
RESEARCH ARTICLE

Spatial environmental factors predict

cardiovascular and all-cause mortality: Results

of the SPACE study

Michael B. HadleyID
1*, Mahdi Nalini2,3, Samrachana Adhikari4, Jackie Szymonifka4,

Arash Etemadi5, Farin Kamangar6, Masoud Khoshnia7, Tyler McChane1,

Akram Pourshams2, Hossein PoustchiID
2, Sadaf G. SepanlouID

2, Christian Abnet5, Neal

D. Freedman5, Paolo Boffetta8,9, Reza Malekzadeh2, Rajesh Vedanthan4

1 Icahn School of Medicine at Mount Sinai, New York, New York, United States of America, 2 Digestive

Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences,

Tehran, Iran, 3 Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah,

Iran, 4 New York University Grossman School of Medicine, New York, New York, United States of America,

5 Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,

Bethesda, Maryland, United States of America, 6 Department of Biology, School of Computer, Mathematical,

and Natural Sciences, Morgan State University, Baltimore, Maryland, United States of America, 7 Golestan

University of Medical Sciences, Gorgan, Golestan, Iran, 8 Stony Brook Cancer Center, Stony Brook

University, Stony Brook, New York, United States of America, 9 Department of Medical and Surgical

Sciences, University of Bologna, Bologna, Italy

* michael.hadley@mountsinai.org

Abstract

Background

Environmental exposures account for a growing proportion of global mortality. Large cohort

studies are needed to characterize the independent impact of environmental exposures on

mortality in low-income settings.

Methods

We collected data on individual and environmental risk factors for a multiethnic cohort of

50,045 individuals in a low-income region in Iran. Environmental risk factors included: ambi-

ent fine particular matter air pollution; household fuel use and ventilation; proximity to traffic;

distance to percutaneous coronary intervention (PCI) center; socioeconomic environment;

population density; local land use; and nighttime light exposure. We developed a spatial sur-

vival model to estimate the independent associations between these environmental expo-

sures and all-cause and cardiovascular mortality.

Findings

Several environmental factors demonstrated associations with mortality after adjusting for

individual risk factors. Ambient fine particulate matter air pollution predicted all-cause mor-

tality (per μg/m3, HR 1.20, 95% CI 1.07, 1.36) and cardiovascular mortality (HR 1.17, 95%

CI 0.98, 1.39). Biomass fuel use without chimney predicted all-cause mortality (reference =

gas, HR 1.23, 95% CI 0.99, 1.53) and cardiovascular mortality (HR 1.36, 95% CI 0.99,
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1.87). Kerosene fuel use without chimney predicted all-cause mortality (reference = gas, HR

1.09, 95% CI 0.97, 1.23) and cardiovascular mortality (HR 1.19, 95% CI 1.01, 1.41). Dis-

tance to PCI center predicted all-cause mortality (per 10km, HR 1.01, 95% CI 1.004, 1.022)

and cardiovascular mortality (HR 1.02, 95% CI 1.004, 1.031). Additionally, proximity to traffic

predicted all-cause mortality (HR 1.13, 95% CI 1.01, 1.27). In a separate validation cohort,

the multivariable model effectively predicted both all-cause mortality (AUC 0.76) and cardio-

vascular mortality (AUC 0.81). Population attributable fractions demonstrated a high mortal-

ity burden attributable to environmental exposures.

Interpretation

Several environmental factors predicted cardiovascular and all-cause mortality, indepen-

dent of each other and of individual risk factors. Mortality attributable to environmental fac-

tors represents a critical opportunity for targeted policies and programs.

Introduction

Environmental factors contribute significantly to global mortality [1–4]. In 2019, environmen-

tal hazards were responsible for an estimated 11.3 million deaths, of which 5.1 million were

from cardiovascular disease (CVD) [5, 6].

A growing list of environmental factors present particular risks to cardiovascular health [1–

4]. Ambient fine particulate matter air pollution (PM2.5) from traffic, industry, fires, and dust

is a risk factor for all-cause mortality, cardiovascular mortality, ischemic heart disease (IHD),

and stroke [7, 8]. In 2019, ambient PM2.5 ranked seventh among all health risk factors for mor-

tality, responsible for 4.14 million deaths, of which 2.47 million were from CVD [5, 6]. Simi-

larly, household air pollution from inefficient stoves and solid fuels was responsible for 2.31

million deaths (1.07 million from CVD) [5, 6]. Proximity to traffic pollution and noise is asso-

ciated with increased rates of adverse CVD events, particularly IHD and stroke [4, 7, 9]. Dis-

tance to health care services affects access to preventive care, tertiary care, and emergent

percutaneous coronary interventions (PCI) [10, 11]. Socioeconomic environment is an inde-

pendent risk factor for CVD, even after controlling for individual socioeconomic status [12].

