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Abstract

Motivation: Recapitulating aspects of human organ functions using in vitro (e.g. plates, transwells, etc.), in vivo (e.g.
mouse, rat, etc.), or ex vivo (e.g. organ chips, 3D systems, etc.) organ models is of paramount importance for drug
discovery and precision medicine. It will allow us to identify potential side effects and test the effectiveness of new thera-
peutic approaches early in their design phase, and will inform the development of better disease models. Developing
mathematical methods to reliably compare the ‘distance/similarity’ of organ models from/to the real human organ they
represent is an understudied problem with important applications in biomedicine and tissue engineering.

Results: We introduce the Transcriptomic Signature Distance (TSD), an information-theoretic distance for assessing
the transcriptomic similarity of two tissue samples, or two groups of tissue samples. In developing TSD, we are lev-
eraging next-generation sequencing data as well as information retrieved from well-curated databases providing
signature gene sets characteristic for human organs. We present the justification and mathematical development of
the new distance and demonstrate its effectiveness and advantages in different scenarios of practical importance
using several publicly available RNA-seq datasets.

Availability and Implementation: The computation of both TSD versions (simple and weighted) has been imple-
mented in R and can be downloaded from https://github.com/Cod3B3nd3R/Transcriptomic-Signature-Distance.

Contact: dimitris.manatakis@emulatebio.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Assessing the transcriptomic distance of biological samples (e.g.
organ tissues, cells of different types, etc.) is essential for under-
standing their functional differences and recognizing different dis-
ease states (Aibar et al., 2016; Crow et al., 2019; McDonough et al.,
2019; Mohammed et al., 2019). Recently, significant efforts have
been invested towards characterizing organ tissues (e.g. liver, kid-
ney, intestine, etc.) of different species (e.g. human, mouse, rat, etc.)
at various states (e.g. healthy, diseased, etc.) (Keen and Moore,
2015; Mele et al., 2015; Sollner et al., 2017; Suntsova et al., 2019;
Uhlen et al., 2015, 2017; Yu et al., 2015) using RNA-sequencing, a
mature technology for quantifying gene transcripts in biological
samples. A notable effort is the Human Protein Atlas (HPA) project
(Uhlen et al., 2015), a Swedish-based program providing, among
others, gene expression signatures for 37 healthy human organ tis-
sues. Importantly, for each tissue type, the HPA provides gene sets
exhibiting significantly elevated expressions compared to the other

organ tissue types. It is widely accepted that these gene sets can be
used to form a ‘transcriptomic signature’ of the specific organ, and
their expression patterns characterize the tissue’s underlying bio-
logical processes (Uhlen et al., 2015).

Recent advancements in bioengineering and biotechnology have
enabled the development of cell-culture-based organ models recapit-
ulating critical functions of human organs (e.g. liver, intestine, brain,
etc.) (Jang et al., 2019; Kasendra et al., 2020). The emergence of
such ex vivo organ models has generated, in turn, the need for new
mathematical tools for assessing their ‘similarity’ to the actual
human organ they represent. Such tools will not only help us under-
stand the model strengths and limitations but also reveal aspects we
can improve in their design to optimize their physiological relevance
and increase their value for precision medicine. Transcriptomic data
(e.g. RNA-seq) is extensively utilized to determine the distance/simi-
larity between biological samples (Chen et al., 2015; Gentleman
et al., 2005; Jaskowiak et al., 2013; Mele et al., 2015; Skinnider
et al., 2019; Sollner et al., 2017; Souto et al., 2008; Sudmant et al.,
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2015; Suntsova et al., 2019) in conjunction with classical mathemat-
ical tools such as the Euclidean distance, Pearson’s correlation,
dimensionality reduction techniques (e.g. Principal Component
Analysis, Linear Discriminant Analysis, Uniform Manifold
Approximation and Projection) and so on. However, these methods
exhibit significant limitations due to their sensitivity to noisy meas-
urements, outliers, inability to capture non-linear relations, etc. (Li
et al., 2016; Pereira et al., 2009). In this work, we introduce a new
distance, called Transcriptomic Signature Distance (TSD), that was
inspired from the field of information retrieval, which addresses the
problem of tissue sample comparisons in the framework of informa-
tion theory, and circumvents the above-mentioned weaknesses of
classical approaches.

Text similarity is a well-studied problem in information retrieval
(Nagwani, 2015; Pradhan et al., 2015). Over the years, many techni-
ques have been proposed to measure the distance/similarity of docu-
ments based on features such as word frequencies, word patterns in
sentences, etc. They process vector representations of documents
and assume that documents with similar content exhibit similar fea-
ture patterns. RNA sequencing, on the other hand, allows us to read
the transcriptome (i.e. read the stories) of tissues. These transcrip-
tome ‘stories’ are written using a four nucleotide bases alphabet,
which are assembled to construct words (i.e. the genes). Based on
this analogy, gene expression patterns of homologous tissues should
‘tell’ similar stories, and therefore the set of words (i.e. genes), their
relative frequencies of appearance and rankings in the stories are
expected to be similar as well.

Our method exploits well-curated databases (e.g. HPA,
GTExPortal, etc.) to retrieve gene sets that are considered as transcrip-
tomic signatures of the different organ tissues (Lonsdale et al., 2013;
Yu et al., 2015) and can adequately characterize them. Using such sets
as a basis to assess the distance of tissue samples from a reference tis-
sue allows us to significantly reduce the effects of sequencing ‘back-
ground noise’ and donor-to-donor variability in the data analysis.
Moreover, using information theory and advanced statistical meth-
ods, TSD can capture the distance of a tissue sample from a reference
organ tissue sample, while also exploiting any available knowledge on
the different groups (e.g. different organs, organ models etc.) the two
samples may belong to. If sample group (class) information is avail-
able, TSD exploits, in a principled manner, the intra-class variabilities
and incorporates them into the sample distance calculation.

The proposed distance space is determined using the probability
distribution of the expression of the signature genes as well as their
rankings profile in the corresponding transcriptomes of the two tis-
sues. We explain the advantages of the proposed metric and experi-
mentally validate its ability to resolve distances between organ
tissues in many practical situations of interest where more classical
methods may fail.

The rest of the article is organized as follows: In Section 2, we
present the development of TSD and justify why it can better cap-
ture the actual transcriptomic distance between two tissues. In
Section 3, we present and discuss extensive experimental validation
and comparison results to other methods in different scenarios of
practical importance. Finally, we summarize our findings and point
to future work in Section 4.

2 Materials and methods

In this section, we present TSD, a new method to measure the transcrip-
tomic distance between organ tissue samples. TSD requires as input the
gene expression levels (e.g. hit-counts, CPM, TPM, FPKM, etc.) of two
tissue samples (or two sets of tissue samples) where one tissue sample is
assumed to be the ‘reference’ (i.e. gold standard) from which we want to
measure the distance of the other tissue sample.

