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The generation and use of avian antibodies is of increasing interest in a wide variety of applications
within the life sciences. Due to their phylogenetic distance, mechanisms of immune diversification and
the way in which they deposit IgY immunoglobulin in the egg yolk, chickens provide a number of
advantages compared to mammals as hosts for immunization. These advantages include: the one-step
purification of antibodies from egg yolk in large amounts facilitates having a virtually continuous
supply; the epitope spectrum of avian antibodies potentially grants access to novel specificities; the
broad absence of cross-reactivity with mammalian epitopes avoids assay interference and improves the
performance of immunological techniques. The polyclonal nature of IgY antibodies has limited their use
since avian hybridoma techniques are not well established. Recombinant IgY, however, can be generated
from mammalian monoclonal antibodies which makes it possible to further exploit the advantageous
properties of the IgY scaffold. Moreover, cloning and selecting the immune repertoire from avian
organisms is highly efficient, yielding antigen-specific antibody fragments. The recombinant approach is
well suited to circumvent any limitations of polyclonal antibodies. This review presents comprehensive
information on the generation, purification, modification and applications of polyclonal and monoclonal

IgY antibodies.

© 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights

reserved.

1. Introduction

Antibodies are likely to remain the affinity molecules of choice
in a wide variety of analytical, biochemical, and medical
approaches. This is primarily because they have familiar properties
and their use is well-established in many applications. Moreover,
their specificities and biological effects can now be readily
manipulated using standard molecular biological techniques. In
most cases mammalian antibodies are perfectly adequate. Unfor-
tunately, their involvement in the immune response and immune-
mediated pathologies along with a high degree of conservation
among mammals can, however, make them susceptible to
unwanted interactions with conserved proteins, which can in turn
hamper their use in certain approaches.

The immunization of chickens provides an attractive alternative
[1-3] to using mammals as hosts for antibody production. IgY is the
major low molecular weight immunoglobulin in oviparous animals.

* Corresponding author. Tel.: +49 40 428386982; fax: +49 40 428387255.
E-mail address: spillner@chemie.uni-hamburg.de (E. Spillner).

This type of antibody has distinctive properties which can be
exploited in various ways in research, diagnostics and therapy. One
important advantage arises from the phylogenetic distance and
genetic background that distinguishes birds from mammals. This
improves the likelihood that an immune response will be elicited
against antigens or epitopes that may be non-immunogenic in
mammals. The deposition of IgY into the egg yolks of the immu-
nized bird then provides an elegant source of polyclonal immu-
noglobulins. Since polyclonal IgY can be recovered from the eggs of
laying hens for prolonged periods, this approach provides a long-
term supply of substantial amounts of antibodies. In addition,
such antibodies exhibit biochemical and structural features, which
can render them superior in virtually all types of immunoassays,
especially those designed to detect molecules in specimens like
mammalian blood or serum [4,5].

Due to the technical difficulties of avian hybridoma techniques,
and the problem that existing immortalized B cell lines (such as the
ALV-induced bursa-derived lymphoma line DT40) undergo Ig gene
conversion during in vitro culture [6], the production of chicken
antibodies languished somewhat until it became possible to
generate monoclonal IgY through the in vitro selection from
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combinatorial antibody libraries by phage display [7]. In the
chicken, only a single functional V and ] segment is present in the
light and heavy chain gene loci. As a result, diversification of the
avian immune repertoire is introduced into the rearranged V(D)J
segments by gene conversion using pseudo V genes as donors. As
will be seen, this greatly simplifies the construction of combina-
torial recombinant antibody libraries while the selective power of
phage display provides a way of accessing unique binders.

This review focuses on the immunological background and
novel approaches that have been made possible as a result of avian
antibody technologies. It suggests that the chicken can be more
widely used for generating both native, and recombinant IgY.

2. Immunological, structural and biochemical characteristics

IgY is the predominant low molecular weight serum immuno-
globulin isotype in amphibians, reptiles, and birds. This designa-
tion derives from its occurrence in egg yolk, and, as demonstrated
in 1893, it transfers immunity from the hen to the developing
embryo [8].

Among the three avian isotypes (IgY, IgM and IgA), IgY is the
most abundant in serum, with concentrations ranging from 5 to
15 mg/ml in laying hens [9,10] compared to the lower concentra-
tions of IgM (1—3 mg/ml) and IgA (0.3—0.5 mg/ml). In anseriform
birds like ducks there exists in addition to IgY, an alternatively
spliced version of IgY, the IgY AFc. This variant lacks the Fc region
and therefore does not have the Fc-mediated secondary effector
functions. It is also found in relatively substantial amounts
(1-3 mg/ml) [11].

