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Timely and precise delivery of the endosomal Toll-like receptors (TLRs) to the ligand
recognition site is a critical event in mounting an effective antimicrobial immune response,
however, the same TLRs should maintain the delicate balance of avoiding recognition of
self-nucleic acids. Such sensing is widely known to start from endosomal compartments,
but recently enough evidence has accumulated supporting the idea that TLR-mediated
signaling pathways originating in the cell membrane may be engaged in various cells due
to differential expression and distribution of the endosomal TLRs. Therefore, the presence
of endosomal TLRs on the cell surface could benefit the host responses in certain cell
types and/or organs. Although not fully understood why, TLR3, TLR7, and TLR9 may
occur both in the cell membrane and intracellularly, and it seems that activation of the
immune response can be initiated concurrently from these two sites in the cell.
Furthermore, various forms of endosomal TLRs may be transported to the cell
membrane, indicating that this may be a normal process orchestrated by cysteine
proteases—cathepsins. Among the endosomal TLRs, TLR3 belongs to the evolutionary
distinct group and engages a different protein adapter in the signaling cascade. The
differently glycosylated forms of TLR3 are transported by UNC93B1 to the cell membrane,
unlike TLR7, TLR8, and TLR9. The aim of this review is to reconcile various views on the
cell surface positioning of endosomal TLRs and add perspective to the implication of such
receptor localization on their function, with special attention to TLR3. Cell membrane-
localized TLR3, TLR7, and TLR9 may contribute to endosomal TLR-mediated
inflammatory signaling pathways. Dissecting this signaling axis may serve to better
understand mechanisms influencing endosomal TLR-mediated inflammation, thus
determine whether it is a necessity for immune response or simply a circumstantial
superfluous duplication, with other consequences on immune response.
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INTRODUCTION

TLR3, like all members of the Toll-like receptor family,
recognizes pathogen-associated molecular patterns (PAMPs),
danger-associated molecular patterns (DAMPs), and plays an
essential role in innate immunity. While origins of microbial
derivatives of TLR ligands are straightforward, endosomal TLRs
can recognize self-nucleic acids emerging, e.g., during tissue
damage caused by UV-radiation or from non-apoptotic cell
debris (1). The importance of TLR3 in self-RNA recognition
was discussed in the work of Takemura et al. (2). where high-
dose ionizing radiation severely affected murine epithelial stem
cells of small intestine, causing the gastrointestinal syndrome
(GIS) Damage of nucleic acids and leakage of cellular RNA from
the cells activated TLR3 which proved to be critical to the
pathogenesis of the disease as Tlr3-/- mice showed significant
resistance to GIS. Nevertheless, host-derived TLR ligands may be
present in the extracellular environment as well as in endosomes,
however, they undergo rapid degradation by nucleases, reducing
the risk of autoimmune or autoinflammatory disorders (3).
Although mechanisms that control the precise transportation
of the endosomal TLRs to the ligand recognition site are strictly
regulated, barriers can be overcome and lead to autoimmune
diseases such as lupus erythematosus (4), psoriasis (5), or
rheumatoid arthritis (6).

TLRs may be classified according to their cellular localization, as
they may occur on the cell surface or in the membranes of
intracellular vesicles referred to as endosomes. All endosomal
TLRs identified in mice and humans: TLR3, TLR7, TLR8, and
TLR9, sense nucleic acids or their derivatives, i.e., double-stranded
RNA (dsRNA), single-stranded-RNA (ssRNA), uridine-rich or
uridine/guanosine-rich ssRNA, and unmethylated CpG DNA
respectively (7, 8). The size of human endosomal TLRs is about
1000 amino residues, compared to cell surface-localized TLRs which
have approximately 800 amino acids [see Figure 2 in (5)]. Although
TLRs are acknowledged as evolutionarily highly conserved proteins,
current studies indicate that TLR3 is the most conserved innate
receptor compared to TLR7, TLR8, and TLR9 (9, 10).

Endosomal TLRs are subjected to many elaborate regulations,
especially related to transportation and localization in the cell.
Recent findings dispute the dogma that TLR3, TLR7, TLR8, and
TLR9 are exclusive intracellular receptors. Although the
endosomal acidic environment is crucial for the functioning of
endosomal TLRs (11, 12), surprisingly, the same receptors may
appear on the surface of various cell types and they may trigger
signaling pathways (13–16). However, mechanisms leading to
and managing such transposition remain obscure. In this review,
we sought to reconcile scientific evidence indicating specific
conditions that support membrane positioning of endosomal
TLRs, particularly TLR3, and outline factors contributing to
TLR3 occurrence in the plasma membrane. Insights into TLR
Abbreviations: AECs, airway epithelial cells; AEP, asparagine endopeptidase; AP-
1, activator protein 1; BM-DM, bone marrow-derived macrophages; BM-MCs,
bone marrow myeloid cells; cDCs, classical dendritic cells; CNS, central nervous
system; DAMPs, danger-associated molecular patterns; DCs, dendritic cells;
dsRNA, double.
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biology regarding receptor transportation may permit full
comprehension of the impact of receptor localization on its
function. Furthermore, highlighting similarities and differences
between various cell types may yield valuable knowledge on
individual TLRs, regarding therapeutic targets for diseases that
may result from receptor localization abnormalities.
STRUCTURE OF ENDOSOMAL TLRS
AND EFFECT ON THE LOCALIZATION
IN THE CELL

The type I transmembrane proteins family comprises endosomal
TLRs that are characterized by a similar structure. TLR3, TLR7,
TLR8, and TLR9 contain N-terminal ectodomain (ECD) with
leucine-rich repeats (LRR) involved in TLR-ligand interaction
(17), and a cytosolic Toll-interleukin-1 (TIR) domain responsible
for enrollment of the signaling pathway components (18). The
structure of endosomal TLRs is shown in Figure 1 and
exemplified by TLR3.

