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Abstract: The effect of weightlessness on gametogenesis and the functional state of female germ cells
are still poorly understood. We studied the ovaries of Drosophila melanogaster, the full development
cycle of which (from zygote to sexually mature adults) passed under simulated microgravity by
a random positioning machine. The rate of cellular respiration was studied by polarography as a
parameter reflecting the functional state of mitochondria. The content of cytoskeletal proteins and
histones was determined using Western blotting. The relative content of mRNA was determined
using qRT-PCR. The results obtained indicated an increase in the rate of cellular respiration under
simulated microgravity conditions during the full cycle of gametogenesis in Drosophila melanogaster
due to complex I of the respiratory chain. In addition, an increase in the contents of actin cytoskeleton
components was observed against the background of an increase in the mRNA content of the
cytoskeleton’s encoding genes. Moreover, we observed an increase in the relative content of histone
H3 acetylated at Lys9 and Lys27, which may explain the increase in the expression of cytoskeletal
genes. In conclusion, the formation of an adaptive pattern of functioning of the Drosophila melanogaster
ovaries that developed under simulated microgravity includes structural and functional changes and
epigenetic regulation.
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1. Introduction

From the perspective of increasing the duration of space flights, questions have arisen
concerning the need to maintain reproductive health. Nevertheless, there are gaps in
understanding the effect of real microgravity on the function of the reproductive system.
There are a number of difficulties in studying the reproduction process during space flight,
in connection with which research with the use of model experiments, including those on
animals, is required.

Data for different species are scarce; however, it is known that under space flight con-
ditions, there is a possibility of obtaining offspring from the fruit fly Drosophila melanogaster,
Medaka fish, and the amphibian Pleurodeles waltl. Nevertheless, some developmental
anomalies have been noted [1–4]. At the same time, it was not possible to obtain pregnancy
in mammals, since there were difficulties with fertilization and embryo development in the
early stages of embryogenesis [5,6].

Studying the full cycle of gametogenesis may be of particular interest from the point of
view of maintaining a species. In the implementation of the normal process of maturation
and differentiation of germ cells, programmed cell death plays an important role [7,8].
For Drosophila melanogaster, it was shown that during oogenesis, cells undergo various
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stage-specific scenarios of cell death, including apoptosis, primarily through the mito-
chondrial pathway [9,10]. It was reported that cytosolic actin is involved in the process of
mitochondria-dependent apoptosis [11]; it is also known that specific interactions between
actin and mitochondria mediate the division of mitochondrial networks and mitochondrial
transport, contributing to the cellular distribution of mitochondria [12,13]. In addition, the
presence of beta-actin-containing structures within the mitochondria and polymerized actin
around the mitochondria is necessary to maintain the membrane potential and optimal
transcription of mitochondrial DNA. It was shown that the absence of beta-actin disrupted
the activity of OXPHOS and decreased cellular levels of ATP [14]. Moreover, smooth
muscle alpha-actin and cytosolic gamma-actin do not functionally compensate for the loss
of beta-actin; in isolated mtDNA, only beta-actin was identified, not gamma-actin [15],
which may indicate the specific role of beta-actin in maintaining transcription mtDNA, its
copy numbers, and mitochondrial membrane potential [14].

There is also a relationship between the movement of mitochondria during maturation
and the dynamic network of microtubules. Reorganization of the cytoskeleton of a cell during
maturation can affect the clustering of mitochondria, which has been demonstrated in a space
experiment. Thus, during the cultivation of human lymphocyte (Jurkat) cells under conditions
of space flight and cells from Drosophila melanogaster insects (Schneider S-1) under conditions of
altered gravity created by rotation of the clinostat, similar changes were observed; namely, both
cell lines exhibited mitochondrial abnormalities and clustering, which was regarded to occur
as a result of the destruction of microtubules and failure of mitochondrial transport along the
microtubules [16]. It was also shown that a change in the functional state of mitochondria, in
particular, a decrease in the potential of the mitochondrial membrane, can affect the formation
of the division spindle in oocytes, which ultimately led to nondisjunction of chromosomes
and, consequently, chaotic mosaicism in preimplantation human embryos [17]. Thus, we
discuss the mutual influence of the structure of the cytoskeleton and the functional state of
the mitochondria. It is well known that under simulated microgravity, the structure of the
cytoskeleton and the content of cytoskeletal proteins change in different types of cells, and
these changes usually correlate with changes to the cytoskeleton’s gene expression [18–20]. In
eukaryotes, transcriptional regulators can be RNA interference [21], DNA methylation [22,23],
and various chromatin modifications [24], including covalent posttranslational modifications
of histones [25,26], in particular, acetylation.

