies are
needed to confirm the effectiveness of current vaccines and
uncover the mechanisms under its high transmission and anti-
body resistance. Fortunately, vaccines had not been demon-
strated to lose their potency against most SARS-CoV-2 strains,
and it still needs to maximize vaccination with two doses among
populations. New mutations will continue to emerge as the
SARS-CoV-2 persists; although most changes have little impact
on viral fitness, there are still some mutations that can promote
the virus’s properties and bring serious challenges to current
prevention, antibody therapies and vaccine protection. So, there
is an urgent need for continued monitoring of the frequency
shifts of mutations in spike at regional and global levels and
identifying potential risk mutations.

Key Points
• SARS-CoV-2 evolution has been characterized by the

emergence of sets of mutations, which bring great
challenges to the prevention of COVID-19.

• The bioinformatics and experimental methods are
summarized to evaluate the impact of mutations in
the SARS-CoV-2 spike protein.

• Systematic review of the most common mutations
in current SARS-CoV-2 lineages (e.g. B.1.1.7, B.1.351,
P.1, B.1.617.2 and so on) and their impact on viral
infectivity and antigenicity.
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