The organs in the chicken responsible for antibody production
differ significantly from those in mammals. The central (primary)
lymphoid organs are represented by the thymus and bursa of
Fabricius (BF), while peripheral (secondary) lymphoid organs
include the spleen, Harderian glands, bone marrow, conjunctival-
associated lymphoid tissue (CALT), bronchial-associated lymphoid
tissue (BALT) and gut-associated lymphoid tissue (GALT). Chickens
do not have lymph nodes as such, but instead have lymphoid
nodules associated with the lymphatics [12].

The BF is located above the cloaca in the caudal body cavity and
plays a cardinal role in avian B cell development and antibody
diversification [13]. Following colonization by a small number of B
cell precursors, cells expressing surface immunoglobulin undergo
rapid proliferation such that at about two months of age there are
approximately 10% follicles in the BF [14]. A few weeks after
hatching, about 5% of the bursal cells migrate each day into the
blood and then into the spleen, thymus, and caecal tonsils, where
they subsequently produce immunoglobulins. The spleen is the
largest secondary lymphoid organ and is important for antigen
processing and in the production of antibodies after hatching [15].

Although IgY is essentially an immunoglobulin with character-
istics and functions similar to IgG, it possesses a slightly different
structure which provides its distinct properties and biochemical
behaviour. IgY has a slightly higher molecular mass (approximately
167 kDa) than its mammalian counterpart [16] due to the presence
of four constant- and one variable Ig heavy chain domains. The
nucleotide sequence of the chicken upsilon (v) heavy chain [17]
reveals that as with the more ancient amphibian IgY [18,19], the
avian molecule contains a domain (Cu2) which is conserved in
mammalian IgE, but was condensed to form the flexible “hinge”
region in mammalian IgG [17]. An orthologous domain must
therefore have existed in the IgY-like ancestor prior to duplication
and subsequent divergence from the mammalian lineage.

In mammals, IgG forms immune complexes and facilitates
opsonisation, activates the complement system and provides
protection for the foetus upon transport across the placenta. IgE can

sensitize effector cells and mediates anaphylactic reactions [20]. IgY
appears to combine mammalian IgG- and IgE-like functions since it
not only provides defence against infections [21], but may also
mediate anaphylaxis [22]. In contrast to mammals, basophils are
much more numerous in birds than mast cells [23] and antibody-
dependent hypersensitivity and fatal systemic anaphylaxis
[22,24,25] are mainly mediated by these cells [26]. This constitutes
indirect evidence for the presence of IgY receptors on effector cells.
IgY binds to monocytes with IgG-like kinetics [27], despite its
putative IgE like structure as predicted from the chicken v heavy
chain primary sequence [17]. Recently, the chicken leucocyte
receptor complex (LRC) was analysed and four major types of
chicken Ig-like receptors (CHIR) were identified: CHIR-A, activating
receptors displaying two extracellular C2-type Ig-domains, CHIR-B,
inhibitory receptors also displaying two C2-like Ig-domains, and
two types of CHIR-AB with one or two C2-like Ig-domains, which are
reported to have bifunctional potential, since they display features
of both inhibitory and activating receptors [28,29]. So far, CHIR-AB1
and its recently identified homologues are the only receptors in the
LRC of known specificity [30]. It functions as a classical Fc receptor
expressed on chicken B cells, macrophages, monocytes, and NK cells
[31]. In contrast to IgG and IgE receptors, CHIR-AB1 binds in a similar
way as FcoRI or FcRn with a 2:1 stoichiometry. Its affinity is
comparable with the values reported for IgA binding to its receptor
[32]. In contrast to mammalian IgG or IgE the CHIR-AB1 binding site
was mapped to the upsilon heavy chain domains 3 and 4 (Cu3/Cu4)
interface, a finding that together with the phylogenetic relationship
of the antibodies and their receptors indicates a substantial shift in
the nature of Fc receptor binding during evolution [33,34]. A specific
interaction between CHIR-AB1, which provides an inhibitory motif
in its cytoplasmic tail and the Fc portion of IgY was shown to
enhance calcium release in a chicken B cell line expressing CHIR-AB1
and the common activating y-chain [31]. The activation required
aggregation of IgY suggesting that immune complexes are required
to trigger a response [31]. By comparing CHIR-AB1-like sequences in
databases, 18 homologues of CHIR-AB1 have been identified and
cloned. These comprised non-IgY-binding and IgY-binding isoforms
displaying different affinities [30].