Therefore, we assessed cellular respiration and the content of several mitochondrial
proteins and determined the relative content of cytoskeletal proteins and corresponding
mRNAs, as well as acetylated forms of histones in the ovaries of Drosophila melanogaster fruit
flies after exposure to simulated microgravity conditions during the full gametogenesis
cycle.

2. Results
2.1. Cell Respiration

After exposure to simulated microgravity during the full cycle of gametogenesis, the
rate of oxygen uptake by permeabilized ovaries, V0, increased by 293% (p < 0.05); after
the addition of substrates of the first complex of the respiratory chain, the respiration
rate, Vglu+mal, was 98% higher (p < 0.05) than that of the control group, and the maximum
respiratory rate, Vmax, upon the addition of ADP increased by 64% (p < 0.05). There were no
statistically significant differences between the rates of cellular respiration after inhibition
of the first complex of the respiratory chain and the addition of substrates of the second
complex, VII. In addition, in a similar analysis of the operation of the fourth complex, the
rate of cellular respiration in the simulated microgravity group (MG) did not differ from
that in the control group C (Figure 1).

2.2. Protein Content

The relative content of cytochrome c and cytochrome c oxidase in the experimental
group did not change relative to control levels. At the same time, there was an increase of
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26% (p < 0.05) in the relative content of the catalytic subunit F1 of ATP synthase (Blw) in
the simulated microgravity group (Figure 2A).
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Figure 1. Relative values of the rate of cellular respiration of Drosophila melanogaster ovaries. V0—cellular respiration rate of
permeabilized ovaries; VGlu+Mal—the rate of cellular respiration with the addition of 10 mM glutamate + 5 mM malate;
Vmax—the maximum rate of cellular respiration after the addition of 2 mM ADP; VII—the rate of cellular respiration with the
sequential addition of 0.5 mM rotenone (NADH dehydrogenase inhibitor) and 10 mM succinate (succinate dehydrogenase
substrate); VIV—the rate of cellular respiration upon the sequential addition of 5 mM antimycin (an inhibitor of cytochrome
c reductase) and 0.5 mM TMPD + 2 mM ascorbate (artificial substrates of cytochrome c oxidase). C—control group;
MG—group of simulated microgravity. * p < 0.05 compared to the control group C.

The relative content of microfilament proteins beta-actin and actin-binding protein
alpha-actinin increased by 13% (p < 0.05) and 17% (p < 0.05), respectively, relative to control
levels when simulating the effects of microgravity. No changes in the protein content of the
primary components of microtubules, alpha- and beta-tubulin, were observed (Figure 2B).

2.3. mRNA Relative Content

The relative content of Cyc1 and Cox4i1 mRNA did not change compared to the control,
while the expression of the gene encoding the Blw protein increased by 121% (p < 0.05) in
the simulated microgravity group (Figure 3A). The expression of genes encoding beta-actin
and the actin-binding protein alpha-actinin increased by 178% (p < 0.05) and 133% (p < 0.05),
respectively, after simulated microgravity conditions (Figure 3B). No changes in the expression
of genes encoding alpha- and beta-tubulin were found in any of the groups (Figure 3B).
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Drosophila melanogaster ovaries. Cyc1 (13.5 kDa)—cytochrome c-1, a respiratory chain protein located between complexes III
and IV; Cox4i1 (16 kDa)—cytochrome c oxidase, a protein of complex IV of the respiratory chain; Blw (56 kDa)—the subunit
of ATP synthase F1. (B) Cytoskeletal proteins of the Drosophila melanogaster ovary. Beta-actin (42 kDa)—microfilament
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microtubule network components; C—control group; MG—group of simulated microgravity. Arrows indicate the direction
of change. * p < 0.05 compared to the control group C.

2.4. Histone Acetylation Relative Content

The relative content of histone H3 forming the nucleosomal core and involved in DNA
organization did not change after exposure to simulated microgravity as compared to the
control group (Figure 4). The levels of Lys9 (H3K9ac) and Lys27 (H3K27ac) acetylated
histone H3 in the MG group were significantly higher compared to the control by 81%
(p < 0.05) and 86% (p < 0.05), respectively (Figure 4).
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Figure 3. The relative content of mRNA. (A) mRNA of genes encoding proteins involved in the cellular respiration of mitochondria.
Cyc1—mRNA of the gene encoding cytochrome c; Cox4i1—mRNA of the gene encoding cytochrome c oxidase; Blw—mRNA of
the gene encoding the subunit of ATP synthase F1. (B) mRNA of genes that form the structures of the actin and tubulin cytoskeleton.
Act57B and Act87E—mRNA of genes encoding beta-actin; Actn—mRNA of the gene encoding alpha-actinin; αTub84D and
αTub84B—mRNA of genes encoding alpha-tubulin; βTub56D—mRNA of the gene encoding beta-tubulin; C—control group;
MG—group of simulated microgravity. * p < 0.05 compared to control group C.
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3. Discussion