Another distinguishing feature of endosomal TLRs is their
presence as pre-formed dimers, e.g., human TLR9 are reported to
occur in such a manner (29). Following stimulation with the TLR7
ligand, TLR7 forms an m-shaped dimer containing two ligand-
binding sites (30). Interestingly, the first site is sufficient for the
receptor activation, while the second site enhances the binding
affinity of the ligand bound to the first site. Furthermore, each ligand
binding site preferentially recognizes different moieties: guanosine
or uridine-rich ssRNA, indicating that TLR7 is a dual-receptor. In
the case of TLR3, dimerization is necessary for effective ligand
attachment (31), and the dimerization interface is located at C-
terminal 19-21 LRR components of TLR3 (LRR-CT) (32), contrary
to other TLRs in which dimerization may occur in different regions
of the C-terminal domain.

Following activation by the ligand, TLR7, TLR8, and TLR9 bind
myeloid differentiation primary response (MyD) 88 adaptor protein
through the intracellular domain, while TLR3 connects to a different
adaptor protein, TIR-domain-containing adapter-inducing
interferon-b (TRIF), through the TIR-domain (33). Such
interactions initiate signaling cascades that promote nuclear
translocation of nuclear factor kappa B (NF-kB), interferon
regulatory factor 3 (IRF3), IRF7, and activator protein 1 (AP-1)
transcription factors (18, 34). The ultimate goal is aimed at gene
transcription and protein expression for cytokines such as tumor
necrosis factor alpha (TNFa), interleukin-1 beta (IL-1b), IL-6,
interferon-inducible protein 10 (IP-10), and type I interferons
(IFNs) (IFN-a and IFN-b) that are able to counteract the danger
raised by the invading pathogen (33).

Prototypical endosomal TLRs translocate to ligand
recognition sites from ER which they populate in resting cells
(35–37). Following ER residence, receptors are trafficked to the
Golgi apparatus for addition of N-linked glycans, however, they
may also reach the endosomes bypassing this organelle (37).
TLR9 is an exception in this intracellular transportation route.
After the glycosylation, the receptor is transported to the cell
surface and recruits AP-2 complex to effectuate endocytosis and
February 2021 | Volume 11 | Article 620972
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finally anchor in endosomes. In contrast, TLR7 recruits AP-4
complex in the cytoplasm and resettles directly from the Golgi
network to endosomes (38).

Endosomal TLRs contain distinctive targeting sequences that
direct the receptors to their intracellular location. Endosomal
compartmentalization of TLR3 occurs due to the linker region
situated between the transmembrane helix and the TIR domain
(19) (Figure 1), while TLR7 endosomal transposition is
determined by the sorting signal from the transmembrane
domain (39). Interestingly, murine TLR9 is trafficked owing to
the transmembrane domain (40), but human TLR9
transportation to endosomes is mediated by the tyrosine-based
motif of the cytoplasmic domain (41). Folding of the adequate
structure of the TLR protein may also determine its localization
in the cell. For example, cysteines participating in disulfide bond
formation play an important role in TLR3 stability and
expression. Analysis of TLR3 mutants in the cysteines
indicated that some of the modified receptors may exhibit
different levels of cell surface expression (42).
INFLUENCE OF UNC93B1 ON CELL
SURFACE LOCALIZATION OF
ENDOSOMAL TLRS

One of the accessory proteins responsible for transportation of
endosomal TLRs from the ER to endosomes which ensures
Frontiers in Immunology | www.frontiersin.org 3
proper localization for effective antimicrobial immune response
is UNC93B1 (20, 43). Autosomal recessive deficiency of
UNC93B1 in humans may predispose to herpes simplex
encephalitis (HSE) following herpes simplex type I virus (HSV-
1) infection through insufficient production of type I (IFN-a and
IFN-b) and type III (IFN-g) interferons (44). In resting cells,
UNC93B1 resides in the ER (45), and upon endosomal TLR
stimulation interacts with transmembrane segments of the
receptors and delivers them to the ligand recognition site (46).
Nucleic acids-sensing TLRs such as TLR3, TLR7, and TLR9 of
mice with Unc93B1 loss-of-function mutation are unable to leave
the ER (43, 45). Furthermore, these mice are prone to infections
with various intracellular pathogens (46). UNC93B1 may
stabilize TLR3, TLR7, and TLR9, regulate their maturation at
early state and therefore probably is responsible for the correct
spatial conformation of these receptors (47). Pelka et al. propose
that nucleic acid (NA)-sensing TLRs are most likely misfolded
and targeted to the ER-degradation pathway in Unc93b1-/- and
Unc93b13d/3d mice due to the lack of interaction with the
missing/unfunctional chaperone protein. UNC93B1 contributes
to the protective role of TLR3 and TLR9 by increasing their half-
life, probably through lowering their proteolytic degradation rate
(48, 49). However, UNC93B1 upregulation may also increase the
responsiveness of TLR3, TLR7, TLR8, and TLR9 to their
agonists, and conditions that lead to increased UNC93B1
expression may yield autoimmune disorders (49).