An additional FcR-related gene designated Gallus gallus FcR
(ggFcR) was recently identified [35]. The receptor which selectively
binds IgY consists of four extracellular C2-set Ig domains. Surpris-
ingly, ggFcR is closely related to chicken LCR encoded genes, but is
located on chromosome 20 distinct from the LCR and FcR gene
clusters. Recently a chicken yolk sac IgY receptor (FcRY) responsible
for IgY transport from yolk to the embryonic circulation was char-
acterized as a homologue of the mammalian phospholipase A2
receptor (PLA2R), a member of the mannose receptor family [36].
Deposition in the yolk however is mediated by another receptor not
yet cloned [10] the specificity of which has been addressed by
different approaches. One factor restricting the deposition of IgM
and IgA in the yolk appears to be their polymeric nature [37]. The Fc
region structure may also be important since anseriform species
like ducks preferentially incorporate full-length IgY into the egg
yolk over the truncated isoform IgY AFc [38]. Site-specific muta-
genesis experiments using mammalian IgG sequences and
extrapolation of this information to the upsilon heavy chain sug-
gested the Cu2/Cu3 interface, especially residues 362—365, and
positions 550—553 within Cu4 as essential for the interaction with
the receptor [39]. Besides its function and interaction with Fc
receptors, IgY differs from IgG in a variety of aspects which are
more directly attributable to the molecule itself. As mentioned
earlier, the phylogenetic distance between the avian immune
system and mammalian proteins most likely increases the immune
response towards the respective antigens. This means that IgY can
often be raised against epitopes on highly conserved proteins when
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other mammals fail to provide an immunological response [40,41].
The extent to which the overall antibody affinities of mammalian
IgG and IgY relate to each other is still under investigation but
monoclonal IgY antibody fragments generally exhibit reactivities at
least comparable to those of IgG (unpublished observations).

Compared to mammalian IgG IgY is lacking the flexible hinge
region and, thus, thought to be a more rigid immunoglobulin. This
hinge-less structure is also found in mammalian IgE. IgY therefore
exhibits structural features of both mammalian IgE and IgG,
a finding also supported by a structural analysis of the IgY Fc
portion [42]. Potentially reduced molecular flexibility might be
associated with decreased susceptibility to proteolytic degradation
or fragmentation. Nevertheless, IgY can be fragmented by papain or
trypsin [43]. IgY, like mammalian IgG, is reasonably stable and can
be stored for several months under standard conditions [44]. A
serious limitation of IgY for therapeutic applications, however, is its
reduced stability at low pH [44,45]. In contrast to IgG the antigen
binding activity of IgY decreases significantly under acidic condi-
tions. As demonstrated by circular dichroism analyses, loss of
activity of chicken IgY is accompanied by significant conforma-
tional changes, a fact attributed to fewer intramolecular disulphide
linkages than, for example, rabbit IgG [46].

3. Generation of polyclonal and monoclonal IgY

Today, production of polyclonal IgY by immunization of chickens
is offered on a routine basis by several commercial companies. In
general, this approach is subject to the same constraints as the
conventional immunization of mammals. Nevertheless, the advan-
tages of chickens being a non-mammalian species [47] and the
bloodless isolation of immunoglobulins have perhaps not yet been
fully appreciated and exploited.

Egg yolk collected after immunization can provide concentra-
tions of IgY in the range of 10 mg/ml as starting source for the
recovery of the immunoglobulin. Relatively simple methods may be
used to extract the antigen-specific immunoglobulin from egg yolk
with several commercial kits being available. The decision to use
a particular protocol is usually brought about by the intended
downstream applications as well as the expertise and equipment
available [48]. One of the most frequently used procedures involves
protein precipitation with ammonium sulphate, dextran sulphate
or polyethylene glycol (PEG). A particularly efficient method
comprises two successive precipitations by using 3.5% PEG to
remove any lipids, followed by 12% PEG to precipitate the IgY. A
variant protocol includes an emulsification step, adding one
volume of chloroform to one volume of egg yolk rather than using
fractional precipitation [49,50].

IgY can also be purified by conventional ion exchange chroma-
tography [51]. Another strategy, useful as an additional “polishing”
step, relies on thiophilic adsorption chromatography (TAC) in
which the target protein adsorbs to a sulphone thioether ligand in
an interaction mediated predominantly by aromatic residues
[52—54]. The elution conditions are very mild compared with
conventional methods used to purify antibodies, such as protein A,
G, or L, none of which bind to IgY. Nevertheless, purification
strategies or polishing steps based on affinity ligands might be
helpful, in particular when high purity is desired. Anti-IgY anti-
bodies and synthetic ligands [55,56] are available, but this spec-
trum of reagents could be broadened by using soluble IgY receptor
constructs or other affinity molecules as affinity medium. For
instance, SSL7, the superantigen-like protein 7 from Staphylococcus
aureus can be used for affinity purification of IgY (unpublished
data). Additionally, recombinant expression of CHIR in mammalian
cells and in Escherichia coli is highly efficient and can potentially
provide a highly homogeneous protein fraction (unpublished data).