Studying the effect of microgravity on gametogenesis may be important for maintain-
ing reproductive health during a long space flight. We analyzed cellular respiration as a
parameter reflecting the functional state of the ovaries in the fruit fly Drosophila melanogaster
under conditions of simulated microgravity during the full cycle of gametogenesis and
estimated the content of proteins in the respiratory chain and various components of the
cytoskeleton. The results obtained indicated that the intensity of cellular respiration of the
ovaries in flies, the full development cycle of which occurred under simulated microgravity,
was significantly higher than that in the controls. This may be due to an increase in the
number of complexes of the mitochondrial respiratory chain, but we did not observe
changes in the content of respiratory chain proteins, with the exception of the ATP synthase
F1 (Blw) subunit (Figure 2A), the relative content of which increased; however, respiratory
integrity is important for normal functioning complexes. Therefore, it can be assumed
that the increase in oxygen consumption by the ovaries after maturation under simulated
microgravity conditions is associated with a change in the intensity of electron transfer due
to some complex of the respiratory chain.

Inhibitory analysis showed that such an increase is most likely due to complex I of the
respiratory chain, as the rates of cellular respiration after inhibition of NADH dehydrogenase
by rotenone and antimycin A did not differ from the control level (Figure 1).

The first complex of the electron transport chain can be activated by mitochondrial
STAT3 [27] due to an increase in the actin-binding protein alpha-actinin in the cyto-
plasm [28]. Therefore, we determined the content of alpha-actinin and recorded an increase
in its content. Moreover, in our previous study, after a short-term experiment under the
simulated microgravity of Drosophila melanogaster, cellular respiration also increased, and
we noted an increase in the content of alpha-actinin [29]. In addition, the relative content of
beta-actin also increased. The actin cytoskeleton is involved in maintaining the localization
of mitochondria, and the microtubule in their transport. During normal oogenesis, accu-
mulation of mitochondria in the posterior part of the oocyte during oogenesis in Drosophila
melanogaster begins at stage 10, increases up to stage 13, and persists during embryogen-
esis [30,31]. At the same time, we did not find any changes in the relative content of the
main components of microtubules, alpha- and beta-tubulin (Figure 2B).

To examine the reasons for the increase in the content of actin and alpha-actinin, the
relative content of mRNA of genes encoding cytoskeletal proteins was determined. As
expected, the mRNA content of alpha- and beta-tubulin did not change, while for beta-actin



Int. J. Mol. Sci. 2021, 22, 9234 7 of 11

and alpha-actinin, it increased (Figure 3B). Accordingly, a question arises concerning the
reasons for this transcription increase.

Since DNA methylation in Drosophila is described but is not widely researched [32],
and the RNA interference mechanism predominantly leads to the elimination of for-
eign/aberrant RNA [33,34], we decided to analyze the posttranslational modifications
of histones, primarily the acetylation of histone H3, as one of the main participants in the
regulation of gene expression due to its position in the nucleosoma.

The results indicate that in the ovaries of Drosophila melanogaster, the relative content
of histone H3 acetylated at Lys9 and Lys27 significantly (p < 0.05) increased (Figure 4).
Acetylation of histones by lysine is considered predominantly as a transcription-activating
factor, since this posttranslational modification probably causes a decrease in the positive
charge on the histone surface and increases the availability of DNA for transcription
enzymes [35,36]. For plants, it was shown that an increase in the content of H3K9ac
strongly correlates with an increase in actin expression [37]. For animals, the relationship
appears to be more complex. Activation of the actin/MKL1 signaling pathway leads to
an increase in the content of H3K9ac and throughout the genome [38]. In addition, the
interaction of H3K27ac with the MAPK signaling pathway is a well-documented fact [39].
Therefore, it cannot be ruled out that the changes in expression observed by us may in some
way be associated with a change in the acetylation status of histone H3 lysine residues, but
this assumption requires further research.