Population density has been shown to be both positively and negatively correlated with CVD

in different environments [13, 14]. Exposures to artificial light at night cause circadian dysre-

gulation and have been associated with ischemic heart disease outcomes [4, 15, 16]. Finally,

land use (e.g., greenspaces, mixed land use) may predict CVD through association with physi-

cal activity, social engagement, and access to health services [17, 18]. Together, these variables

act directly and indirectly to precipitate cardiovascular disease and mortality (Fig 1).

Understanding the relationships between environmental risk factors and health is a critical

step towards designing targeted policies and programs to reduce the immense burden of

attributable disease. To date, most investigations of environmental factors have studied single
risk factors in high-income settings. We therefore developed a spatial environmental model to

provide a better understanding of the independent associations between multiple spatial envi-

ronmental factors and mortality, within a low-income population in the middle-income coun-

try of Iran.
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Methods

Study setting

We analyzed data of participants enrolled in the Golestan Cohort Study (GCS) in Golestan

Province, Iran, a middle-income country with diverse ethnicities and lifestyles. In both Iran

and Golestan, CVD is the leading cause of death and disability [19].

Study participants

The GCS enrolled 50,045 individuals (28,811 females and 21,234 males) across northeastern

Golestan from 2004 to 2008 [20]. Participants ranged in age from 40 to 75 years in order to

capture individuals with higher rates of non-communicable disease, particularly esophageal

cancer. Approximately 80% were enrolled from 326 rural villages ranging in size from 20 to

150 residents. The remaining 20% were selected randomly from Gonbad City, the second-larg-

est city in Golestan with a population of approximately 130,000. Exclusion criteria were:

unwillingness to participate for any reason; being a temporary resident; or having a previous

diagnosis of upper gastrointestinal cancer. Among those selected to enroll, participation rates

were approximately 80% for women and 65% for men. Participants were followed-up actively

every 12 months with a follow-up success rate was 99%. Study methods were approved by eth-

ics review committees of the Tehran University of Medical Sciences, the International Agency

for Research on Cancer, and the National Cancer Institute. All participants signed a written

informed consent at enrollment. The full study protocol is publicly available [20].

Individual characteristics

Individual baseline characteristics were collected at time of enrollment in the GCS [20]. Partic-

ipants were interviewed by a physician in their native language and completed a detailed life-

style questionnaire and physical exam. The following covariates were included in our analysis:

age, sex, ethnicity, marital status, education, socioeconomic status, waist and hip circumfer-

ence, physical activity, medical history (IHD, stroke, diabetes, hypertension), and substance

use (tobacco, alcohol, and opium). Details on the socioeconomic status score can be found in

S1 File.

At baseline, individuals enrolled in the GCS were, on average, 52.1 years of age (SD 8.9

years) and 58% female. The majority was married (88%) and illiterate (70%). A minority had a

history of IHD or stroke (6%), diabetes (7%), hypertension (20%), tobacco use (22%), opium

use (17%), or alcohol use (3%). Three-quarters were of Turkmen ethnicity and the remainder

were of other ethinc groups (e.g., Persians, Baluchis, Qizilbash), consistent with the prevalence

Fig 1. Conceptual framework. Impact of eight SEFs on individual risk factors and CV and all-cause mortality.

https://doi.org/10.1371/journal.pone.0269650.g001
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of ethnic groups in the sampled region. The derivation and validation cohorts were similar in

the distribution of risk factors (Table 1).

Mortality data

In the GCS, nearly 100% of deaths are captured via documents collected from participants,

hospital files, and verbal autopsy questionnaires, which are reviewed by at least two indepen-

dent internists to define diagnoses according to the International Classification of Diseases,
10th Revision (ICD-10) codes [21, 22]. All-cause mortality included all reported deaths. Cardio-

vascular mortality included deaths attributable to IHD (ICD-10 codes I20-25), cerebrovascular

Table 1. Individual characteristics.