2.1 Preliminaries
The HPA (Uhlen et al., 2015) provides for each human organ three
characteristic gene sets (called ‘tissue enriched’, ‘group enriched’
and ‘tissue enhanced’, in order of tissue specificity) that specify
genes exhibiting significantly higher expression levels relatively to

other organ tissues in the Atlas (see Supplementary Section S1 in
Supplementary Material for the exact classification definitions).
These gene sets, provide important information for understanding
human organs’ biology and functions (Uhlen et al., 2015). In our ap-
proach, we consider the signature genes of a tissue to be the union of
these three HPA gene sets. Utilizing an HPA-based gene signature,
allows us to base distance calculations on the most informative
genes for each specific organ tissue while removing from the analysis
in an unbiased manner many ‘noisy’ lowly expressed genes that may
severely mask the gene expression signal.

In the article, we will use lowercase letters to denote scalars,
bold lowercase (uppercase) letters for vectors (matrices) and bold
uppercase calligraphic letters for sets. Let _s ¼ ½ _g1; _g2; . . . ; _gN � and
€s ¼ ½€g1; €g2; . . . ; €gN � be two vectors storing the expression levels of N
genes after applying RNA-sequencing on tissue samples _t and €t, re-
spectively. For presentation purposes, we assume that _t is our ‘refer-
ence’ tissue sample and €t is the sample of tissue that we want to
measure its distance from _t. From the HPA database, we retrieve
the M � N genes that characterize the reference organ as explained
above, where tissue _t was sampled from and are a subset of
genes fg1; g2; . . . ; gNg. Then, using _s and €s, we form the correspond-
ing Atlas signature vectors _sA ¼ ½ _gA

1 ; _gA
2 ; . . . ; _gA

M� and
€sA ¼ ½€gA

1 ; €g
A
2 ; . . . ; €gA

M�.
For each Atlas signature vector, we estimate the corresponding

discrete probability distribution _p
A ¼ ½ _PA

1 ;
_P

A

2 ; . . . ; _P
A

M� and

€p
A ¼ ½ €PA

1 ;
€P

A

2 ; . . . ; €P
A

M�. The probabilities of each Atlas gene are cal-
culated using:

_P
A

k ¼
_gA

kPM
q¼1

_gA
q

; €P
A

k ¼
€gA

kPM
q¼1

€gA
q

; where k ¼ 1;2; . . . ;Mf g: (1)

In addition, we form the vectors _qA ¼ ½ _rA
1 ; _rA

2 ; . . . ; _rA
M� and €qA ¼

½€rA
1 ; €r

A
2 ; . . . ; €rA

M� containing the expression level rankings of the Atlas

genes of the reference tissue ( _t) in the full transcriptome gene expres-

sion vectors _s and €s. Note that 1 � rA
i � N.

In Section 2.2, we present the ‘simple’ version of the TSD that
measures the transcriptomic distance between any two organ tissue
samples. In Section 2.3, we present the development of the more
general version, the so called weighted-TSD (wTSD), which is used
to estimate the distance between two samples knowing that they be-
long to two different classes (tissue sets) and considering the intra-
class variabilities.

2.2 The Transcriptomic Signature Distance
TSD measures the transcriptomic distance of a tissue sample €t from
a ‘reference’ tissue sample _t as the average of the Jensen–Shannon
Divergence (JSD) (Section 2.2.1) and the Rankings Correlation
Distance (RCD) (Section 2.2.2). We present below these two distan-
ces and their limitations when used in isolation to justify their com-
bined use in TSD.

2.2.1 The Jensen–Shannon Divergence

JSD is popular for measuring the similarity between two probability
distributions and is related to Shannon’s entropy, Kullback–Leibler
Divergence (KLD) and mutual information (Fuglede and Topsoe,
2004). JSD calculates the divergence (distance) between the prob-
ability distributions _p

A
and p€A using the following equation:

JSDð _pA
; €p

AÞ ¼ Hð1
2
� _p

A þ 1

2
� €pAÞ � 1

2
�Hð _pAÞ � 1

2
�Hð€pAÞ where

HðpAÞ ¼ �
XM
q¼1

PA
q � log 2PA

q

(2)

is the Shannon’s entropy function (Jianhua, 1991). Unlike KLD, the
square root of the JSD (SR-JSD) satisfies all the basic properties of a
‘true’ metric, such as symmetry, non-negativity, triangle inequality
and identity of indiscernibles. Given that, we use the base-2
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logarithm for calculating the Shannon’s entropy (see Equation 2),
the SR-JSD is bounded in the interval ½0;1� where 0ð1Þ corresponds
to minimum (maximum) distance.

SR-JSD uses the probability distributions of the reference Atlas
genes to measure the distance between the two samples and there-
fore it does not considers the expression levels of these genes in the
whole transcriptome which is very important for the development of
an accurate tissue distance metric. The following example demon-
strates this limitation.

Figure 1a shows the whole gene expression profiles (N¼20 w.l.o.g)
of two organ tissues _t and €t . Let us assume w.l.o.g. that fgA

1 ; . . . ; gA
10g

are the reference Atlas genes (M¼10) that characterize the tissue _t.
Using their expressions in both tissues (see Fig. 1b), we form vectors _sA

and €sA and calculate the corresponding probability distributions _p
A

and
€p

A
(Fig. 1c). Since both tissues in this example f _t ; €tg exhibit proportion-

al gene expression for the Atlas genes, this results to identical probabil-
ity distributions (Fig. 1c), and therefore, SR-JSDð _pA

; €p
AÞ ¼ 0,

suggesting that _t and €t are transcriptomically very close. However, as
shown in Figure 1a, this is apparently not the case, which shows that
using SR-JSD alone may fail to capture the tissues transcriptomic dis-
tance. To deal with this limitation, we also use in TSD, the correlation
coefficient of the rankings of the Atlas genes in the whole transcriptome
that can correct this situation (see Fig. 1d and e).

2.2.2 The Rankings Correlation Coefficient

The Rankings Correlation Coefficient (RCC) is defined as the Pearson’s
correlation of the Atlas gene ranking vectors, namely _qA and €qA, in the
whole transcriptome. It is calculated based on the formula:

RCCð _qA; €qAÞ ¼

PM
q¼1

ð _rA
q � _r

AÞð€rA
q � €r

AÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
q¼1

ð _rA
q � _r

AÞ2
PM
q¼1

ð€rA
q � €r

AÞ2
s

;

(3)

where _r
A

and €r
A

are the corresponding mean rankings. The range of
RCC is [-1,1] where 1(-1) implies perfect linear relation between the
compared ranking vectors.

Applying Equation (3) to the Atlas ranking vectors provides us
information about the linear relation of the reference Atlas genes in
the whole transcriptome of the two tissues based on their expres-
sions. Figure 1d and e demonstrates the ranking profile difference of
the Atlas genes in the transcriptomes of _t and €t, respectively. This
difference can successfully capture the tissues dissimilarity when SR-
JSD may fail to do so as in the example of Figure 1.