Different proteins from the adaptor protein (AP) family have
been proposed to participate in UNC93B1-mediated transition
FIGURE 1 | Structure of endosomal TLR localized in the endosome/cell membrane, exemplified by TLR3—shown are dimerization site, ECD (ectodomain/
extracellular domain), transmembrane helix, and TIR domain (Toll-interleukin-1-receptor domain), as well as functions of the essential elements of the receptor
(19–28).
February 2021 | Volume 11 | Article 620972

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mielcarska et al. Cell Surface-Localized Endosomal TLRs
of individual TLRs to the endosomes. During TLR7
transportation aimed at ligand detection, the receptor is
accompanied by UNC93B1 and AP-4, however, direct
interaction has been demonstrated between AP-4 and TLR7
but not AP-4 and UNC93B1 (38). UNC93B1 also regulates
TLR9 intracellular trafficking by recruiting AP-2 via the C-
terminal domain (38), which supports clathrin-dependent
internalization of TLR9 from the cell membrane (50).
Knockdown of AP-2 and the exclusion of the AP-2-dependent
sorting pathway of TLR9 increased TLR9 responses and TLR8
activity in HEK cells, indicating the multifaceted role of this
adaptor protein (51). Interestingly, TLR3 and TLR9 are subject to
regulated release from Unc93b1 in endosomes prior to ligand
binding and signaling, contrary to TLR7 which binds ligand and
signals while associated with Unc93b1 (52). Furthermore,
following Unc93b1 phosphorylation, the Unc93b1-TLR7
complex is able to recruit Syntenin-1 for signaling termination
and limiting the receptor reactivity (53).

Kanno et al. (14) observed that the appearance of TLR7 on the
surface of splenic DCs occurred in a UNC93B1-dependent
manner. The contribution of UNC93B1 in the transportation
of TLR9 to the cell surface was reported by Onji et al. (54).
Deficiency in UNC93B1 reduced the abundance of TLR3 on the
surface of the human embryonic kidney (HEK293T) cells (55),
and no TLR3 was observed on the surface of murine bone
marrow myeloid cells (BM-MCs) with the Unc93B13d/3d loss-
of-function mutation (56). These results indicate that UNC93B1
may be responsible for the presence or abundance of TLR3 and
other endosomal TLRs on the surface of cells.

Stimulation of human umbilical vein endothelial (HUVEC)
cell line with TLR3 ligand but not with TLR9 ligand, not only up-
regulated UNC93B1mRNA expression, but also promoted TLR3
transposition to the cell membrane. Additionally, increased
expression of UNC93B1 affected the transportation of TLR3
but not TLR7, TLR8, or TLR9 to the cell membrane in HEK293T
cells transfected with TLR3 and UNC93B1. Overexpression of
UNC93B1 led to a 13-fold increase in cell surface expression of
TLR3, compared to cells with endogenous expression of
UNC93B1 (49). The up-regulation of UNC93B1 which
increases TLR3 expression on the cell membrane could also
imply an increase in intracellular/endosomal TLR3 abundance
[see Figure 4A in (49)], however, confirmatory studies would be
necessary to acknowledge such a phenomenon in cells other than
HEK293T and additionally verify whether UNC93B1 can occur
together with TLR3 on the cell surface. Such an interaction was
revealed for uncleaved TLR9 and UNC93B1 (38). Studies on the
role of UNC93B1 in the cell surface localization of TLR5 also
show that although UNC93B1 mainly localizes intracellularly, it
may be present in the cell membrane [see Figure 3B in (57)].
Whether TLR3 requires internalization from the cell surface to
endosomes for triggering the signaling pathway is another issue
worth investigating. Bioinformatic analyses revealed that the
UNC93B1 promoter region may be regulated by poly(I:C)-
induced (polyinosinic:polycytidylic acid, synthetic dsRNA)
transcription factors such as IRF3, NF-kB or AP-1. Priming of
cells with the TLR3 ligand may enhance responses to agonists of
Frontiers in Immunology | www.frontiersin.org 4
other nucleic acids-sensing TLRs through the up-regulation of
UNC93B1 (49). These findings shed light on the dependency of
TLR3 on UNC93B1 for its surface localization in cells.

N-linked glycosylation is a significant process that arranges
localization and assembly and therefore determines proper
endosomal TLRs signaling (58). Besides, it may be involved in
TLR3 stability (59), since mutations in 2 (N247, N413) of the 15
glycosylation sites gave rise to a non-functional TLR3 (21). The
addition of complex glycans to TLR3 takes place primarily in the
Golgi apparatus (48), and although TLR3 is one of the most
heavily glycosylated TLRs, its lateral face does not contain
glycans in order to interact with dsRNA or proteins (60). The
endogenous expression or simultaneous overexpression of
UNC93B1 and TLR3 generates a differentially glycosylated
form of TLR3 on the surface of human cell lines (48, 49),
whereas such form of TLR3 was not expressed on the surface
of cells with overexpressed murine Unc93b1 (20). Likely, the
disparately glycosylated TLR3 may be exclusively destined for
the cell membrane, but this requires further examination.
Nevertheless, this feature highlights TLR3’s uniqueness, since
no modified glycosylation pattern has been detected for other
endosomal TLRs during UNC93B1 overexpression (49). In the
work of Pohar et al. (49), it was considered that such a
conservatism constitutes an evolutionary adaptation intended
to protect against autoimmune response to self-nucleic acids.
Interestingly, another ER resident, the protein associated with
TLR4 (PRAT4A), is required for intracellular trafficking of Tlr7
and Tlr9, whose responses were abolished in PRAT4A−/− BM-
DCs, BM-macrophages, and splenic B cells. In contrast, Tlr3
responses were not impaired in cells from mice lacking
PRAT4A (61).