Characteristic Level Derivation cohort (n = 45,052) Validation cohort (n = 5003)

Average age at baseline Years, mean ± SD 52.1 ± 8.9 52.1 ± 9.0

Sex Female 25864 (57%) 2947 (59%)

Male 19178 (43%) 2056 (41%)

Ethnicity Turkmen 33536 (75%) 3717 (74%)

All other ethnicities 11420 (25%) 1273 (26%)

Residence Urban 9039 (20%) 993 (20%)

Rural 36003 (80%) 4010 (80%)

Marital status Married 39514 (88%) 4376 (88%)

All others 5430 (12%) 610 (12%)

Education level No education/Illiterate 31600 (70%) 3518 (70%)

All others 13442 (30%) 1485 (30%)

Socioeconomic status MCA quartile 1 (lowest) 12491 (28%) 1447 (29%)

MCA quartile 2 10066 (22%) 1078 (22%)

MCA quartile 3 11340 (25%) 1246 (25%)

MCA quartile 4 (highest) 11145 (25%) 1232 (25%)

Waist circumference Centimeters, mean ± SD 95.3 ± 13.7 95.2 ± 13.7

Hip circumference Centimeters, mean ± SD 99.5 ± 9.4 99.4 ± 9.3

Physical activity Tertile 1 (least active) 14912 (33%) 1670 (33%)

Tertile 2 13894 (31%) 1545 (31%)

Tertile 3 (most active) 14354 (32%) 1574 (31%)

History of IHD or CVA Yes 2737 (6%) 314 (6%)

No 42305 (94%) 4689 (94%)

History of diabetes Yes 3110 (7%) 344 (7%)

No 41932 (93%) 4659 (93%)

History of hypertension Yes 8866 (20%) 1009 (20%)

No 36176 (80%) 3994 (80%)

Tobacco Current 7844 (17%) 862 (17%)

Former 1927 (4%) 221 (4%)

Never 35271 (78%) 3920 (78%)

Opium use Ever 7622 (17%) 865 (17%)

Never 37420 (83%) 4138 (83%)

Alcohol use Ever 1520 (3%) 189 (4%)

Never 43522 (97%) 4814 (96%)

Individual characteristics of derivation and validation cohorts. Characteristics were recorded at time of enrollment. Medical comorbidities were self-reported. There was

good similarity in the distribution of individual characteristics between the derivation and validation cohorts. MCA = multiple component analysis index of individual

socioeconomic status. IHD = ischemic heart disease. CVA = cerebrovascular accident (stroke).

https://doi.org/10.1371/journal.pone.0269650.t001

PLOS ONE Environmental factors predict cardiovascular and all-cause mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0269650 June 24, 2022 4 / 15

https://doi.org/10.1371/journal.pone.0269650.t001
https://doi.org/10.1371/journal.pone.0269650


disease (I60-69), cardiac arrest (I46), congestive heart failure (I50), hypertensive diseases (I10-

15), chronic rheumatic heart diseases (I05-09), pulmonary heart disease (I26-28), and other

cardiovascular system diseases not otherwise specified. Complete case analysis was used for

missing data.

Individual geocodes

Each individual was assigned a geocode (latitude and longitude) based on residence location.

Details on geocode assignment can be found in S1 File.

Spatial environmental factors

We developed exposure variables for eight prespecified spatial environmental factors (SEFs)

using a combination of GCS data and publicly available datasets [20, 23–28]. These variables

were chosen based on a review of the literature on environmental risks for cardiovascular dis-

ease [1–4], as well as data availability. The SEFs were: ambient air pollution [24, 25], household

fuel use and ventilation [20], socioeconomic environment [23], proximity to traffic (within

100m of a minor highway or within 500m of a major highway) [20], distance to percutaneous

coronary intervention centers [20], population density [26], nighttime light exposure [27], and

land use [28]. Environmental exposures were assigned according to year of enrollment. Some

potential environmental hazards were not included because no data was available for the study

region (e.g., noise pollution; toxins in water and food). All SEFs were included in the final mul-

tivariable model. Data sources and related methodologies are summarized in S1 Table in S1

File. Please see Data Sharing Statement for information on how to access GCS-specific data.