2.2.3 Transcriptomic Signature Distance

The example presented in Figure 1 demonstrates the limitation of
the SR-JSD to represent with accuracy the transcriptomic distance
between two tissues. Figure 2 provides a similar example that dem-
onstrates the same limitation when RCC is used alone. In this ex-
ample, tissues _t and €t have identical reference Atlas gene rankings in
the corresponding transcriptomes (Fig. 2d and e) but different prob-
ability distributions (Fig. 2c). In this case, using RCC alone would
suggest that the transcriptomic signatures of the tissues are identical
which evidently is not the case. To address the limitations intro-
duced when using either SR-JSD or RCC independently, we intro-
duce the TSD which combines them:

TSDð _t ; €tÞ ¼ 1

2
� SR-JSDð _pA

; €p
AÞ þ 1

2
� RCDð _qA; €qAÞ; (4)

where RCD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ReLUðRCCÞ

p
is the RCD. ReLU is the

Rectified Linear Unit activation function defined as: ReLU(x) ¼ x,
when x>0 and zero otherwise. It can be shown that RCD is a ‘true’
metric (Jiaxing et al., 2019). For the calculation of the RCD, we as-
sume that if two ranking vectors have RCC < 0 (i.e. are anti-
correlated) then their RCD is maximal (i.e. 1). Note that, TSD is
bounded in the interval ½0;1� where 0ð1Þ corresponds to minimum
(maximum) distance.

2.3 TSD of samples belonging to two different tissue sets
In Section 2.2, we presented TSD that can measure the distance be-
tween any two tissue samples _t and €t without considering their clas-
sification. Here, we study the case where we want to measure the
distance between two samples knowing that they belong to two

Fig. 1. (a) Gene expression vectors of the two tissues _t (reference) and €t . (b) Expression histograms of the Atlas genes fgA
1 ; g

A
2 ; . . . ; gA

10g of the tissues _t (reference) and €t . (c) The

discrete probability distributions f _p
A
; €p

Ag of the Atlas genes are identical due to the proportional gene expression levels (see b) and therefore SR-JSDð _pA
; €p

AÞ ¼ 0. (d, e) The

gene expression rankings of the tissues f _t ; €tg. Note that the rankings of the Atlas genes in the whole transcriptome _qA ¼ ½8; 7; 5; 3; 1; 2; 4; 6; 9; 10� and

€qA ¼ ½16; 13; 9; 5; 3; 4; 7; 11; 17; 18�, respectively, differ significantly which captures the tissue differences in this case
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different tissue sets (e.g. ex vivo organ model samples versus human

organ samples). We introduce a modified version of the TSD, which
by considering the gene expression variability of the samples within
the corresponding tissue sets provides statistically robust and accur-

ate estimations of their TSDs.
Let us assume that we have two sets of tissue samples _T ¼

f _t1; _t2; . . . ; _tVg and €T ¼ f€t1; €t2; . . . ; €tUg. Similarly to the notation
used in Section 2.1, €T corresponds to the set of tissue samples
that we want to compare to the reference set _T . For each

tissue sample _ti 2 _T ; where i ¼ f1; 2; . . . ;Vg, and
€tj 2 €T ; where j ¼ f1; 2; . . . ;Ug, we form the: (i) gene expression

profile vectors _si and €sj; (ii) the Atlas signature vectors _sA
i and €sA

j ;
(iii) the discrete probability distributions of the Atlas genes _p

A
i ¼

½ _PA

i1;
_P

A

i2; . . . ; _P
A

iM� and €p
A
j ¼ ½ €P

A

j1;
€P

A

j2; . . . ; €P
A

jM� and (iv) the matrices

f _P; €Pg that summarize the Atlas gene probability distributions of
the corresponding samples.

_P ¼

_p
A
1

_p
A
2

..

.

_p
A
V

2
66664

3
77775 ¼

_P
A

11
_P

A

12 � � � _P
A

1M

_P
A

21
_P

A

22 � � � _P
A

2M

..

. ..
. . .

. ..
.

_P
A

V1
_P

A

V2 � � � _P
A

VM

2
666664

3
777775

€P ¼

€p
A
1

€p
A
2

..

.

€p
A
U

2
66664

3
77775 ¼

€P
A

11
€P

A

12 � � � €P
A

1M

€P
A

21
€P

A

22 � � � €P
A

2M

..

. ..
. . .

. ..
.

€P
A

U1
€P

A

U2 � � � €P
A

UM

2
666664

3
777775:

(5)

2.3.1 The weighted Jensen–Shannon Divergence

In _P and €P, we assume that the probabilities of appearance of each

Atlas gene (e.g. kth gene) across tissue samples (i.e. rows of matri-
ces), were generated by a normal distribution (e.g. Nð _lk; _r2

kÞ and
Nð€lk; €r

2
kÞ) with parameters:

_lk ¼
1

V

XV
i¼1

_P
A

ik; _r2
k ¼

1

V

XV
i¼1

ð _P
A

ik � _lkÞ2

€lk ¼
1

U

XU
j¼1

€P
A

jk; €r2
k ¼

1

U

XU
j¼1

ð €PA

jk � €lkÞ2
(6)

Using this assumption, for each tissue f _ti; €tjg, the likelihood of
appearance of the kth Atlas gene can be calculated as:

Fð _P
A

ik; _lk; _r2
kÞ ¼

1

_rk

ffiffiffiffiffiffi
2p
p e

�
ð _P

A
ik
� _lkÞ

2

2 _r2
k

Fð €PA

jk; €lk; €r
2
kÞ ¼

1

€rk

ffiffiffiffiffiffi
2p
p e

�
ð €PA

jk
�€lkÞ

2

2€r2
k

(7)

The larger the Fð _P
A

ik; _lk; _r2
kÞ (Fð €PA

jk; €lk; €r
2
kÞ) the more ‘confident’

we are about the likelihood of appearance of the kth Atlas gene in
the set of samples T

:
(T€). We quantify our ‘confidence’ as:

_/
A

ik ¼ log10ðFð _P
A

ik; _lk; _r2
kÞ þ 1Þ

€/
A

jk ¼ log10ðFð €P
A

jk; €lk; €r
2
kÞ þ 1Þ

(8)

where to avoid negative ‘confidence’ values we added ‘1’ before tak-
ing the logarithm of the likelihoods.