Taken together, UNC93B1 is a versatile chaperone protein
and not only takes part in the escape and transportation of the
NA-sensing TLRs from the ER or cell membrane to endosomes,
but also remains associated with TLRs for activation or
termination of their signaling, and finally contributes to the
generation of particular TLR forms on the cell surface. However,
little is known about the delivery of cleaved forms of endosomal
TLRs to the membranes of particular cell types (56), and whether
this may take place in a UNC93B1-dependent manner. Cleavage
of endosomal TLRs occurs in endosomes with the participation
of cathepsins, important enzymes that may shape the formation
of TLR-mediated immune response against pathogens (62–66).
More than a dozen cathepsins have been discovered in humans,
which belong to aspartic (D, E), serine (A, G), and cysteine (B, C,
F, H, K, L, O, S, V, Z/X, W) proteases (67).
CLEAVAGE OF ENDOSOMAL TLRS BY
CATHEPSINS

Compartmentalization of TLR3, TLR7, TLR8, and TLR9 is aimed
at the delivery of receptors to the ligand location site. However,
endosomes not only provide recognition of bacterial or viral
nucleic acids but they also prevent TLRs from sensing host
nucleic acids and retain the environment necessary for the
February 2021 | Volume 11 | Article 620972
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activity of cathepsins, which play an important role in receptor
performance (54, 64, 66, 68) (Table 1). Acidic pH is vital for
adequate maturation of endosomes and augments ligand
recognition by TLR3 and TLR9 (40, 88), whereas inhibition of
acidification likely impedes the immune response (89, 90).
Although pH 5.7–6.5 is optimal for TLR3 aggregation and
signaling, only pH 7.5 or higher prevented the response of
TLR3 to poly(I:C) in human U937 lymphocyte cell line (11).
TLR3, TLR7, TLR8, and TLR9 contain individual cleavage sites
and are split by various proteases (Table 1) into the N-terminal
fragment containing part of the ECD and C-terminal fragment
consisting of truncated ECD, transmembrane, and TIR domain
(65, 77). Noteworthy is the fact that different cell types may have
diverse proteolytic specificity and capacity, e.g., in dendritic cells
(DCs), apart from “classic” TLR9 processing dependent on the
cysteine protease cathepsin B and required for proper signaling,
the receptor was subjected to other proteolytic events
orchestrated by other enzymes (91). Cathepsin S is active
regardless of an acidic environment and may cleave TLR9
between amino acids 441–470 into the 80 kDa form of an
active receptor capable of inducing a signaling cascade.
Processing of TLR9 between amino acids 724–735 in
endosomes leads to the emergence of a soluble form. Such a
soluble TLR9 (sTLR9) variant, analogous to sTLR2 and sTLR4,
which occur naturally in body fluids and cellular secretions (92–
94), inhibits TLR9-dependent signaling, indicating that
distinctive proteolytic processes may affect TLR9 responses, an
aspect that requires further investigations.

Cleavage of TLR7 or TLR9 by cathepsins is required for
signaling, contrary to TLR3, where proteolytic cleavage of the
receptor may not determine the activation of the immune
response (77). Despite the use of z-FA-FMK cathepsin
inhibitor, TLR3 could still be activated in transiently
transfected HEK293T, Huh7.5, and BEAS-2B cells in
comparison to the control treatment (48), therefore, it is
possible that proteolytic cleavage may untie novel functions of
the TLR3 derivative forms. Compared to full-length TLR3, both
C-terminal and N-terminal forms displayed longer half-life,
which may influence the duration of signaling (48). Moreover,
mutation of the TLR3 cleavage site or the addition of cathepsin
inhibitor reduced the abundance of endosomal TLR3 destined
for degradation in lysosomes. Noteworthy is that the cleaved
TLR3 forms were more abundant in early endosomes, while the
inhibition of cathepsin activity shifted TLR3 localization to
recycling endosomes and lysosomes (48). Localization of TLR3
in various types of endosomes may have a significant impact on
the signaling, as these dynamic organelles may carry the TLR3
ligand or constitute a site of receptor degradation.

Although the presence of both cleaved fragments may not be
indispensable for ligand recognition among endosomal TLRs, C-
terminal and N-terminal forms alone have been reported to
sense their ligands (Table 1). Regarding TLR3, it is suggested that
both forms of the receptor contain the ligand-binding domain,
however, the ability to bind dsRNA by C-terminal fragment of
TLR3 is ambiguous (66, 69). A certain theory postulates that
similar to TLR9 (54), it is the association of C- and N-terminal
Frontiers in Immunology | www.frontiersin.org 5
TLR3 fragments which enables response to dsRNA. Cleaved
TLR3 fragments are observed during the detection of cellular
proteins only under denaturing conditions, which may
corroborate the interaction of these forms in murine primary
immune cells (56). In HEK293T cells, the deletion of 14 amino
acids at the N-terminus of the C-terminal form of TLR3
suppressed immune response, probably due to exclusion of the
cleaved fragments association (69). Elongation of the N-terminal
receptor form by the same number of amino acids also reduced
TLR3 responses (56). These observations were confirmed by
experiments in which activation of NF-kB or IFN-b promoter
occurred in cells where C- and N-terminal fragments were
simultaneously expressed (56). Furthermore, the addition of an
antibody stabilizing the interaction between C- and N-terminal
forms of the receptor strengthened TLR3 signaling in
endosomes. These findings strongly favor the association of
cleaved TLR3 fragments, however, we cannot preclude that
such cooperation is indirect, e.g., it may occur through the
assistance of full-length TLR3 or other proteins. Interestingly,
inherent in murine and human TLR7, cysteines of the N-
terminal (C98 and C445) and C-terminal (C475 and C722)
cleavage forms of the receptor are not only required for the
TLR7 proteolytic processing. These unique amino acids also
determine the disulphide bonds between TLR7 cleaved
molecules and are indispensable for RNA sensing by the
cleaved and bound forms of the receptor (78).

Notably, Qi et al. (55). observed that TLR3 mutations in
P554S (situated in the region of cleavage and critical for dsRNA
binding) and F303S, caused a reduction in TLR3 abundance on
the cell surface, compared to wild type HEK293T cells. Earlier,
Zhang et al. (95). linked P554S mutation in a patient suffering
from HSE with loss of TLR3 function in central nervous system
(CNS) cells and increased penetrance of the disease through
insufficient antiviral response, as reviewed by Mielcarska et al.
(96). Subsequently, F303S mutation was found in a patient with
encephalopathy following influenza virus infection, which
underlines the pivotal role of TLR3 in the antiviral defense of
the brain (55). This highlights the importance of intact TLR3
cleavage site, the influence of the cleavage on ligand recognition
and activation of the signaling pathway.