Polyclonal preparations of IgY are suitable for many routine
applications. In some diagnostic approaches, however, the use of
monoclonal reagents is imperative for accuracy, reproducibility and
standardisation. Even though hybridoma technology has been
applied to avian species, there are technical obstacles, which
together with low secretion rates of fusion lines limit its efficacy
[57,58]. These obstacles can, however, be circumvented by using
recombinant antibody technologies to address the need for
monoclonal IgY.

An antibody essentially represents the sum of its antigen-
binding moieties and the Fc portion which is essential for dimer-
ization, effector functions and facilitates detection using conven-
tional secondary reagents. When deciding on a reagent for
a particular application, it is important to consider whether an
authentic fully avian antibody is required or whether parts may in
fact be derived from other species. Both avian IgY and chimeric IgY
with avian constant domains and murine binding moieties have
recently been produced [59,60]. In these studies, despite their
heterologous origins, transfected mammalian cells were able to
stably express different IgY-based constructs.

The successful secretion of immunoglobulins from mammalian
cells requires that chaperones interact with nascent immunoglob-
ulin chains and guide their folding and assembly. Binding immu-
noglobulin protein (BiP) binds transiently to most domains of the Ig
heavy chain (CH) and some variable regions of the light and heavy
chain (VH and VL) [61,62]. CH1 provides a site for covalent
attachment of CL and interacts stably with BiP in the absence of
light chains [63]. Pronounced differences in the amino acids
sequences within the antibody constant domains of antibodies
from birds and mammals and the potential loss of specific inter-
action sites for chaperones with the nascent immunoglobulin
chains might conceivably affect the efficiencies with which
mammalian cells can secrete avian antibodies. For instance, IgY was
found to be more efficiently secreted than IgG1, possibly as a result
of less stringent control by the ER secretion machinery [60]. Since
having efficient and economic ways of producing antibodies is
always desirable, yields might in some cases be improved by using
the binding moieties from pre-existing murine hybridomas to
generate chimeric IgY. Moreover, the enormous diversity of the
synthetic antibody libraries available today means that immune
animals are not necessarily needed to derive suitable binders.
Indeed, frameworks of synthetic human [64] and avian [65] vari-
able regions have been successfully converted to their IgY deriva-
tives and produced in eukaryotic hosts.

The primary sequence of the IgY heavy chain provides two
potential N-linked glycosylation sites, both of which are located in
the Fc region, namely Asn308 and Asn407 [17]. Carbohydrate
analysis of native IgY revealed mono-glucosylated oligomannose
type oligosaccharides, oligomannose type oligosaccharides and
biantennary complex type oligosaccharides [66]. The first two of
these have been reported as being the major glycoforms in IgY from
different species [66—68] and are attributed to the Cu3 glycosyla-
tion site [69]. Additionally, a terminal sialic acid was identified in
native IgY. No significant differences between the overall glyco-
sylation pattern of native and recombinant IgY produced in
mammalian cells could be detected using common lectins, thereby
confirming that recombinant IgY from this source closely resembles
the native immunoglobulin [60]. However, recombinant produc-
tion of IgY in different hosts is likely to result in variable glycosyl-
ation patterns. As a result, the biochemical properties of
recombinant and native IgY are likely to differ. Since glycosylation
of immunoglobulins is not only implicated in a variety of physio-
logical mechanisms but also influences their physicochemical
behaviour, recombinant IgY may not always be suitable for all the
potential applications envisaged for it.
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To summarise, authentic polyclonal IgY is relatively easy to
generate while recombinant antibody technology provides access
to avian monoclonal antibodies. Moreover, pre-existing antibodies
can now be converted to IgY when necessary for specific individual
applications.

4. Therapeutic potential of IgY

Eggs constitute a very common component of our diet and are
therefore tolerated by the human immune system. Topical
administration of IgY may therefore represent an attractive
approach to immunotherapy with a reduced risk of toxic side
effects. While it is now widely accepted that IgY applied to human
mucosal surfaces does not exhibit any immunogenicity, potentially
detrimental effects might be anticipated in patients that are
sensitized against egg proteins (including IgY), but this aspect is
discussed later in the context of assay performance (see Section 6).
Although immunogenic when applied systemically, the oral uptake
of IgY antibodies opens up new possibilities for therapeutic inter-
ventions with respect to a variety of pathologies including, but not
limited to, pulmonary or gastrointestinal infections (for overview
see Table 1) [70]. Such approaches have been effective in reducing
bacterial and viral loads in animal studies as well as in clinical trials
in human cohorts [71-73].

Besides being suitable in approaches that target infective
processes, IgY has been suggested for blocking, inhibition and
delivery in those pathological conditions which demand specific
reagents in substantial amounts. Chicken antibodies are well
established as anti-toxins and/or for passive vaccination. For
instance, specific anti-venom IgY can neutralize bacterial toxins
[117] and be used to treat snake bites [118—125]. Indeed, anti-
venom IgY can provide a higher bioactivity than antidotes raised
in horses [126]. In such applications, egg yolks can provide
a continuous supply of potentially superior reagents.