To incorporate our ‘confidence’ about the likelihood of appear-
ance of the Atlas genes in the JSD, we utilize a weighted version of
the Shannon’s entropy H (Jianhua, 1991):

wJSDð _~p
A

i
; €~p

A

j
Þ¼Hð _wi � _~p

A

i þ €wj � €~p
A

j Þ � _wi �Hð _~p
A

i Þ � €wj �Hð€~p
A

j Þ

(9)

where Hð~pA
h Þ ¼ �

PM
q¼1

~P
A

hq � log2
~P

A

hq:

_~p
A

i ¼ ½
_~P
A

1 ;
_~P
A

2 ; . . . ; _~P
A

M�, and €~p
A

j ¼ ½
€~P

A

1 ;
€~P

A

2 ; . . . ; €~P
A

M� are the corre-
sponding weighted discrete probability distributions that describe

Fig. 2. (a) Gene expression vectors of two tissues _t (reference) and €t . (b) Expression histograms of the Atlas genes fgA
1 ; g

A
2 ; . . . ; gA

10g of the tissues _t (reference) and €t . (c) The dis-

crete probability distributions f _p
A
;€p

Ag of the reference Atlas genes can capture the gene expression differences of the tissues. (d, e) The sorted gene expression profiles of the

two tissues. Note that the rankings _qA ¼ €qA ¼ ½2; 8; 3; 1; 11; 13; 10; 18; 15; 19� of the Atlas genes in the transcriptome are identical for both tissues, which results to RCC ¼ 1.

In this example, using the RCC of the Atlas genes alone fails to capture the transcriptomic differences of the two tissues
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the probabilities of the reference Atlas genes to appear in the tran-
scriptome of the corresponding tissues. The weighted probabilities
are calculated as:

_~P
A

ik ¼
_/

A

ik
_P

A

ikPM
q¼1

_/
A

iq
_P

A

iq

;
€~P

A

jk ¼
€/

A

jk
€P

A

jkPM
q¼1

€/
A

jq
€P

A

jq

; where k ¼ 1; 2; . . . ;Mf g:

(10)

To calculate the wJSD (see Equation 9), we need also to deter-
mine the weights _wi and €wj of the corresponding probability distri-
butions _~p

A

i and €~p
A

j . Next, we present a novel method that quantifies
our ‘confidence’ on how well the tissue samples f _t i; €t jg ‘represent’
their corresponding tissue sets fT

:
;T€g, and appropriately adjust the

weight values f _wi; €wjg.
For each tissue set fT

:
;T€g, we form the matrices _W and €W where

each of their rows (i.e. _w
A

i and €w
A

j correspond to the standardized
versions (e.g. z-scores) of the Atlas signature vectors ( _sA

i ; €sA
j ) of the

corresponding tissue samples.

_W ¼

_w
A

1

_w
A

2

..

.

_w
A

V

2
6666666666664

3
7777777777775
¼

_W
A

11
_W

A

12 � � � _W
A

1M

_W
A

21
_W

A

22 � � � _W
A

2M

..

. ..
. . .

. ..
.

_W
A

V1
_W

A

V2 � � � _W
A

VM

2
66666666664

3
77777777775

€W ¼

€w
A

1

€w
A

2

..

.

€w
A

U

2
6666666666664

3
7777777777775
¼

€W
A

11
€W

A

12 � � � €W
A

1M

€W
A

21
€W

A

22 � � � €W
A

2M

..

. ..
. . .

. ..
.

€W
A

U1
€W

A

U2 � � � €W
A

UM

2
66666666664

3
77777777775

(11)

We assume that each standardized reference Atlas signature vector
(e.g. _w

A

i and €w
A

j ) is a random realization of a multivariate normal distri-
bution [e.g.Nð0; _RÞ andNð0; €RÞ]. To estimate the covariance matrices
f _R; €Rg of these distributions, we apply the Graphical Lasso (GL) algo-
rithm to the corresponding data matrices f _W; €Wg. GL is a computa-
tionally efficient algorithm which has been extensively used to identify
gene–gene interaction networks from RNA-seq datasets (Friedman
et al., 2008). Its main advantage, is its ability to estimate the precision
matrix (i.e. X ¼ R�1) even in cases where the number of samples is far
less than the number of variables (n� p) which holds for transcrip-
tomic datasets (i.e. number of samples � number of genes). In such
cases, other covariance estimation methods, such as Maximum
Likelihood Estimation, fail since the sample (or empirical) covariance
matrix S is rank deficient. GL addresses this limitation using the as-
sumption that precision matrix X ¼ R�1 is sparse (i.e. the graph struc-
ture of the variables’ interactions is sparse). To estimate the precision
matrix X, GL efficiently solves the following optimization problem:

X̂ ¼ argminX�0ftrðSXÞ � logðdetðXÞÞ þ kjjXjj1g (12)

where jj:jj1 is the L1-norm (i.e. the sum of the absolute values of the
elements of X); detðXÞ is the determinant of X; k is the sparsity par-
ameter that controls the density (i.e. the number of edges) of the
graphical model and S the M�M sample covariance matrix calcu-
lated as S ¼ WTW. To optimally choose the value of k, we use the
StARS method (Liu et al., 2010) which is stability-based approach
for selecting the regularization parameter in high-dimensional
graphical models.

Using the estimated covariance matrices of the multivariate nor-
mal distributions Nð0; _RÞ and Nð0; €RÞ, we calculate the likelihood
of the tissue samples _ti and €t j to belong to the corresponding distri-
butions as:

Zð _w
A

i ; 0; _RÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞMdetð _RÞ

q e
�ð _wA

i Þ
T

_R�1 _w
A
i

2

Zð €w
A

j ; 0; €RÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞMdetð€RÞ

q e
�ð€wA

j Þ
T

€R�1 €w
A
j

2 (13)

The likelihoods Zð _wA

i ; 0; _RÞ and Zð€wA

j ; 0; €RÞ, provide information
on how ‘confident’ we are that the tissue samples _ti and €tj are ‘good’
representatives of the corresponding tissue set fT

:
;T€g. Using this in-

formation, we calculate the weights f _wi; €wjg as:

_wi ¼
_l i

_l i þ €l j

; €wj ¼
€l j

_l i þ €l j

where

_l i ¼ log10ðV � Zð _w
A

i ; 0; _RÞ þ 1Þ
€l j ¼ log10ðU � Zð€w

A

j ; 0; €RÞ þ 1Þ

(14)

where V and U are the number of samples in tissue sets T
:

and T€, re-
spectively. Note that, _wi þ €wj ¼ 1. Note that, for the calculation of
the weight, we also consider the sample sizes of the corresponding
tissue sets. More specifically, the larger the sample size the larger the
weight, we assign to the corresponding distribution. This can be jus-
tified if we consider that larger the sample sizes provide more confi-
dence about the accuracy of the estimated parameters (i.e.
covariance matrix) of the multivariate normal distribution.