Collectively, different proteases have great importance in the
processing of endosomal TLRs through production of active or
inhibitory forms, which is continually required for the proper
receptor functioning. Receptor proteolysis appears to be
conserved across cell types (65), however, a thorough
investigation of which enzymes contribute to regulating the
TLRs signaling remains to be determined.
OCCURRENCE OF ENDOSOMAL TLRS ON
THE CELL SURFACE

Endosomal TLRs may be present in the cell membrane from where
they may sense ligands. Ample surface expression of endosomal
TLRs is observed in various cell lines and cell membrane-localized
receptors are also capable of triggering an immune response. TLR7
February 2021 | Volume 11 | Article 620972
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may appear on the surface of cells and become a beneficial target for
autoimmune therapy. For instance, in mice suffering from chronic
p rog r e s s i v e inflammat i on caus ing sp l enomega ly ,
thrombocytopenia, and chronic active hepatitis due to
spontaneous TLR7-dependent systemic inflammation, symptoms
were alleviated through the use of anti-surface TLR7 antibodies (14).
Administration of an antibody against TLR7 in these mice inhibited
the production of cytokines in immune cells such as B cells,
macrophages, and DCs. Particularly, the exogenously added anti-
TLR7 antibody completely blocked the production of IL-6, CCL5,
and TNFa in BM-MCs, and greatly inhibited B-cell proliferation
induced by the TLR7 ligand (14). Full-length and N-terminal TLR7
forms were found on the surface of immune cells such as bone
marrow-derived macrophages (BM-DM) and macrophage cell lines
as well as in BM-conventional DCs, BM-plasmacytoid DCs, B cells,
and peripheral blood monocytes, but TLR7 in BM-derived cells was
mainly localized in the intracellular compartment. Similarly, TLR7
appeared on the cell surface and intracellularly in connective tissue-
type mast cells, however, exhibiting higher expression inside the
cells (73). When surface TLR7 was complexed with antibodies, it
was detected in lysosomes 24 h later (14). Interestingly, such an
internalization process may not be associated with triggering the
signaling pathway, but the degradation of the receptor.

Careful investigation of different distribution profiles of
endosomal TLRs in cells may yield data on cell type-specific
Frontiers in Immunology | www.frontiersin.org 6
pathways that culminate in antimicrobial response induction.
For example, following stimulation of brain cells with let-7b, a
TLR7 ligand, the receptor localized to the endosomes in the
cortical and hippocampal neurons which underwent apoptosis
(97), and to the plasma membrane in the sensory neurons
causing stimulation of the cation channel transient receptor
potential A1 (TRPA1) (98). The discussed results indicate the
localization of TLR7 in different types of neurons as a factor
influencing the functional responses of neurons to the
stimulation with the TLR7 ligand (13).

TLR8 has not been found on the cell surface thus far, but the
receptor may crosstalk with other TLRs. Nucleic acid recognized by
TLR8 may be of viral origin or constitute bacterial RNA released
within phagosomal vacuoles (99). Total RNA of Escherichia coli
elicited TLR7 and TLR8 activation in HEK293 cells (100), while
stimulation of cell surface TLR2, TLR4, and TLR5 in human
primary monocytes down-regulated TLR8-IRF5 signaling,
reducing the impact of TLR8-mediated pathogen sensing (101,
102). Interestingly, human TLR8 inhibited activation of TLR7 and
TLR9, likewise TLR8 frommice inhibited TLR7 activity (103). Cells
from Tlr8-/- mice showed increased expression of Tlr7 and were
hyperresponsive to various TLR7 ligands, resulting in the animals
developing spontaneous autoimmunity (104). Furthermore, Tlr7-/-

and Tlr8-/- Tlr7-/- mice did not show the phenotypes of Tlr8-/-
animals, emphasizing the significant role for TLR8 control of the
TABLE 1 | Comparative presentation of endosomal TLRs and their ligands, enzymes required for cleavage, the importance of cleavage and eventual participation of
cleaved fragments in signaling, and the possibility of occurrence on the surface of cells.

Endosomal
TLR

Ligand Enzymes
responsible for

cleavage

Cleavage
required for
TLR signaling

The ability of
full-length/
cleaved

fragments to
bind ligand

The requirement of
C and N

association for
signal transduction

Occurrence on the surface of the cell

TLR3 double-
stranded
RNA

cathepsins B, L,
and/or S (48),
H (66)

not required
(but may
modulate the
level of antiviral
response) (48)/
required (66)

present:
FL, N, C (48)

required (56, 69) yes:
CD8+ DCs, MZ B cells, J774 macrophages, BM-MCs (56),
HEK293T cells (48), prostate epithelium (70), human
conjunctival fibroblasts (HCF) (71), apical and basal plasma
membrane of human endocervical cells (72), rat peritoneal
mast cells (73, 74),
and other

TLR7 single-
stranded
RNA,
guanosine

cathepsin B* (65),
asparagine
endopeptidase
(AEP) (75), furin-
like proprotein
convertases (76)

not required
(64)/
required (30,
75, 77, 78)

present:
FL, C (75), C
(78), N, C
(cooperatively
involved) (30)

not required (75)/
required (30, 78)

yes:
BM-DM, BM-conventional DCs, BM-plasmacytoid DCs, B
cells, peripheral blood mononuclear cells (14), rat peritoneal
mast cells (73, 74)