Derivation and validation cohorts

The GCS dataset was randomized into derivation and validation cohorts, stratified to ensure

mortality was balanced in both groups, following established methodology [29]. The derivation

cohort (90%) was used to construct the multivariable spatial environmental model; the valida-

tion cohort (10%) was used subsequently to test the model’s predictive value. The derivation

cohort contained 45,042 individuals and 5996 deaths, of which 2733 were cardiovascular

deaths. The validation cohort contained 5003 individuals and 655 deaths, of which 286 were

cardiovascular deaths. A summary of the study design is shown in S1 Fig in S1 File.

Statistical analyses

We developed spatial environmental survival models to study the association of each SEF on

the hazard of mortality, for both all-cause and cardiovascular mortality. All eight SEFs were

tested simultaneously in the multivariable survival model, in order to adjust for each other.

Additionally, we adjusted for common individual risk factors, including sex, age, individual

socioeconomic status, anthropometric measures, and history of cardiovascular disease, hyper-

tension, diabetes, and smoking. We used a spatial random effects survival model [30–32] (e.g.,

shared frailty model) to model time to mortality. For an individual j in geocode i with censor-

ing time t given covariates xij,, the survival function in the frailty model is:

Sxij tð Þ ¼ S0 tð Þexpxij bþni :

Here, β is a vector of regression coefficients and νi is a frailty parameter (or the random

effect) for geocode i and is assumed to have a gaussian distribution. Environmental exposures

demonstrated low correlation at the geocode level reducing the risk of collinearity and model

overfitting. Computations were performed in R (packages ‘survival’ and ‘spBayesSurv’) [33].
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We report the exponentiated coefficients as the estimate of hazard ratio along with 95% confi-

dence interval of the estimates.

To account for spatial dependence, as a sensitivity analysis we also fitted the Bayesian sur-

vival models that adjust for spatial autocorrelation based on distance between geocodes [34,

35]. Gaussian random field priors were specified on the frailty parameters to allow for autocor-

relation between neighboring geocodes.

We validated the model using recent methodologies for external validation [36]. First, we

used a chi-squared test to determine whether the addition of SEFs improved the model’s good-

ness-of-fit beyond traditional risk factors in the derivation cohort. Next, time-dependent area-

under-the-curve analysis was used to test how well the spatial frailty model predicted all-cause

and cardiovascular mortality in the novel validation cohort.

Finally, we calculated the population attributation fraction (PAF) for all categorical predic-

tors in the multivariable model. PAFs incorporate both the hazard and prevalence of a risk fac-

tor to assess the fraction of total disease risk in the population that would be eliminated (or

added) if the risk factor were eliminated from the population (i.e., if all individuals with that

risk factor were moved to the reference category) [37].

Patient and public involvement

Local residents, physicians, elders, religious leaders, and university physicians were deeply

involved in the design and implementation of the Golestan Cohort Study. Details can be found

in S1 File.

Results

Distribution of spatial environmental factors

Across all geocodes, average annual fine particulate matter air pollution exposures were

33.5 μg/m3 for the 5 years prior to enrollment (167.7 μg/m3 cumulatively, SD 17.5 μg/m3).

Most households burned kerosene fuel (71%), of which 42% had a chimney for ventilation. A

total of 7% of households used biomass fuels (typically wood or dung burned indoors for cook-

ing or heating), of which 81% had a chimney. The remainder of households providing

responses used either gas (12%) or mixed fuels (9%). One third of participants (34%) lived

close to major highways. Distances to the nearest percutaneous coronary intervention center

averaged 92.2 km (SD 37.4 km). The socioeconomic status score varied with location, with

lower scores concentrated in the northeast. Local population density averaged 1732 persons

per square kilometer (SD 3069). The intensity of nighttime light averaged 22.7 (SD 22.2) on a

NOAA intensity metric. Both population density and nighttime light exposure were highest in

Golestan’s central agricultural valley. Most households were located amidst cropland (57%) or

urban settings (25%), with the remainder located among shrubland (9%), grassland (9%), or

barren earth (<1%). The derivation and validation cohorts were similar in the distribution of

all SEFs (Table 2). The spatial distribution of the SEFs is illustrated in Fig 2.

Mortality data

In the derivation cohort (n = 45,042), there were 2733 cardiovascular deaths and 5996 all-

cause deaths. In the validation cohort (n = 5003), there were 286 cardiovascular deaths and

655 all-cause deaths. The mean follow-up time in the derivation and validation cohorts was

10.2 years and 10.9 years, respectively. Mean time to all-cause death in the derivation and vali-

dation cohorts was 6.2 years and 6.1 years, respectively. Mean time to cardiovascular death in
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both cohorts was 5.8 years. In both derivation and validation cohorts, all-cause mortality was

13% and cardiovascular mortality was 6% over the follow-up period.