2.3.2 The weighted Rankings Correlation Coefficient

The second term of the TSD (see Equation 4) is the RCD between
the reference Atlas genes ranking vectors f _qA; €qAg of the compared
tissues _t; €t. For the case where we have sets of tissue samples (i.e. T

:

and T€), we use weighted Rankings Correlation Coefficient (wRCC)
which can be calculated as:

wRCC _qA
i ;€q

A
j

� �
¼

PM
q¼1

bq � _rA
iq � _r A

i

� �
€rA

jq � €r A
j

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
q¼1

bq � _rA
iq � _r

A

i

� �2
� � PM

q¼1

bq � €rA
jq � €r

A

j

� �2
� �s

where _r
A

i ¼

PM
q¼1

bq � _rA
iq

PM
q¼1

bq

; €r
A

j ¼

PM
q¼1

bq � €rA
jq

PM
q¼1

bq

(15)

are the corresponding weighted means of the rankings of the Atlas genes.
In Equation (15), bq, where q ¼ f1; . . . ;Mg, are the weights which assign
different ‘confidence’ to the corresponding rankings of the M Atlas genes.
To calculate the values of these weights, we propose the following method.

Using the ranking vectors f _qA
i ;€q

A
j g of the Atlas genes of the tissue

samples that contained in each set (i.e. T
:

and T€), we form the fol-
lowing matrices:

_R ¼

_qA
1

_qA
2

..

.

_qA
V

2
66666666664

3
77777777775
¼

_rA
11 _rA

12 � � � _rA
1M

_rA
21 _rA

22 � � � _rA
2M

..

. ..
. . .

. ..
.

_rA
V1 _rA

V2 � � � _rA
VM

2
666666664

3
777777775

€R ¼

€qA
1

€qA
2

..

.

€qA
U

2
66666666664

3
77777777775
¼

€rA
11 €rA

12 � � � €rA
1M

€rA
21 €rA

22 � � � €rA
2M

..

. ..
. . .

. ..
.

€rA
U1 €rA

U2 � � � €rA
UM

2
666666664

3
777777775
: (16)
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Each row of matrices _R and €R contains the rankings of the
expressions of the Atlas genes in the transcriptome of the corre-
sponding tissue sample, and each column includes the rankings of

the expressions of a specific Atlas gene across the tissue samples of
the corresponding set.

In matrices _R and €R, we assume that the rankings of each Atlas
gene (e.g. kth gene) across tissues were generated by a normal distri-

bution [e.g. Nð _ck;
_d

2

kÞ andNð€ck;
€d

2

kÞ] with parameters:

_ck ¼
1

V

XV
i¼1

_rA
ik;

_d
2

k ¼
1

V

XV

i¼1

ð _rA
ik � _ckÞ2

€ck ¼
1

U

XU
j¼1

€rA
jk;

€d
2

k ¼
1

U

XU
j¼1

ð€rA
jk � €ckÞ2

(17)

Using this assumption, the likelihood about the rankings of the
kth Atlas gene can be calculated as:

Nð _rA
ik; _ck;

_d
2

kÞ ¼
1

_dk

ffiffiffiffiffiffi
2p
p e

�
ð _rA

ik
�_ckÞ

2

2 _d
2
k

Nð€rA
jk; €ck;

€d
2

kÞ ¼
1

€dk

ffiffiffiffiffiffi
2p
p e

�
ð€rA

jk
�€ckÞ

2

2€d
2
k

(18)

The larger the Nð _rA
ik; _ck;

_d
2

kÞ (Nð€rA
jk; €ck;

€d
2

kÞ) the more ‘confident’
we are about the ranking _rA

ik (€rA
jk) of the kth Atlas gene, We quantify

our ‘confidence’ as:

_sA
ik ¼ log10ðNð _rA

ik; _ck;
_d

2

kÞ þ 1Þ
€sA

jk ¼ log10ðNð€rA
jk; €ck;

€d
2

kÞ þ 1Þ
(19)

To avoid negative ‘confidence’ values, we added ‘1’ before tak-
ing the logarithm of the likelihoods. Using the _sA

ik and €sA
jk, we calcu-

late the importance weight of the kth Atlas gene as:

bk ¼ _s ik þ €s jk: (20)

By applying these weights to Equation (15), we can calculate the

wRCC which also takes values in range [-1,1].

2.3.3 The weighted TSD
After calculating wJSD and wRCC, we can calculate the weighted
version of the transcriptomic signature distance (wTSD) as:

wTSDð _t i; €tjÞ ¼
1

2
� SR-wJSDð _~p

A

i ;
€~p

A

j Þ þ
1

2
�wRCDð _qA

i ; €q
A
j Þ; (21)

where wRCD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ReLUðwRCCÞ

p
g is the weighted Rankings

Correlation Distance (wRCD). It can be shown that wRCD is a
‘true’ metric (Jiaxing et al., 2019). For the calculation of the wRCD,

we assume that if two vectors have wRCC < 0 (i.e. anti-correlated)
then their RCD is maximum (i.e. 1). Similar to the TSD (see
Equation 4), wTSD takes its values in ½0;1�.

In Equations (4) and (21), (w)TSD is defined as the average of
SR-(w)JSD and (w)RCD. However, this can be easily generalized to

a weighted average by assigned weights (say w1 and w2) to SR-
(w)JSD and (w)RCD, respectively (assuming that the weights are

positive and sum to one). This more general version provides the
flexibility to assign different importance to SR-(w)JSD and (w)RCD
if the user has reasons to believe that this is justified for a particular

use-case.

3 Results and discussion

We present here extensive results generated using publicly available
RNA-seq datasets demonstrating the validity and value of the pro-
posed TSD (i) for measuring the distance between different organ

tissues, (ii) for assessing the distance between healthy and diseased
organ tissues and (iii) for evaluating the similarity of organ models
(e.g. organoids, animals, etc.) to the corresponding human organ.

Finally, we compare (w)TSD to other traditional metrics which have
been used for measuring transcriptomic distance/similarity.

3.1 Using wTSD with real data to assess distance of

human organ tissues
In Section 2.2, we used two hypothetical scenarios to illustrate that
using SR-JSD or RCC alone may fail to adequately capture the tran-
scriptomic differences of tissue samples. In this section, we use real
data to show this ineffectiveness and justify the advantages of the
proposed wTSD as a higher-resolution method. For this purpose, we
used the publicly available dataset in GEO GSE120795, also pre-
sented in the study by Suntsova et al. (2019), a comprehensive gene
expression database of normal human tissues based on uniformly
screened RNA-seq data. This database includes 142 tissue samples
taken from 20 organs of healthy human donors of different ages,
collected no later than 36 h after death. From dataset GSE120795,
we selected the organ tissues that have been characterized by the
HPA project, and also discarded organ tissues with less than four
samples (n<4) passing the quality control. The n � 4 condition was
necessary to guarantee the execution of the StARS method (Liu
et al., 2010), which estimates the sparsity parameter of the graphical
lasso algorithm (see Section 2.3) using random subsampling. The
HPA includes information for only 15 out of the 20 organs in the
database, and these were used in our analysis. As we can see in
Supplementary Table S1 in Supplementary Material, the number of
samples as well as the number of signature genes identified by the
HPA project for each one of the 15 organs used vary considerably.
The wTSD distance is designed to deal with this kind of situations in
a principled manner.