Today’s consumers have become increasingly interested in foods
that supposedly promote health and reduce the risk of disease.
Incorporating egg yolks of immunized chickens into certain food-
stuffs, for example drinking yoghurt or mouthwash can provide the
consumer with a functional food that can potentially protect
against pathogens (so-called “edible vaccines”) without him or her
having to consume synthetic pharmaceuticals [107,127—130]. A
potential drawback of IgY in some therapeutic or prophylactic
approaches is its reduced stability under harsh conditions such as
an acidic environment. This is especially true for gastrointestinal
applications. Different strategies to improve the therapeutic effi-
cacy have therefore been evolved including a variety of techniques
for stabilizing or controlling the release of IgY [86,131—133].

So far, the therapeutic interventions mentioned above are all
confined to polyclonal native IgY obtained from egg yolk after
immunization of hens. In contrast, the therapeutic potential of
recombinant monoclonal IgY molecules remains to be explored, but
it is perhaps here where the greatest potential of IgY paratopes
fused to human Fc regions lies.

5. Avian antibody libraries

Applying combinatorial approaches in biology and chemistry
demands high efficiency and where possible, simple and straight-
forward techniques. Chicken therefore provide an ideal basis for
generating large immune antibody fragment libraries as compared
to most mammalian species [134]. The inherent complexity of
mammalian diversification mechanisms can make it difficult to
recover antibody sequences. This is especially true in humans and
mice. The genetic organization of these mammals is based on the
modular use and recombination of a broad panel of V, D, and ]

segments which are further diversified by several different mech-
anisms. Therefore, accessing and amplifying mouse and human
repertoires requires a large set of different oligonucleotides to cover
the entire set of V segments which is prone to preferential ampli-
fication of high abundance transcripts and the potential loss of
particular V segments during PCR. In chickens, genetic diversifica-
tion is achieved differently. Both the heavy and light chain loci
consist of single functional V and ] genes, (and D segments for the
heavy chain) that are rearranged using conventional V(D)] recom-
bination mechanisms. In order to generate a large, diverse antibody
repertoire and to allow affinity maturation upon antigen priming
avian species utilize a unique mode of DNA recombination, termed
gene conversion (reviewed in [135]). In this process, short DNA
segments from non-functional V pseudogenes located upstream
are inserted into the rearranged gene. These modulate the primary
structure and, hence the binding characteristics of the resulting
immunoglobulin. However, the 5'- and 3’-ends of the rearranged
gene remain unaltered thus allowing the diversity of the chicken
humoural immune system to be recovered by the use of only two
pairs of primers.

The first avian repertoires were cloned more than a decade ago
[134,136]. Somewhat surprisingly, at first little attention was paid to
those libraries, a fact that might be attributed to a lack of familiarity
with chicken immunization and the need for established
recombinant antibody technologies. Over the past few years,
chicken libraries have attracted wider interest and accordingly,
reports on the isolation of chicken-derived antibody fragments
have steadily increased (for an overview see Table 2).

The targets for these antibodies have included difficult antigenic
structures such as haptens, highly conserved proteins and complex
crude extracts. Interestingly, the avian VH/VL scaffold has been
employed not only for the generation of immune but also naive as
well as semi-synthetic single chain antibody (scFv) libraries [143].
This approach allows entirely avian recombinant antibody formats
aimed especially at diagnostics.

The exclusive use of single variable region genes makes the
humanization of avian antibody fragments more practical than the
humanization of rodent antibodies with their plethora of variable
region genes. This could be shown for the engineering of an anti-
prion and an anti-IL12 antibody [153,154]. Human frameworks
and CDR grafting followed by further optimization were used to
provide the proof of principle for this approach.

In summary, the generation and use of avian immune repertoire
libraries represent a powerful approach with the potential to both
complement established methods and to provide novel and original
approaches. In addition, the different spectrum of epitopes recog-
nized by the avian immune system could facilitate the development
of novel therapeutics, particularly if the technology of chimeric
chicken/mammalian fusions can be fully exploited.

6. Performance of IgY in immunoassays

Generally, one of the most intriguing and extraordinary char-
acteristics of IgY is the lack of most, if not any, interactions with
mammalian immune components. This makes IgY especially suited
to applications in which the use of its mammalian counterparts is
prone to unwanted cross-reactivities. For instance, in proteomics,
pretreating of serum samples with IgY to specifically neutralize
highly abundant serum components was found to improve down-
stream analyses [155]. In another study the identification of
underrepresented serum proteins and disease marker candidate
discovery was simplified when specific IgY was used as a blocking
reagent [156,157]. This approach was facilitated by the general
characteristics of IgY such as the ease of production and the low
incidence of cross-reactivity.
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Table 1
Overview of therapeutic approaches in humans and animals [71,72,74—117].