TLR8 uridine-rich or
uridine/
guanosine-
rich single-
stranded
RNA

cathepsins*,
furin-like
proprotein
convertase (79)

required** (68,
79)

present**:
N, C (68, 79)

required** (68, 79) unknown

TLR9 unmethylated
CpG DNA

cathepsin B (63),
F (63), K (62, 77),
L (63, 64), S (63,
64, 77), AEP (80)

required (48,
64, 77, 80, 81)

present:
FL, N, C (64,
77, 80)

not required (the
cleaved 80 kDa form
is considered to
constitute a mature
receptor) (80)/
required (54)

yes:
conventional DCs and plasmacytoid DCs (pDCs) (54), rat
peritoneal mast cells (73, 74), PBMCs (82), IECs (83),
neutrophils (84), human hepatocellular carcinoma (HCC) cell
lines (85), B cells (86), splenic monocytes and B cells, RAW
264.7 cells (87)
The features discussed are presented at the top of each column. FL, full-length; C, C-terminal; N, N-terminal. *studies were carried out indirectly, with the use of cathepsin inhibitor, which
can exert broader activity; **result obtained on the basis of structural analysis studies.
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TLR7 expression level and its role in autoantibody production. The
functional reverberations of these TLR-TLR dependencies have yet
to be thoroughly investigated.

TLR9 may exist on the surface of splenic DCs (54), rat
peritoneal mast cells (73), HEK293 cells following stimulation
with the TLR9 ligand (36), human peripheral blood
mononuclear cells (PBMCs) after the addition of LPS (82), or
murine intestine epithelium after stimulation of cells with DNA
from pathogenic Salmonella enterica (83). Present on the surface
of human and murine neutrophils, TLR9 plays an important role
in their activation, even after inhibition of endosomal
acidification (84). Further, stimulation of TLR9 in human
polymorphonuclear leukocytes resulting in their activation,
culminated in enhanced expression of the cleaved functional
receptor on the surface of cells. On the other hand, the forced
occurrence of TLR9 on the cell surface through mutation in the
transmembrane region led to inhibition of the receptor
proteolysis and lethal inflammation in mice (105). Expression
of cell membrane-localized TLR9 was remarkably increased on
whole blood B cells of severely mechanically injured patients
prone to sepsis compared with healthy controls (106). Also
discovered in the plasma membrane of B lymphocytes, surface
TLR9 was unable to bind its ligand, however, might negatively
regulate endosomal TLR9 responses (86). It remains to be
resolved how the non-ligand-binding receptor may signal from
the cell surface to influence the intracellular equivalent.
Interestingly, TLR9 was expressed on the surface of human
HCC cell lines such as HepG2, HLE, Huh7, and SK-Hep1 (85).
While full-length TLR9 was mainly expressed on the cell
membrane, cleaved forms of TLR9 were abundant in the
endosomes. Recently, Murakami et al. (87). confirmed the
presence of TLR9 in the plasma membrane of splenic
monocytes and B cells. During studies with immunocompetent
cells, it was found that TLR9 surface expression varied according
to the cell type as well as the status of their differentiation and
activation. TLR9, together with TLR7, have been found in human
airway epithelial cells (AECs), particularly in the terminal bars
and cilia (107). Such an unusual pattern of expression and
distribution may favor tissue-specific biological necessities.

Surface TLR3 was first observed on human fibroblast cell line
MRC-5 (108). Binding of TLR3 to an antibody inhibited the poly
(I:C)-mediated secretion of IFN-b by MRC-5 cells ,
demonstrating the functional role of the receptor on their
surface. In HEK293T cells transfected to express TLR3, full-
length, N- and C-terminal forms of the receptor were present on
the cell surface. In contrast, the cell surface of BM-MCs subjected
to similar experiment abounded in cleaved TLR3 forms rather
than full-length receptor (48). These fragments were likely to be
transported from endosomes, and motif-containing TLR3
plasma membrane localization dependent on UNC93B1 was
assigned to the ECD of the receptor (108). Different
monoclonal antibodies binding to TLR3 ECD inhibited the
production of cytokines in human lung epithelial cells (109).
Surface TLR3 expression was also observed in cell lines such as
HUVEC, pigmented retinal epithelium (APRE-19), lung
epithelium (A549), human dermal microvascular endothelium
Frontiers in Immunology | www.frontiersin.org 7
(HDMEC), stomach carcinoma (N87), and breast carcinoma
(JIMT-1) (110). Recently, surface TLR3 was observed on CD8+

classical dendritic cells (cDCs), BM-MCs, J774 murine
macrophages, and marginal zone (MZ) B cells (56). On the
other hand, in monocyte-derived immature dendritic cells (MD-
iDCs) and CD11+ blood DCs, apart from being on the surface,
TLR3 was largely stored intracellularly and upon poly(I:C)
stimulation the cells increased cytokine production and
maturation (111). Stimulation of rat peritoneal mast cells with
LL-37 peptide not only increase TLR9 expression on the cell
surface but also contributed to the translocation of TLR3 from
the plasma membrane to the cytoplasm (74). The peptide
increased intracellular TLR3 abundance while TLR3 expression
on the cell membrane decreased.