The Heatmaps of Figure 3 depict the mean inter-/intra-organ dis-
tances. Each row corresponds to a specific organ being used as refer-
ence whose HPA signature genes were utilized to calculate the
distances of the other organs (columns) from it. As expected, the
mean intra-organ tissue sample distances (main diagonal elements)
are smaller than the corresponding inter-organ distances (off-diag-
onal elements of the same row). Observe that these Heatmaps
(matrices) are not symmetric. This happens because we are measur-
ing the distance of different types of tissues from a reference tissue
(row) and each reference tissue is represented by a different Atlas
signature gene vector. However, this asymmetry should be expected
as we will explain using the following example: let us assume
w.l.o.g. that _sA; €sA are samples extracted from liver and intestine tis-
sues, respectively. TSDð _sA;€sAÞ measures how similar is the tissue
sample €sA to the reference sample _sA. In other words, it quantifies
the ‘liver-ness’ of the intestine sample €sA. Similarly, the TSDð€sA; _sAÞ
is trying to quantify the ‘intestine-ness’ of the liver sample _sA. TSD
uses different distance spaces to measure ‘liver-ness’ and the ‘intes-
tine-ness’ which are determined by the tissue-specific Atlas signature
genes. Of course, TSD can become symmetric and a true-metric (see
Section 3.3) if we force it to use the same set of genes for all tissues,
but as we have shown (see Supplementary Section S2.2 in
Supplementary Material) using only the HPA characteristic genes
improves our ability to distinguish between different groups of tissue
samples.

If we examine carefully the corresponding rows of the SR-wJSD
and wRCD heatmaps in Figure 3a and b, we see significant element-
wise differences across each row. This indicates that SR-wJSD and
wRCD capture different aspects of transcriptome dissimilarities. To
better illustrate this fact, Figure 4a,b and c,d depicts the distances of
other organs from Lung and Kidney (references), respectively, in a
2D-space where SR-wJSD and wRCD are used as coordinates. In
these plots, each organ’s name label is centered at the mean value of
the corresponding pairwise tissue sample distances (SR-wJSD and
wRCD) from the reference organ. In the zoomed-in version of
Figure 4b, we see that the fLiver, Braing and fSmall Intestine,
Thyroidg pairs have almost equal wRCDs but different SR-wJSDs
coordinate values. On the other hand, in the zoomed-in Figure 4d,
fThyroid, Esophagusg, fPancreas, Small Intestineg as well as
fBladder and Prostateg pairs have almost equal SR-wJSDs but dif-
ferent wRCDs coordinate values. Based on these observations, it is
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clear that the proposed new distance, wTSD, which combines the
SR-wJSDs and wRCDs information while also considering the
intra-class tissue samples variability of every organ (see Section 2),
provides a higher-resolution picture of the reality.

3.2 Using wTSD to assess tissue distance of disease

subtypes and progression stages
In this section, we present results demonstrating that TSD can be
used to resolve transcriptomic distance of normal tissues from tis-
sues of disease subtypes as well as tissues of different disease pro-
gression stages. For this purpose, we are using publicly available
RNA-seq datasets characterizing two different diseases: idiopathic
pulmonary fibrosis (IPF) and liver cancer.

3.2.1 Using wTSD with IPF dataset

Recently published research (McDonough et al., 2019) has studied
the progression mechanisms of IPF, a lethal chronic lung disease
which progresses the fibrosis in lungs over time, causing serious
breathing difficulties. IPF affects 13–20 per 100k people worldwide.
According to the National Institute of Health, about 30k–40k
patients in the USA are diagnosed with IPF every year. More than
50% of IPF patients die within 3–5 years after the initial diagnosis
(Kim et al., 2006; Lederer and Martinez, 2018). The RNA-seq data-
set of this study, available in NCBI’s Gene Expression Omnibus
(GEO GSE124685), consists of 84 samples classified in the follow-
ing four categories: (i) Controls (n¼35), (ii) IPF Early (n¼19), (iii)
IPF Moderate (n¼15) and (iv) IPF Severe (n¼15). The samples’
categorization was made based on the extent of lung fibrosis,
assessed using microCT quantitative imaging and tissue histology
(McDonough et al., 2019). Using this dataset and the information of
the 239 genes which, according to HPA, can be considered as the
transcriptomic signature of the healthy human lung (see
Supplementary Table S1), we calculated the transcriptomic distances
(SR-wJSD, wRCD and wTSD) of all pairs of tissue samples, one
sample belonging in the Controls (reference) group and the other in
the diseased groups.

Figure 5a shows the transcriptomic distances (SR-wJSD and
wRCD) of the different IPF progression stages from the healthy lung
tissues. The label of each IPF progression stage name is centered at
the coordinates of the mean value of the pairwise distances where
one sample in the pair belongs to the Controls and the other either
in the Controls group or in an IPF progression stage group (all pair
combinations considered). Figure 5b shows boxplots of the corre-
sponding distributions of the pairwise wTSD distances. The results
indicate that as the severity of IPF increases, the corresponding TSD
from the Control class also increases. This fact demonstrates the in-
terpretability of the proposed distance. Supplementary Table S2 in
Supplementary Material summarizes the results of the two-sample t-
test between the corresponding distributions of the pairwise wTSD
distances (presented in Fig. 5b). The decision of the test is equal to 1
(h¼1) if the test rejects the null hypothesis (that the groups of the
distances have equal means and equal but unknown variances) at
the 1% significance level. Supplementary Table S2 results clearly
show that wTSD can successfully identify the different IPF progres-
sion stages based on the HPA lung signature genes. Moreover, the
wTSD differences are statistically significant for all comparisons

Fig. 3. Heatmaps of means of pairwise distances between sample groups of organ tissues. (a) SR-wJSD, (b) wRCD and (c) wTSD. The rows correspond to the reference organs

whose Atlas genes were used in the distance calculations of the other tissues (columns) from the reference

Fig. 4. The inter-organ distances of other tissues from: (a, b) Lung and (c, d) Kidney

used as reference organ. The name label of each organ is centered at the mean value

of the pairwise distances (SR-wJSD and wRCD) between that organ’s tissue samples

and samples of the reference organ (Lung or Kidney, respectively)

Fig. 5. The distances of the different IPF progression stages from the healthy lung.

(a) The labels of IPF stages are centered at the coordinates determined by the means

of the pairwise distances (SR-wJSD and wRCD) between tissue samples in the corre-

sponding groups and the Controls. (b) Boxplots summarizing the distributions of

the corresponding pairwise wTSD distances. Here ‘n’ denotes the number of pair-

wise distances (wTSD) where one sample in the pair belongs to the Controls and the

other either in the Controls group or in an IPF progression stage group
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between (i) the Control and IPF stages, and (ii) different IPF stages,
a fact that demonstrates the ability of wTSD to capture the tran-
scriptomic differences of the corresponding categories.