Disease

Antigen

Effect

Authors

Bovine coronavirus
Candida albicans

Cholera
Clostridium difficile

E. coli

Glioma

Heliobacter pylori
Human and bovine
rotavirus

Human enterovirus
Type 71
Infectious bursal
disease virus
Inflammatory
bowel disease
Influenza

Listeria monocytogenes
Malignant diseases

P. aeruginosa

Porcine epidemic
diarrhoea virus
S. aureus

S. mutans

Salmonella spp.

White spot
syndrome virus
Xenograft rejection

Y. ruckeri

Inactivated bovine coronavirus
Candida ssp., C. albicans

C. albicans antigen
Killed O1 and 0139, rCTB
rColonization factor

Heat-extracted antigens from ETEC
strain 431

E. coli B16-4, enterotoxin, colonization
factor antigen |

K88, K99, 987P fimbrial adhesions

F18ab-fimbriae

Fimbrial antigens of ETEC K88+
Bacterial suspension of EPEC

E. coli 078:K80

ETEC K88+, fimbrial antigen

B subunit protein of Stx1

Membrane fractions of rat C6 cells
enriched in metalloproteolytic activity
Cell lysate, H. pylori 58 kDa antigen
Purified human rotavirus

Human group A rotavirus
Bovine rotavirus
Inactivated human EV71

IBDV
Tumour necrosis factor (TNF)

H5N1 virus vaccines, inactivated
H1N1 virus

Swine influenza virus vaccine

L. monocytogenes

P110 purified from human stomach
cancer MGC-803 cells

Mixture of formalin-treated
pathogenic bacteria

P. aeruginosa

Concentrated PEDV

Mixture of formalin-treated
pathogenic bacteria
Staphylococcal enterotoxin B
S. mutans MT8148 serotype c

S. mutans glucan binding protein B
Cell-associated glycosyltransferrases

Fimbriae of SEF14

S. thyphimurium and S. dublin

S. enteritidis

S. enteritidis and S. thyphimurium

Inactivated WSSV and DNA

Alpha-Gal antigen epitopes and other
porcine aortic endothelial cell antigens
Alpha-gal epitope

Formalin-killed cells of serovar 1
(RS1154) and serovar 2 (RS1153)

Passive protection in neonatal calves
Reduction of inherence and inhibition of
biofolm formation

Protection against oral candidiasis in mice
Protection in suckling mice

Inhibition of adherence and protection from
infection in hamsters

Prevention of fatal bovine colibacillosis in
neonatal calves

Prevention of diarrhoea in rabbits

Passive protection of neonatal pigs against fatal
colibacillosis

Reduction of diarrhoea and death in infected pigs
Passive protection in neonatal pigs

Recognition of several bacterial virulence factors
Improvement of intestinal health indices and
immunological responses in chickens

Reduction of diarrhoea in pigs

Protection from toxin challenges in mice
Inhibition of spreading, migration and

invasion of C6 cells in vitro

Inhibition of infection in mice

Prevention of development of gastroenteritis
Virus neutralization in suckling mice

Protection in suckling mice

Protection against homologous BRV in calves
Reduction of morbidity and mortality in
infected mice

Passive protection in chicks

Reduction of inflammatory end points in rats
Protection from infection in mice

Neutralizing of virus A/HIN1
Growth inhibition
Recognition of gastrointestinal system cancers

Growth inhibition in vitro

Retention of specific IgY in human oral cavity
Prevention of PA colonization in humans
Prevention of infection in humans
Immunoprophylactic effect in piglets

Inhibition of production of enterotoxin A

Passive protection in mice and rhesus monkeys
Protection against dental caries in rats

Mild reduction of S. mutans in human saliva
Protection against dental caries in rats
Reduction of smooth surface lesions and sulcal
surface caries

Passive protection in mice

Protection in neonatal calves

Inhibition of adhesion and invasion of S.E.

In vitro binding and growth inhibition of
bacterial cells

Protection in crayfish

Inhibition of pig-to-human xenograft rejection

Protection against porcine xenograft rejections
Passive protection in rainbow trouts

Ikemori et al. [74]
Fujibayashi et al. [75]

Ibrahim et al. [76]
Hirai et al. [77]
Mulvey et al. [78]

Ikemori et al. [79]
O’Farrely et al. [80]
Yokoyama et al. [81]

Imberechts et al. [82]
Marquardt et al. [83]
Amaral et al. [84]
Mahdavi et al. [85]

Li et al. [86]
Wang et al. [87]
Hensel et al. [88]