Individual characteristics predict mortality

Individual characteristics predicted all-cause and cardiovascular mortality in the derivation

cohort (Table 3). The following variables demonstrated increased hazard for both all-cause and

cardiovascular mortality: older age, male gender, being unmarried, lower socioeconomic sta-

tus, illiteracy, higher waist circumference (adjusted for hip circumference), lower hip circum-

ference (adjusted for waist circumference), lower physical inactivity, tobacco use, opium use,

and history of hypertension, diabetes, IHD, and stroke. Turkmen ethnicity was associated with

increased hazard for all-cause mortality, but not for cardiovascular mortality.

Spatial environmental factors predict mortality

We identified several SEFs that predicted mortality in the multivariable derivation model

(Table 4). (Univariate estimates are provided in S2 Table in S1 File).

In the multivariable model, exposure to outdoor air pollution predicted all-cause mortality

(per μg/m3, HR 1.20, 95% CI 1.07 to 1.36) and cardiovascular mortality (per μg/m3, HR 1.17,

95% CI 0.98 to 1.39).

Exposure to household air pollution also demonstrated predictive power. Specifically, the

use of household kerosene fuel use without a chimney compared to gas predicted cardiovascu-

lar mortality (HR 1.19, 95% CI 1.01 to 1.41) and all-cause mortality (HR 1.09, 95% CI 0.97 to

1.23). Additionally, the use of biomass fuel without a chimney compared to gas predicted both

Table 2. Individual exposures to spatial environmental factors.

Characteristic Level Derivation cohort (n = 45,052) Validation cohort (n = 5003)

Average annual PM2.5 cumulative for 5 years prior to enrollment μg/m3 (mean ± SD) 167.7 ± 17.5 167.7 ± 17.5

Household fuel use Biomass without chimney 597 (1%) 60 (1%)

Biomass with chimney 2575 (6%) 306 (6%)

Kerosene without chimney 18666 (41%) 2083 (42%)

Kerosene with chimney 13252 (29%) 1470 (29%)

Gas 5442 (12%) 592 (12%)

Mixed fuels 4018 (9%) 429 (9%)

Proximity to traffic Within 100m of minor highway 10324 (23%) 1113 (22%)

Within 500m of major highway 14729 (32%) 1599 (31%)

Proximity to PCI center Km (mean ± SD) 92.2 ± 37.4 92.0 ± 37.3

Average neighborhood socioeconomic status MCA score (mean ± SD) 0.005 ± 0.12 0.006 ± 0.12

Population density Persons/km2 (mean ± SD) 1730.9 ± 3068.9 1742.5 ± 3079.1

Average annual light-at-night intensity value NOAA metric (mean ± SD) 22.7 ± 22.2 22.9 ± 22.2

Land use Cropland 25581 (57%) 2862 (57%)

Urban 11089 (25%) 1274 (25%)

Shrubland 4196 (9%) 436 (9%)

Grassland/savanna 4058 (9%) 418 (8%)

Barren 118 (0%) 13 (0%)

Individual exposures to environmental risk factors in the derivation and validation cohorts. Exposures were assigned according to spatial models developed for each

environmental risk factor (Fig 2). Three different measures of ambient fine particulate matter air pollution (PM2.5) were tested. There was good similarity in the

distribution of spatial environmental risk factors between the derivation and validation cohorts. PCI = percutaneous coronary intervention center. MCA = multiple

component analysis index of individual socioeconomic status (range: -0.46 to +0.49). NOAA = National Oceanic and Atmospheric Administration.

https://doi.org/10.1371/journal.pone.0269650.t002
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cardiovascular mortality (HR 1.36, 95% CI 0.99 to 1.87) and all-cause mortality (HR 1.23, 95%

CI 0.99 to 1.53).

Greater distance to PCI centers also was associated with increased hazard of both cardiovas-

cular mortality (per 10 km, HR 1.02, 95% CI 1.004 to 1.03) and all-cause mortality (per 10 km,

HR 1.01, 95% CI 1.004 to 1.02). Proximity to traffic also increased the hazard of cardiovascular

mortality (HR 1.13, 95% CI 1.01 to 1.27).