4. Materials and Methods
4.1. Study Design

Males and females of the Canton-S Drosophila melanogaster line at 2 days of age were
placed in 50 mL Falcon tubes (30 individuals per tube) and confined using an air-permeable
lid. To maintain the Drosophila melanogaster, a nutrient medium (water with the addition of
0.7% agar, 4% sugar, 4% semolina, 2.5% baker’s yeast and 1% propionic acid) at a volume
of 15 mL was used. To simulate microgravity, a microgravity simulator (Gravite®, GC-US-
RCE010001, Space Bio-Laboratories Co., Ltd., Hiroshima, Japan) was used, which provides
a superposition of cell orientation in the gravity field equal to zero in an average of 15 s.

Two study groups were created:

− MG (simulated microgravity group), which was placed in conditions of simulated
microgravity;

− C (control group), which was placed next to the simulator platform to ensure identical
containment conditions.

One day after the start of the experiment, the air-permeable covers were removed
and replaced after the emergence of mature individuals from the test tubes. Cultivation of
test tubes continued throughout the full cycle of gametogenesis, which corresponded to
15 days under these conditions, until females reached 2 days of age. At the end of exposure,
the flies of the experimental and control groups were subjected to ovarian extirpation.

All experimental procedures were approved by the Commission on Biomedical Ethics
of the State Research Center of the Russian Federation-IBMP RAS (Protocol No. 521, dated
25 September 2019).

4.2. Measuring Cellular Respiration Using the Polarography Method

Twenty to thirty Drosophila melanogaster ovaries from each experimental group were
used to analyze cellular respiration according to the protocol detailed by Kuznetsov
et al. [40]. After isolation, the ovaries were incubated in a solution of saponin at a con-
centration of 10 µg/mL for 10 min at +25 ◦C in a shaker (Thermo Shaker PST-60HL-4,
Biosan, Riga, Latvia). Next, the samples were transferred to a polarographic cuvette, and
changes in the oxygen concentration were recorded using an Oxygraph+ polarograph
(Hansatech Instruments, Ltd., Norfolk, UK) at +25 ◦C. The substrate inhibitor assay was
performed according to the protocol of Kuznetsov et al. [40] with modifications detailed in
our previous study [41].
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When transferring the ovaries into a polarographic cuvette, the basal oxygen uptake rate,
V0, was recorded. Then, substrates of NADH dehydrogenase, 10 mM glutamate and 5 mM
malate were added, and the respiration rate of the first complex, Vglu+mal, was recorded. After
the addition of 2 mM ADP, the maximum respiration rate, Vmax, was recorded. With the
sequential addition of 0.5 µM rotenone, an inhibitor of complex I, followed by 10 mM succinate,
the substrate of succinate dehydrogenase, the rate of cellular respiration of the second complex,
VII, was recorded. Next, a cytochrome c reductase inhibitor, 5 µM antimycin A, was added,
followed by artificial substrates of cytochrome c oxidase, 0.5 mM TMPD + 2 mM ascorbate,
after which the rate of cellular respiration of the fourth complex of the VIV respiratory chain
was recorded. After adding 10 µM cytochrome c to each sample, a test was performed for
the integrity of the outer mitochondrial membrane: if the membrane remained intact, the rate
of cellular respiration did not change relative to the VIV rate or increased by a maximum of
15%. Only samples with an intact membrane were considered. The rate of cellular respiration
was measured in pmol O2·mL−1·min−1 per ovary. For each experimental point, at least three
biological replicates were tested.

4.3. Estimation of the Relative Protein Content by Western Blotting

To isolate proteins, frozen ovaries of each group were used, which were homogenized
in a Laemmli buffer with a cocktail of protease inhibitors (Calbiochem, San Diego, CA, USA).
Denaturing electrophoresis was performed on polyacrylamide gels using the Laemmli
method (Bio-Rad Laboratories, Hercules, CA, USA). Based on the measured concentration
(using NanoDrop One by Thermo Fisher Scientific, Waltham, MA, USA), an equal amount
of protein was placed into each well, separated by electrophoresis, and transferred to a
nitrocellulose membrane [42]. Efficiency of the protein transfer was controlled by Ponceau
S staining before the milk-blocking membrane. To quantify each protein, specific primary
monoclonal antibodies were used as shown in Table 1 at dilutions recommended by the
manufacturer.

Table 1. Primary antibodies.