3.2.2 Using TSD with human liver cancer dataset

In a recent study (Broutier et al., 2017), human primary liver
cancer-derived organoids were used to recapitulate the pathophysi-
ology of human liver tumors. From the provided RNA-seq dataset
(GEO GSE84073), we extracted samples for healthy human liver tis-
sue (Controls) and different human liver tumor subtypes, in particu-
lar: Hepato-Cellular Carcinoma (HCC), Cholangio-Carcinoma
(CC) and combined HCC/CC (CHC). The number of tissue samples
in each group was relatively small: (i) Controls (n¼4), (ii) HCC
(n¼3), (iii) CC (n¼4) and (iv) CHC (n¼3). We also used the ex-
pression information of the 936 genes for every sample, which,
according to HPA, form a transcriptomic signature of the healthy
human liver (see Supplementary Table S1). Next, using as reference
organ, the healthy human liver, we computed the corresponding
pairwise distances (SR-JSD, RCD and TSD) between its samples
and samples in the different cancer subtype groups. We remark here
that due to the limited number of samples in the cancer groups, we
decided to use the simple version (not weighted) of the TSD.

Figure 6a shows the transcriptomic distances (SR-JSD and RCD)
of the different cancer subtypes from the healthy liver. Each cancer
subtype’s name label is centered at the coordinates of the mean value
of the pairwise distances where one sample in the pair belongs to the
Controls and the other either in the Controls group or in a liver can-
cer subtype group. Figure 6b shows boxplots of the distributions of
these pairwise TSD distances. These results demonstrate the ability
of TSD to represent the distance difference of controls from the
tumor subtypes. It is interesting to remark that the distance of the
CHC group (tumor tissue, which is a combination of HCC and CC)
from the Controls is in-between the corresponding distances of the
HCC and CC, a fact that conforms with our human intuition.
Moreover, Supplementary Table S3 in the Supplementary Material
summarizes the results of the two-sample t-test between the corre-
sponding distributions of the pairwise TSD distances (presented in
Fig. 6b). In Supplementary Table S3, the decision of the test is equal
to 1 (h¼1) if the test rejects the null hypothesis at the 5% signifi-
cance level. The results show that all comparisons except one
(Control versus HCC) have significantly different TSD distances,
which indicates the ability of TSD to identify the transcriptomic dif-
ferences of the corresponding groups.

3.3 Assessing distance of human organs from different

organ models
In this section, we show that the proposed TSD can be used to assess
the ‘physiological relevance’ of different organ models to a human
organ based on RNA-seq data. Specifically, we computed the TSD

of: (i) Mus musculus (mouse) organs, (ii) Rattus norvegicus (rat)
organs and (iii) human-derived organoids from the human liver and
kidney used as reference organs. We obtained the RNA-seq data for
the healthy human organ tissues from the publicly available data-
base developed by Suntsova et al. (2019) (described in Section 3.1).
The number of available samples for each healthy human organ is
provided in Supplementary Table S1. For mouse and rat, we
obtained RNA-seq data from the database developed by Sollner
et al. (2017). For both species, the number of available samples per
organ was equal to three. Finally, we retrieved RNA-seq data for
healthy human liver- and kidney-derived organoids from the public-
ly available datasets (GSE84073 and GSE99582) presented in the
studies by Broutier et al. (2017) and Phipson et al. (2019), respect-
ively. The number of samples of the healthy liver- and kidney-
derived organoids were six and three, respectively. To compare the
transcriptomic signatures between the different species, we associ-
ated the mouse and rat genes to human homologous genes using the
R-package biomart (Smedley et al., 2015). Due to the limited num-
ber of samples (n¼3) in some of the categories under comparison,
we used the ‘simple’ version of TSD (not weighted).

Figures 7a and 8a show, for the liver and kidney datasets, re-
spectively, the pairwise distances (SR-JSD and RCD) of organ model
samples (mouse, rat and organoids) from healthy human organ

Fig. 6. Distances of different liver cancer subtypes stages from the healthy liver. (a)

The liver cancer subtype name labels are centered at the coordinates determined by

the means of the pairwise distances (SR-wJSD and wRCD) between the samples in

the corresponding subtype groups and the Controls. (b) Boxplots summarizing the

distributions of the corresponding pairwise TSD distances. Here ‘n’ denotes the

number of pairwise distances (TSD) where one sample in the pair belongs to the

Controls and the other either in the Controls group or in a Liver Cancer Subtype

group

Fig. 7. The distances of the different liver models from the human liver. (a) The pair-

wise distances (SR-JSD and RCD) of organ model tissue samples [mouse (red

circles), rat (blue circles), organoids (black circles)] from the corresponding healthy

human organ tissue samples. (b) Boxplots summarizing the distributions of corre-

sponding pairwise TSD distances. Here ‘n’ denotes the number of pairwise distances

(TSD) where one sample in the pair belongs to the human liver group and the other

either in the human liver group or in a liver organ model
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tissue samples. In both Figures, a circle depicts the distance of a
model tissue sample (represented by color black, blue and red) to a
control sample. On the other hand, green circles are used for pair-
wise distances between samples of the control group. The boxplots
in Figures 7b and 8b summarize the distributions of these pairwise
distances. The results indicate that the liver tissue samples of mouse
and rat are transcriptomically closer to the human liver than the
human-derived liver organoid samples. However, for the kidney, the
TSDs of the mouse, rat and human-derived kidney organoids, from
the healthy human kidney, are very similar. Another interesting ob-
servation is that for both organs, the transcriptomic distances of
mouse and rat from the corresponding healthy human organs are
similar. As shown in the study by Sudmant et al. (2015), mouse and
rat have similar transcriptomic profiles between homologous organ
tissues which is also confirmed by Figures 7 and 8. Supplementary
Tables S4 and S5 summarize for liver and kidney, respectively, the
results of the two-sample t-tests between the corresponding distribu-
tions (see Figs 7b and 8b) of the pairwise TSD distances.

At this point, we should mention a very interesting property of
the (w)TSD. When all the compared tissues (e.g. f _t ; €t ;&tg) represent
the same organ (i.e. are all compared based using the same set of sig-
nature genes) as the case here for liver and kidney, (w)TSD satisfies
all the necessary conditions of a true metric. Based on SR-(w)JSD

and (w)RCD characteristics (Jianhua, 1991; Jiaxing et al., 2019), it
is a matter of simple algebra to show that:

1. Is symmetric: ðwÞTSDð _t ; €tÞ ¼ ðwÞTSDð€t; _tÞ
2. Is non-negative: 0 � ðwÞTSDð _t ; €tÞ � 1

3. ðwÞTSDð _t ; €tÞ ¼ 0 iff:

SR-ðwÞJSDð _pA
; €p

AÞ ¼ 0 and ðwÞRCDð _qA; €qAÞ ¼ 0

4. ðwÞTSDð _t ; €tÞ � ðwÞTSDð _t ;&tÞ þ ðwÞTSDð&t ; €tÞ (triangle inequal-

ity), 8 triplet of tissues f _t ; €t ;&tg.