Attallah et al. [89]
Yolken et al. [90]
Hatta et al. [91]
Ebina et al. [92]
Kuroki et al. [93]
Liou et al. [94]

Eterradossi et al. [95]
Worledge et al. [96]
Nguyen et al. [97]
Tsukamoto et al. [98]

Sui et al. [99]
Yang et al. [100]

Sugita-Konishi et al. [101]

Carlander et al. [102]
Kollberg et al. [71]
Nilsson et al. [103]
Kweon et al. [104]

Sugita-Konishi et al. [101]

LeClaire [105]

Otake et al. [106]
Hatta et al. [107]
Smith et al. [108]
Kruger et al. [72]

Peralta et al. [109]
Yokoyama et al. [110]

Sugita-Konishi et al. [111]

Lee et al. [112]
Luetal. [113]
Fryer et al. [114]

Leventhal et al. [115]
Lee et al. [116]

In the case of immunoassays, homologous mammalian immu-
noglobulins may have deleterious effects on the performance of
many different types of immunoassays. In particular, approaches
using immunoglobulins as bioactive molecules to capture or detect
the analyte are often affected by heterophilic antibodies and/or

high levels of non-specific binding. In addition, antigen-
independent specific binding via immunoglobulin Fc receptors or
lectins and non-immunoglobulin-based interactions, e.g. those
mediated by complement factors [158], can result in false-positive
and false-negative results [159,160]. As recently summarized [159],
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Source Authors

Table 2

Overview of established avian libraries [40,134,136—151].
Antigens Size
Allergens (rFel d 1, nAmb a 1, YJV extract) 7.2 x 10®
BSA, lysozyme, bovine thyroglobulin 2.7 x 107
C-reactive protein (CRP) 3 x 107
Domoic acid-BSA 3.1 x 108

Fluorescein-BSA

9.6 x 107; 5 x 10° (scFv-libraries),

Spleen and bone marrow
Bursal lymphocytes of naive
chicken

Spleen and bone marrow
Spleen and bone marrow
Spleen and bone marrow

Finlay et al. [137]
Davies et al. [134]

Leonard et al. [138]
Finlay et al. [139]
Andris-Widhopf et al. [140]

3.8 x 107 (chimeric Fab-library)

Fragments of SARS-CoV spike protein 5 x 107
Halofuginone
(chain-shuffled library)
Haptens, proteins, viruses 2 x 10°
Human clan IIl Ig >8.5 x 108
Human LDL nd
IBDV strain 002/73 1.5 x 10° and 7.5 x 10’
Live endothelial progenitor cells 2.7 x 108
Mixture of aldolase and actate dehydrogenase 6.7 x 108
of Plasmodium falciparum, variant surface
glycoprotein of Trypanosoma sp., and
purified malignant catarrhal fever virus
Mixture of autoantigens 2 x 10%and 1 x 108
1.4 x 107
1 x 107

Murine serum albumin
Non-structural protein (NSP) 3ABC from
foot-and-mouth disease virus (FMDV)

Alpha-enolase 24 x 104 35 x 10°

HA from H5N1 1.65 x 108
Synthetic peptide 5 x 107
TNP conjugate Insect venoms 5 x 108

2.5 x 107 (original library) 1.2 x 107

Spleen
Spleen

Lee et al. [141]
Fitzgerald et al. [142]

Naive bursae
Bone marrow and spleen

Van Wyngaardt et al. [143]
Cary et al. [40]

Spleen Sato et al. [144]

Spleen Sapats et al. [145]
Spleen and bone marrow Bowes et al. [146]
Spleen Chiliza et al. [147]

B cells from bone marrow and
peripheral blood lymphocytes

Hof et al. [148]

Spleen Yamanaka et al. [136]
Spleen Foord et al. [149]

Spleen Leu et al. [150]

Spleen Pitaksajjakul et al. [151]
Bone marrow and spleen Meyer et al. [152]

Spleen Greunke et al., Manuscript

in preparation

estimates of the prevalence of assay interference by heterophilic
antibodies range from 1 to 80% [161—166]. A more thorough anal-
ysis of over 11,000 sera in an anti-CEA assay format revealed that
about 4% of the results were potentially false [167]. Approaches to
eliminate heterophilic antibody interference include the removal or
inactivation of interfering immunoglobulins, e.g. by precipitation
with PEG [168], the use of various buffer additives [167], or the
modification of assay antibodies by proteolytically removing of Fc
fragments [167,169]. It is unlikely, however, that a single method
can resolve these problems [170]. Alternatively, recombinant
modifications like the humanization of animal derived antibodies
[171] and the use of single-chain fragments [172] can be useful.
Other possibilities include shifting to non-immunoglobulin affinity
systems [173] such as affibodies or aptamers. Each of these
approaches is of course likely to suffer from the particular draw-
backs inherent in these molecules.