The remaining SEFs—neighborhood socioeconomic status, local population density, night-

time light, and land use—did not demonstrate relationships with either all-cause or cardiovas-

cular mortality.

Spatial environmental factors add predictive power

The addition of the eight SEFs improved the predictive power of the model beyond traditional

risk factors. Goodness of fit statistics (chi-squared statistics and corresponding p-values) were

Fig 2. Spatial models for six spatial environmental factors (SEFs) across Golestan Province, Iran. These models

were used to assign environmental exposures to individuals based on their location of residence. Methodologies are

described in S1 Table in S1 File. A. Land use based on satellite imagery [28]. B. Proportion of households burning

biomass fuels without a chimney. Estimates derived from Gaussian process regression (kriging) of average fuel use

patterns for each village geocode [20]. C. Proximity to traffic, defined as within 100m of a minor highway or within

500m of a major highway [20]. D. Proximity to percutaneous coronary intervention centers [20]. E. Average

socioeconomic status index score. Estimates derived from kriging of median socioeconomic score for each geocode

[23]. F. Average annual intensity of light-at-night using satellite imagery [27]. Models developed in ArcGIS [38]. All

displayed data is either in the public domain, collected by the investigators, or for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0269650.g002
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used to compare the derivation model incorporating environmental variables to the reduced

model. For both cardiovascular and all-cause mortality, the addition of SEFs improved good-

ness of fit (chi-squared(df): 57.5(16), p<0.001 for cardiovascular mortality; 54.3(16), p<0.001

for all-cause mortality).

Stratification by sex

A sex-stratified analysis found no effect modification of the relationship between SEFs and

either all-cause or cardiovascular mortality.

Adjusting for spatial autocorrelation

After adjustments for spatial autocorrelation, there was no meaningful change in the magni-

tude or direction of the point estimates for the eight SEFs. The spatial autocorrelation model

was consistent with the original frailty estimates.

Model validation

The model incorporating SEFs was tested on a novel validation cohort. In this validation

cohort, the spatial frailty model effectively predicted mortality with time-dependent areas-

under-the-curve of 0.76 for all-cause mortality and 0.81 for cardiovascular mortality.

Table 3. Hazard ratios for individual risk factors.

Risk factor Hazard ratio [95% CI]

Cardiovascular mortality All-cause mortality

Age, per 10 years 1.98 [1.89, 2.08] 2.02 [1.95, 2.08]

Male sex (reference = female) 1.76 [1.59, 1.97] 1.69 [1.57, 1.82]

Turkmen ethnicity (reference = all others) 1.06 [0.96, 1.16] 1.12 [1.05, 1.19]

Married (reference = all others) 0.87 [0.79, 0.97] 0.85 [0.79, 0.91]

Illiteracy (reference = all others) 1.19 [1.06, 1.34] 1.13 [1.05, 1.22]

SES (reference = quartile 1)

Quartile 2 0.92 [0.83, 1.02] 0.85 [0.79, 0.92]

Quartile 3 0.76 [0.68, 0.85] 0.79 [0.73, 0.85]

Quartile 4 0.70 [0.62, 0.80] 0.70 [0.64, 0.77]

Physical activity (reference = tertile 3)

Tertile 1 1.41 [1.26, 1.57] 1.36 [1.26, 1.45]

Tertile 2 1.12 [0.99, 1.27] 1.08 [0.99, 1.17]

Waist circumference (per 1 cm increase) 1.02 [1.01, 1.02] 1.01 [1.01, 1.10]

Hip circumference (per 1 cm increase) 0.99 [0.97, 0.98] 0.98 [0.97, 0.98]

History of IHD or CVA (reference = none) 2.10 [1.89, 2.33] 1.55 [1.43, 1.68]

History of diabetes (reference = none) 1.92 [1.72, 2.14] 1.90 [1.76, 2.06]

History of hypertension (reference = none) 1.93 [1.77, 2.10] 1.47 [1.38, 1.56]

Current tobacco use (reference = never) 1.29 [1.15, 1.44] 1.32 [1.22, 1.42]

Former tobacco use (reference = never) 1.23 [1.05, 1.43] 1.18 [1.06, 1.32]

History of opium use (reference = never) 1.45 [1.32, 1.61] 1.51 [1.41, 1.62]

History of alcohol use (reference = never) 1.01 [0.84, 1.22] 1.08 [0.96, 1.22]