In the light of the findings discussed in the preceding section, it is
justifiable to point that cell surface TLR localization is now an
established scientific observation, especially in immunocompetent
cells. It remains a matter of thorough investigation to discern
whether such a pattern of expression has a beneficial effect for the
host. Unlike self-derived ligands of TLR7, TLR8, and TLR9, the
endogenous dsRNA inmammalian cells is limited to small amounts
in the cytosol formed by complementary ssRNA fragments or
microRNAs (miRNAs) (112, 113). The latter, although constantly
synthesized by the cells, are unlikely to stimulate antiviral
mechanisms. As a consequence, TLR3 present at the surface of
cells in distinct organs may pose a lower risk of autoimmune
response and function without pathological repercussions
comparing to other endosomal TLRs (49).
TLR3 CELL SURFACE EXPRESSION AND
ITS POSSIBLE MEANING

Studies over the past several years have reported on the surface
occurrence of TLR3, which may facilitate response against
pathogens. This pattern of occurrence on the membranes of
distinct cells appeared to go in pairs with viral infection.
Therefore, a thorough examination of the cell types regarding
possible cell type-specific TLR3 regulation is necessary. For
instance, the TLR3 shift to the cell surface was observed after
respiratory syncytial virus (RSV) infection of airway epithelial A549
cells (114), similar to the epithelium of human bronchi (BEAS-2B
cells) after rhinovirus infection (115). During viral infections,
dsRNA may be found as an intermediate product of virus
replication in the extracellular milieu after the breakdown of the
infected cells [(107), see Figure 7 in (49) and Figure 1 in (96)].
Abundant surface TLR3 was also detected in primary human
corneal epithelial cells (HCECs), where the production of IFN-b
and pro-inflammatory cytokines such as IL-6 and IL-8 was initiated
after the addition of poly(I:C) (116), which also led to upregulation
of surface TLR3 expression. A significant transfer of TLR3 to the
surface of alveolar macrophages was observed in mice after lung
contusion (LC), in comparison to the uninjured control (117).
Suresh et al. demonstrated that such a process was intended to
expose TLR3 to extracellular dsRNA released from injured cells.
Importantly, the dsRNA-triggered downstream signaling was
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independent of NF-kB and type I IFNs, and led to increased
macrophage apoptosis and exaggeration of the local inflammatory
response which aggravated the degree of lung injury. In such a case,
the discovery that the exogenous TLR3 ligand is able to mobilize
membrane translocation of the receptor may indicate that ligand-
induced cell priming could increase vulnerability to subsequent
dsRNA recognition (118).

The issue of TLR3 function, especially, on the airway epithelial
cell surface, has attracted scientific curiosity. Poly(I:C) proved to be
the most effective epithelial activator in BEAS-2B and primary
bronchial epithelial cells stimulated with various TLR ligands (119).
Among other genes, it significantly increased the expression of IL-8,
granulocyte-monocyte colony-stimulating factor (GM-CSF), and
macrophage inflammatory protein-3a (MIP-3a), whose products
foster migration andmaturation of iDCs. The presence of TLR3 was
also confirmed in the apical cell membrane of human tracheal
epithelial cells and human AECs (107). These observations confirm
the potential significance of TLR3 in defense against
inhaled pathogens.

The presence of TLR3 in the cell membrane was also
demonstrated in unstimulated BEAS-2B cells (109). The addition
of monoclonal antibodies recognizing cell membrane-TLR3
inhibited secretion of cytokines such as IL-6, IL-8, IP-10, MCP-1,
RANTES, by up to 60% after stimulation with poly(I:C). Although a
significant value, it indicates that other ligand-binding sites existed
on the surface TLR3 that were not blocked by the antibody, or
induction of the immune response may have occurred due to
activation of the endosomal receptor. Contemporaneous signaling
through the surface and endosomal TLR would initiate a faster and/
or more robust biological outcome, however, this remains to be
further explored. Inflammation is crucial for the elimination of
infections, however, excessive inflammation may be particularly
harmful to the protective functions of the surface of the mucous
membranes (72). Therefore, TLR3 has an essential role at the
surface of epithelial cells, which constitute essential physical
barriers and strengthens the notion that cell surface TLR3 is a
propitious target for the regulation of TLR3 responses (56).

In lymphatic endothelial cells (LECs) such as primary human
dermal (HD) LECs and lung LECs or transfected htert-HDLECs,
TLR3 and TLR9 occurred both intracellularly and on the cell surface
(120). Interestingly, all three cell types increased the expression of
ICAM-1 and VCAM-1 leukocyte adhesion molecules as well as
inflammatory cytokines production in response to TLR3, but not
TLR9 ligand. Similarly, primary lung LECs also increased the
expression of VCAM-1 following treatment with the TLR3 ligand
(120). Furthermore, poly(I:C) up-regulated the expression of
ICAM-1 in HT-29 intestinal epithelial cells (IECs) (121). The
stimulation effect was diminished when HT-29 cells were treated
with an anti-TLR3 antibody, indicating TLR3 functionality on the
cell surface. Thus, cell membrane-localized TLR3 may serve as a
mediator to promote the trafficking of immune cells through the
lymphatic vessels during viral incursion, which reveals a new aspect
of the receptor biology.

Healthy epithelial cells of the ileum and colon serve as a
defensive line of the intestinal mucosa and also express cell
surface TLR3 (122). There was no difference in surface TLR3
Frontiers in Immunology | www.frontiersin.org 8
expression between non-inflamed mucosa cells and mucosa cells
from ulcerative colitis patients. However, a significant reduction
of surface TLR3 in mucosa cells was found among patients with
Crohn’s disease, indicating that such receptor deficiency in the
intestinal epithelium may be the disease-related feature.

It still remains difficult to explain the role of the various forms of
TLR3 on the surface of cells, although it is postulated that the
cleaved receptor localized in such a way may constitute an aim for
regulating the antiviral response. Murakami et al. (56). have made
significant progress in investigating the possibility of dsRNA
recognition and launching of protective immunity by surface
TLR3 in their studies on J774 murine macrophages. In these cells,
TLR3 present on the surface was mostly cleaved, indicating it may
have been modified in endosomes prior to cell surface distribution.
The N-terminal fragment occurred on the cell surface as the main
TLR3 representative and was able tomodulate the antiviral response
from this particular setting. However, Murakami et al. (56). argue
that surface TLR3must be internalized in order to become activated
by dsRNA. This is very likely due to the acidification which supports
TLR3 activation, and because extracellularly present dsRNA, e.g.,
released from dead cells following viral infection, undergoes
endocytosis (123). However, it cannot be precluded that the TLR3
response may be launched directly from the membrane of specific
cell types by the ligand prevalent in the extracellular environment
(Figure 2).