Primary
Antibodies

Molecular
Weight Dilution Producer Catalog

Number

Cytochrome c-1 13.5 kDa 5 µg/mL Abcam, UK,
Cambridge #ab13575

Cytochrome c
oxidase 16 kDa 1 µg/mL Abcam, UK,

Cambridge #ab14744

ATP synthase F1
(Blw) 56 kDa 1 µg/mL Abcam, UK,

Cambridge #ab14748

Alpha-tubulin 50 kDa 1:1000 Abcam, UK,
Cambridge #ab52866

Beta-tubulin 50 kDa 1:1000 Abcam, UK,
Cambridge #ab179513

Beta-actin 42 kDa 1:5000 Abcam, UK,
Cambridge #ab227387

Alpha-actinin 102 kDa 1 µg/mL Abcam, UK,
Cambridge #ab50599

Histone H3 11 kDa 1:1000 Abcam, UK,
Cambridge #ab10799

Histone H3 Lys
9 acetylated 17 kDa 1:1000 Abcam, UK,

Cambridge #ab4441

Histone H3 Lys
27 acetylated 17 kDa 1 µg/mL Abcam, UK,

Cambridge #ab4729
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Horse antibodies conjugated with horseradish peroxidase for chemiluminescence
detection (Cell Signaling Technology, Danvers, MA, USA # 7076S) at a dilution of 1:2000
were used as secondary antibodies for the detection of mouse IgG and for the detection
of rabbit IgG-goat antibodies conjugated with horseradish peroxidase (Cell Signaling
Technology, Danvers, MA, USA # 7074S) at a dilution of 1:2000. Next, the membranes
were treated with SuperSignal ™ West Femto Maximum Sensitivity Substrate (Thermo
Scientific, Waltham, MA, USA) and detected. Secondary goat antibodies (Sigma, St. Louis,
MI, USA, # B7139) were used against rat IgG, and then the membrane was treated with
a streptavidin solution conjugated with horseradish peroxidase (Sigma, St. Louis, MI,
USA, # E2886) at a dilution of 1:10,000, after which the protein bands were identified with
3,3′-diaminobenzidine (Amresco, Solon, OH, USA, # E733-50).

The resulting protein bands were analyzed using the Fiji package (https://imagej.net/
Fiji, accessed on 26 July 2021).

4.4. Estimation of the Relative Content of mRNA by Polymerase Chain Reaction (PCR)

Total mRNA was isolated from Drosophila melanogaster ovaries using the RNeasy
Micro Kit (Qiagen, Germany) according to the instructions. Reverse transcription was
performed using d (T) 15 as the primer, and 500 ng RNA was controlled by measuring the
concentration. After reverse transcription, the amount of cDNA was measured in order
to control the application of the same amount for qPCR. Real-time PCR was performed
using primers selected via the Primer3Plus and Primer-BLAST (https://www.ncbi.nlm.nih.
gov/tools/primer-blast/, accessed on 16 September 2020) (Table 2) to assess the expression
levels of the studied genes. The specificity of primers was controlled by product size,
melting curve, and negative controls without DNA. The 2(-Delta DeltaC(T)) method [43]
with Gapdh normalization was used to determine the fold change.

Table 2. Primer sequence and product size.

Gene Primer Sequence, Forward/Reverse (5′ . . . 3′) Product
Size, bp

CG4769 GCAGCGACATTGCGAAGATT/ACTGCTCCAGGGCGTAGATA 181

CG10396 ACTGCCGTCGAAATGAGCTT/TCACGTAGGGCACACAACTC 227

Blw AATAGGAGTAGCGGTGCGTG/AACCACGGATTGAAGGCGAT 201

Act57B GCCTAGCACCAACACTAGCA/CGCGAGCGATTAACAAGTGG 288

Act87E CCGAATACCGAAAGCCCACT/CTGGGCCTCATCACCAACAT 269

Actn ACAAGCCGAACATTGAGGAG/GCGTTTCCATCGTGTAGTTG 96

alphaTub84D AAGGACTACGAGGAGGTCGG/ATGCGAGTGGGAGCGTATGA 124

alphaTub84B CACTGGTACGTTGGTGAGGG/CCCATCGAGCGTTGAAGTGG 166

betaTub56D AAGCGGACAGTTTGTGTTGTG/ACCAGCTTGGATGTGAACGA 115

Gapdh ATACTCATCAACCCTCCCCC/GGCTGAGTTCCTGCTGTCTT 142

4.5. Statistical Analysis

For statistical analysis of the results, ANOVA and post hoc t-tests were used to assess
the significance of differences between groups at a level of p < 0.05.

5. Conclusions

Summarizing the above, in the ovaries of Drosophila melanogaster, the full development
cycle of which took place under simulated microgravity conditions, an increase in the
acetylation of Lys9 and Lys27 in histone H3 occurred, which correlated with an increase
in the expression of actin and alpha-actinin. Against the background of an increase in
the relative content of the components of the actin cytoskeleton, an increase in the rate of
cellular respiration due to complex I of the respiratory chain was observed.

https://imagej.net/Fiji
https://imagej.net/Fiji
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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