Taking the foregoing into account, chicken-derived antibodies,
either as polyclonal or monoclonal preparations, offer several
obvious advantages over their mammalian homologues in certain
applications since they do not interact with rheumatoid factor (RF),
human anti-mouse IgG antibodies (HAMA), complement compo-
nents or mammalian Fc receptors [174].

Recombinant avian library-derived antibody fragments, such as
scFvs have low functional affinities since they are monovalent. The
first group to express IgY in mammalian cells was able to produce
heterotetrameric IgY antibodies in CHO cells by recloning IgY heavy
and light chains from a chicken hybridoma cell line [59]. Addi-
tionally, Greunke et al. could demonstrate that mammalian cells
can express a variety of artificial IgY constructs including chimeric
IgY antibodies and homodimeric scFv-constructs with the latter
showing increased secretion efficiencies [60].

Antibody constructs larger than individual scFvs may be more
effective in some immunoassay systems. Chicken scFvs from a large
semi-synthetic phage displayed library that recognised the 65 kDa
heat-shock protein (HSP65) of Mycobacterium bovis were converted

into larger bivalent constructs which more closely resemble IgY
molecules. These “gallibodies” could be used for immunocapture in
ELISA and could be readily conjugated to colloidal gold nano-
particles [66].

Although most currently used immunotests are based on murine
monoclonal antibodies, we have recently provided further evidence
for the potential of the use of monoclonal IgY [60,175] as a way of
avoiding interference by RF and heterophilic antibodies in human
serum samples [175]. Work in our laboratory has shown that
monoclonal and polyclonal IgY antibodies bind neither to
mammalian Fcy receptors CD64 and CD16A [175] nor to the human
high affinity IgE receptor, despite similarities in the amino acid
sequences of human IgE and avian IgY. The low degree of relation-
ship between mammalian and avian Fc receptors [27,31,176,177]
explains these findings.

For some diagnostic applications, the advantages of IgY may be
undermined by the prevalence of anti-chicken antibodies in certain
individuals. Although various hen-egg proteins were implicated in
allergies by both in vivo and in vitro investigations as early as 1912
[178], reports on the occurrence of human IgY-specific antibodies
are scarce and are focussed on IgE-mediated hypersensitivity
reactions. One study [179] demonstrated that 15 in 28 egg-allergic
patients exhibited specific IgE binding against one or more egg
yolk-derived antiviral chicken immunoglobulins. In contrast,
according to another study the overall allergenic potential of IgY in
animal models appears to be low [180]. To what extent IgY-specific
antibodies of IgG, the isotype that is most relevant in immuno-
logical analyses, occur in individuals sensitized to egg yolk remains
to be established.

Yet another potential source of unwanted interference in
immunoassays might result from the interaction of carbohydrate
binding serum proteins such as mannose-binding lectin (MBL) with
N-linked glycostructures in the IgY Fc region [17,181]. However,
such problems largely depend on the particular expression host
needed to produce the IgY and could conceivably be counteracted
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by deleting the particular asparagine residues responsible for the
interaction. Both N-glycosylation sites can be eliminated in
recombinant IgY without severely affecting binding behaviour and
production efficiency (unpublished observation).

Although it may well be worthwhile to convert many of the
existing hybridoma-derived antibodies used in problematic
immunoassays into recombinant IgY, the biochemical characteris-
tics of such murine/avian chimeras might differ from those of the
authentic avian antibody. Interference may still arise from proteins
that interact specifically with rodent immunoglobulin variable
regions such as HAMA, a potential consequence of therapeutic
interventions using chimeric therapeutic antibodies. Today,
however, since humanized antibodies are becoming more readily
available for clinical applications, a decrease in the prevalence of
HAMA can be expected.

Another approach to improving the reliability of immunoassays
based on IgY and one of its receptors was developed very recently.
In immunoassays aimed at detecting circulating Ig species specific
for pathogens or other antigens, pools of human sera represent the
immunologist’s first choice as controls. These are sometimes not
readily available, are usually expensive and vary in quality. Instead,
artificial substitutes for human reference sera specific for virtually
any protein of interest could easily be established (unpublished
results) by using avian polyclonal or (under certain circumstances)
monoclonal IgY complexed with the IgY-specific CHIR-AB1 ecto-
domain which has been genetically fused to human Ig Fc domains,
as the binding moiety.

7. Conclusions

In summary, the ready availability of polyclonal egg-yolk
immunoglobulins and the rise of recombinant technologies that
can generate monoclonal IgY have focussed attention on the useful
characteristics of avian antibodies. Moreover, the fact that mono-
clonal IgY and IgY-like constructs can now be obtained from
combinatorial libraries, sometimes without immunisation, is likely
to make IgY in all its manifestations much more widely used in
research, diagnostics and therapeutics.
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