An example of non-beneficial localization of TLR3 on the cell
surface was discovered in the metastatic derivative of IECs (15).
Stimulation of IECs with poly(I:C) up-regulated UNC93B1 which
also increased surface TLR3 expression. Both full-length and cleaved
TLR3 forms appeared on the cell membrane, in contrast to non-
metastatic cells. The inhibition of acidification in endosomal and
lysosomal compartments inhibited the production of CXCL10
following TLR3 stimulation, indicating the significant role of these
organelles as well as possible functions of cleaved TLR3 forms in
signaling. On the contrary, inhibition of the TLR3 ligand
endocytosis only slightly affected TLR3-induced CXCL10
production, however, cells failed to induce IFN-b expression.
These results imply that dsRNA does not have to be absorbed
into the cells for receptor activation (Figure 2). Furthermore,
chemokine responses following stimulation of the surface TLR3 in
metastatic IECs may induce a conducive environment for tumor
progression (15). Although TLR3 promoted invasiveness of IECs in
the discussed work, the dsRNA stimulation may entail apoptosis
and reduce cell viability in various cancer types in a TLR3-
dependent manner (124, 125). Therefore, careful studies of
individual cancer types regarding the effects induced by cell-
surface expressed TLR3 are indispensable to determine either
beneficial or detrimental outcomes.
CONCLUDING REMARKS

Localization of nucleic acid-sensing TLRs in endosomes requires
maintenance of a pH suitable for cathepsin cleavage as well as
potent ligand affinity and has important implications towards
triggering an effective immune response. The presence of the
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endosomal TLRs on the cell surface may indicate an atypical
condition or point to abnormal protein segregation and
transportation and may affect proper degradation of the
receptor. However, endosomal TLRs may also occur on the cell
surface in a physiological state, and several studies point out that
the localization of TLR3 or other TLRs to the cell membrane may
be exploited as a therapeutic target.

TLR3 appears to exist as a functional receptor on the cell
membrane more frequently than other endosomal TLRs,
probably because endogenous agonists of TLR7, TLR8, and
TLR9 are more abundant than dsRNA in uninfected cells, and
therefore surface localization of TLR3 poses a lower risk of
autoimmunity (49). Although it is believed that TLR3
activation occurs entirely in acidic endosomes (88), perhaps it
would also be beneficial for cells to maintain a certain amount of
TLR3 in the cell membrane in order to identify the extracellularly
present viral dsRNA in case of a viral infection (Figure 2) (49).
The probability that TLR3 ligand recognition occurs directly on
the cell surface should not be disregarded, especially if the
pathogen-derived ligand may not be able to reach the
endosome. In such a case, it is the presence of a receptor on
the cell surface that would allow the immune response to be
activated. This statement is consistent with the positive effect of
the exogenous dsRNA addition on the elevation of surface TLR3
expression (116) as well as increasing of TLR3 expression on the
cell membrane after viral infection (114, 115). Furthermore, it
underpins the significance of the surface TLR3 in mediating
immune responses to viruses and should be addressed in future
studies. TLR3 is engaged in recognizing dsRNA produced during
the replication cycle of many viruses (95, 126–136), which may
be released after lysis of infected cells.
Frontiers in Immunology | www.frontiersin.org 9
Additional attention should be directed towards cleaved
forms of endosomal TLRs, which also occur on the surface of
cells and may play a role in microbial sensing. UNC93B1 is a
protein indispensable for proper signaling of endosomal TLRs,
however, mechanisms by which it may modulate surface TLR
transportation and be involved in trafficking of the cleaved TLR
forms await further studies.

The possibility that endosomal TLRs may occur in the cell
membrane and act as stable and functional receptors seems
particularly interesting. Already, investigations reveal that
localized in such a way, these receptors may become disease-
conducive or act as salutary immune sensors. Consequently, NA-
sensing TLRs present on the plasma membrane may serve as
therapeutic targets for functional monoclonal antibodies and
might account for the progression of new therapeutical
approaches towards rare human diseases that are difficult to treat.
Discovering pathways originating at the cell surface may uncover
new functions of endosomal TLRs, as well as subserve in better
understanding individual aspects of their activation.
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FIGURE 2 | Scheme of TLR3 transportation in the cell. The transportation route is initiated in the ER and terminates in the lysosome—site of degradation. TLR3
present on the cell surface may recognize the dsRNA, which is a viral replication intermediate for some viruses, derived from necrotic infected cells. The dsRNA can
also be endocytosed and recognized by TLR3 in the endosomes. Pathways requiring further examination are marked with dashed lines.
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membrane-localized Toll-like receptor 3 by siRNA. Immunol Lett (2017)
189:55–63. doi: 10.1016/j.imlet.2017.03.019

17. Matsushima N, Miyashita H, Enkhbayar P, Kretsinger RH. Comparative
geometrical analysis of leucine-rich repeat structures in the NOD-like and
Toll-like receptors in vertebrate innate immunity. Biomolecules (2015)
5:1955–78. doi: 10.3390/biom5031955

18. Kawai T, Akira S. The role of pattern-recognition receptors in innate
immunity: Update on toll-like receptors. Nat Immunol (2010) 11:373–84.
doi: 10.1038/ni.1863

19. Funami K, Matsumoto M, Oshiumi H, Akazawa T, Yamamoto A, Seya T.
The cytoplasmic “linker region” in Toll-like receptor 3 controls receptor
localization and signaling. Int Immunol (2004) 16:1143–54. doi: 10.1093/
intimm/dxh115
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