3.4 Comparison to other metrics
Comparing TSD to other traditional distance metrics is hampered
by the fact that there is no dataset that can be used as an absolute
‘ground truth’, providing the true transcriptomic ‘distances’ between
organ tissues. In this section, we compare the ability of TSD,
Euclidean distance (ED) and Pearson correlation (PC) to discrimin-
ate different groups of evidently different tissue samples using the
‘IPF progression’ and the ‘Human Liver Cancer’ datasets (see
Sections 3.2.1 and 3.2.2). To compare these methods, we use the
resulting P-values after performing two-sample t-tests to the calcu-
lated distances/correlations between the Controls group (reference)
and the rest of the tissue sample groups. The smaller the correspond-
ing P-values, the better the ability of a method to resolve the differ-
ent subgroups, which implies an advantage in translating
transcriptomic expression differences to a distance.

McDonough et al. (2019) identified significant transcriptomic
differences between Control and IPF progression groups of samples.
These differences were also reflected to the PCA plot provided in
Figure 1E of their paper, where we observe that the distance of the
various IPF progression groups to the Control group increases with
disease progression. Figure 9 shows that when using the HPA tissue-
characteristic gene signatures, wTSD can better capture this behav-
ior compared to PC, while ED fails. More specifically, unlike ED,
the P-values between the Control and IPF progression groups in
wTSD tend to decrease significantly with the progression of the dis-
ease which shows the better discrimination of the groups (e.g. the P-
value of Control versus IPF-Moderate is smaller than the P-value of
the Control versus IPF-Early). For all comparison cases but one,
wTSD achieves much smaller P-values than the other methods,
which demonstrates its ability to discern better the existing group
differences.

Fig. 8. The distances of different kidney models from the human kidney. (a)

Pairwise distances (SR-JSD and RCD) of organ model samples represented as small

circles; mouse (red), rat (blue), organoids (black) from the corresponding healthy

human organ tissue samples. (b) Boxplots are summarizing the distributions of cor-

responding pairwise TSD distances. Here ‘n’ denotes the number of pairwise distan-

ces (TSD) where one sample in the pair belongs to the human kidney group and the

other either in the human kidney group or in a kidney organ model

Fig. 9. IPF progression dataset. Scatter plot summarizing the results of metric com-

parisons when using the HPA tissue signature genes [see Supplementary Tables S6–

S11 in Supplementary Section S2.2.1). Using wTSD (blue) we can achieve much

smaller P-values [larger –log10 (P-values)] in almost all considered comparisons

(rows). Circular (Triangular) shape glyphs are used to mark when the null hypoth-

esis is (is not) rejected. Only wTSD passes the statistical significance test in all tissue

group comparisons. Moreover, it achieves much smaller P-values in all cases but

one
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Broutier et al. (2017) studied how three of the most common
human primary liver cancer (PLC)-derived organoids can recapitu-
late the pathophysiology of human liver tumors. The results show
that PLC-derived organoid cultures preserve the histological and
genomic features of the original tumor, allowing the discrimination
between different tumor tissues and subtypes. Based on these find-
ings, we tested the ability of TSD, ED and PC to discriminate the
different cancer subtypes. Figure 10 depicts the corresponding P-val-
ues when using the liver HPA signature genes. Similar to the IPF dis-
ease progression results, TSD achieves in almost all cases better
discrimination performance (i.e. smaller P-values) between the
groups. Moreover, TSD can identify statistically significant differen-
ces in 5 out of 6 comparisons (fails only in one case where all meth-
ods fail). On the contrary, ED and PC can find significant distances
in only one and three comparisons, respectively, out of the six. This
demonstrates the ability of TSD to resolve better the different exist-
ing tissue groups even in cases where the number of available sam-
ples per group is small.

Overall, due to its better discriminative ability TSD can be con-
sidered as a more consistent and ‘higher resolution’ transcriptomic
distance which is also confirmed by the boxplots provided in
Supplementary Section S2.1. In addition, we have shown using both
datasets that a significantly better discrimination is achieved be-
tween the sample groups when using the HPA characteristic genes
only as tissue signatures, relatively to using all genes. Although TSD
can also work with the full gene set, our results demonstrate the ad-
vantage of exploiting the HPA provided information while at the
same time achieving substantial computational savings (see
Supplementary Section S2.2 for details).

In this section, we presented how to use (w)TSD as a distance to
measure the similarity between organ tissue samples in different
scenarios arising in practice. We remark that we can also use
(w)TSD in a variety of other situations for measuring distance of
biological samples as long as we have access to their gene expression
data and information about their signature genes. For example,
(w)TSD can be used to assess the distances between different cell
types using single-cell RNA-seq data and information about cell-
type-specific signature gene sets that we can retrieve from publicly
available databases or the expanding literature on the subject
(Kotliar et al., 2019; Merienne et al., 2019; Thul et al., 2017).

3.4.1 Availability of the software

The computation of both TSD versions (simple and weighted) has
been implemented in R.

(https://github.com/Cod3B3nd3R/Transcriptomic-Signature-
Distance).

4 Conclusions

We presented the development and utility of TSD, a new distance
we introduced for quantifying the transcriptomic similarity of organ
tissues. The development of TSD is grounded on information theory
and advanced statistics. Also, TSD exploits the availability of ‘signa-
ture’ genes for human organs, provided in the well-curated publicly
available HPA database, to emphasize organ tissue differences and
mask the effects of measurement noise and inter-donor variability in
the distance calculations. We also presented a novel method that
considers the gene expression and ranking variations across homolo-
gous tissue samples and appropriately incorporates this information
into the distance calculations. We justified the effectiveness and reli-
ability of the proposed distance and evaluated its performance using
many different publicly available RNA-seq datasets. We presented
extensive experimental results that validate the ability of TSD to
represent distances between different organ tissues coherently.
Moreover, we have shown how TSD can be used to assess the dis-
tance of alternative organ model technologies (in vivo, ex vivo, etc.)
to the corresponding human organ. To the best of our knowledge,
TSD is the first distance based on information theory, which allows
us to assess the similarity of model organ tissue samples to the
human organ they represent based on a reference gene set. We are
confident that TSD can be a valuable tool in many disciplines, such
as tissue engineering, micro-physiological systems design, single-cell
type comparison and so on. For this purpose, we make available
openly the R code that computes TSD and wTSD for pairs of tissue
samples, either in isolation or as members of two tissue sample
groups. We also provide instructions that can be used to reproduce
all the results presented in the article.
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