Hazard ratios for cardiovascular and all-cause mortality associated with individual risk factors in the multivariable spatial environmental model. SES = socioeconomic

status. IHD = ischemic heart disease. CVA = cerebrovascular accident (stroke).

https://doi.org/10.1371/journal.pone.0269650.t003
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Population attributable fractions

PAFs for common individual risk factors were characteristically large, including hypertension

(CV mortality 0.42; all-cause mortality 0.25), diabetes (CV 0.41; all-cause 0.35), and current

tobacco use (CV 0.16; all-cause 0.12). PAFs were substantial for SEFs, including ambient

PM2.5 (highest quartile, CV mortality 0.14; all-cause mortality 0.15), biomass fuel use without

chimney (CV 0.24; all-cause 0.15), kerosene fuel use without chimney (CV 0.15; all-cause

0.07), and proximity to traffic (CV 0.11; all-cause 0.03). These PAFs are illustrated in S2 Fig in

S1 File, along with PAFs for several common individual risk factors. PAFs for all categorical

predictors can be found in S3 Table in S1 File.

Discussion

Statement of principal findings

In this analysis of the Golestan Cohort Study, several SEFs predicted cardiovascular or all-

cause mortality in the spatial survival model after adjusting for individual risk factors. When

applied to a novel validation cohort, the model effectively predicted both cardiovascular and

all-cause mortality.

Ambient air pollution. In our model, ambient air pollution levels were associated with

all-cause and cardiovascular mortality after adjusting for other environmental risk factors in

the multivariable model. Additionally, PAFs identified a large burden of mortality attributable

to ambient air pollution. This is consistent with the existing literature demonstrating associa-

tions between ambient PM2.5 and both cardiovascular and all-cause mortality [3–7].

Table 4. Hazard ratios for eight spatial environmental factors.

Spatial environmental factor Hazard ratio [95% CI]

Cardiovascular mortality All-cause mortality

Ambient PM2.5 (μg/m3, reference = quartile 1)

Quartile 2 1.11 [0.99, 1.25] 1.08 [0.99, 1.16]

Quartile 3 1.09 [0.98, 1.24] 1.09 [1.01, 1.18]

Quartile 4 1.17 [0.98, 1.39] 1.20 [1.07, 1.36]

Household fuel use (reference = gas)

Biomass without chimney 1.36 [0.99, 1.87] 1.23 [0.99, 1.53]

Biomass with chimney 1.11 [0.88, 1.39] 1.05 [0.89, 1.22]

Kerosene without chimney 1.19 [1.01, 1.41] 1.09 [0.97, 1.23]

Kerosene with chimney 0.98 [0.83, 1.17] 0.98 [0.87, 1.11]

Mixed fuel use 0.98 [0.87, 1.09] 1.02 [0.87, 1.20]

Proximity to traffic (reference = no) 1.13 [1.01, 1.27] 1.04 [0.96, 1.12]

Distance to PCI center (per 10 km) 1.02 [1.004, 1.03] 1.01 [1.004, 1.02]

Neighborhood SES score 0.75 [0.45, 1.24] 0.79 [0.56, 1.14]

Population density (per 1000 persons/km2) 0.98 [0.96, 1.01] 0.99 [0.98, 1.02]

Light at night intensity 1.00 [0.99, 1.01] 1.00 [0.99, 1.01]

Land use (reference = urban)

Cropland 0.93 [0.76, 1.12] 1.07 [0.94, 1.22]

Shrubland 1.03 [0.82, 1.30] 1.05 [0.89, 1.24]

Grassland/savanna/barren 0.91 [0.72, 1.15] 1.02 [0.87, 1.21]

Hazard ratios for cardiovascular and all-cause mortality associated with eight SEFs in the derivation model, after adjustment for individual risk factors.

SES = socioeconomic status.

https://doi.org/10.1371/journal.pone.0269650.t004
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Household air pollution. We found that household kerosene fuel use without a chimney

was associated with both cardiovascular mortality and all-cause mortality. This is consistent

with a previous study of the GCS that found associations between cumulative kerosene expo-

sure and both cardiovascular and all-cause mortality [39]. Additionally, we observed modest

evidence of an association between the use of biomass fuel without a chimney and both cardio-

vascular and all-cause mortality. This is consistent with the existing literature on the cardiovas-

cular effects of indoor burning of solid biomass [3, 5, 6]. Additionally, PAF calculations

illustrate a high burden of cardiovascular and all-cause mortality attributable to biomass and

kerosene fuel burning.

Proximity to traffic. In our model, residence close to highways increased the hazard of

cardiovascular mortality. Although this hazard ratio was only 1.13, many individuals live near

major roadways, resulting in a PAF of 0.11 for cardiovascular mortality. Importantly, this asso-

ciation was observed after adjusting for ambient air pollution and socioeconomic environment

in the multivariable model. This suggests that the calculated hazard may be due chiefly to traf-

fic-related noise or to another unmeasured variable associated with proximity to traffic. These

findings are consistent with prior studies that have demonstrated associations between prox-

imity to traffic and cardiovascular events, particulary IHD and stroke [7, 9].

Distance to health care services. We found that greater distance to PCI centers increased

the hazard of both cardiovascular and all-cause mortality. These results align with a previous

cohort study demonstrating that distance to hospital is an independent predictor of mortality

among patients with incident MI in the community [11].

Several other SEFs did not demonstrate clear relationships in the multivariable model:

neighborhood socioeconomic status, local population density, nighttime light, and land use.

Low socioeconomic status neighborhood environment previously was shown to predict car-

diovascular events [12, 40], and did so in our univariate model for cardiovascular mortality,

but not in the multivariable environmental model. This suggests that socioeconomic environ-

ment may be a proxy for other environmental risk factors (e.g., air pollution) that were

included in our model.

Strengths and limitations

A key strength of our model was the simultaneous testing of multiple environmental risk fac-

tors. To date, most studies of environmental risk look at a single environmental risk factor

against a background of individual characteristics. This can lead to confounding by other

unmeasured environmental factors. In this study, we incorporate a diversity of spatially

resolved SEFs in a prospective model predicting cardiovascular mortality. Additionally, the

study was performed in a rural, low-income setting, helping to bridge a gap in the medical

literature.

This study also benefitted from the use of the GCS dataset, which included a large sample

size and excellent follow-up rate, as well as systematic methods to identify mortality and attrib-

utable causes of death. Additionally, our spatial random effects survival model controlled for

possible spatial dependency in the data.

Our study had several limitations. First, exposures were assigned according to village- or

neighborhood-level geocodes, rather than specific home addresses (due to human subjects-

related privacy considerations). This could result in exposure misclassification and bias our

findings towards the null. However, given the small sizes of villages, we estimate the average

distance between assigned geocodes and true home address to be less than 500 meters. With

the exception of proximity to traffic, none of our modeled environmental exposures vary dra-

matically over this distance.
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Second, the spatial environmental factors in our model were assessed at the year of enroll-

ment. This may misclassify exposure for participants exposed to SEFs prior to enrollment, for

participants migrating to new locations with different exposures, or if the exposure varied over

time. Similarly, given that environmental exposures were assigned at enrollment, our model

does not account for acute exposures that may result in acute cardiovascular events (e.g. acute

air pollution exposure triggering coronary plaque rupture). Again, we would expect these fac-

tors to bias our findings towards the null.

Third, household fuel use and ventilation were used as proxies for air pollution exposure.

Although not optimal, this method has been used previously to study air pollution exposures

in Golestan [39], as well as in studies on the association between household air pollution and

childhood mortality [41].

Fourth, the socioeconomic environment variable used wealth indices from study partici-

pants and could be inaccurate if the mean wealth index at each geocode is not representative of

the community.

Finally, although we have adjusted for eight SEFs in the environmental model, there

remains the possibility of residual confounding from unmeasured SEFs (e.g. climate; tempera-

ture variation; noise pollution; toxins in water and food) and individual risk factors (e.g.

dyslipidemia).

Conclusions

We tested the prospective associations between eight environmental factors and cardiovascular

and all-cause mortality in a large cohort in a low-income setting. Our findings demonstrate

that the burden of disease attributable to the environment may be as large as traditional cardio-

vascular risk factors, and thus represents a critical opportunity for targeted policies and pro-

grams. Furthermore, these findings illustrate the utility and feasibility of incorporating

environmental data in survival models, even in low-income settings.

A growing literature illustrates how health care providers, governments, and charities can

identify and intervene on environmental exposures at the individual and population levels [8,

42, 43]. We anticipate that these findings and analytic approach will stimulate further studies

to promote better health for populations and the environment worldwide.
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