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ABSTRACT: The purpose of the present study was to investigate the short-term effects of a 12-day, soft pellet (SP) diet 
with a 3-h restricted feeding schedule on caloric intake, body weight, lipid metabolism, and insulin sensitivity. Glucose 
and insulin levels were measured pre-, mid-, and post-feeding. The SP rats exhibited postprandial hyperglycemia com-
pared to rats fed control pellets (CP). The insulin response of SP rats during a meal was significantly higher than that of 
CP rats. There were no significant differences in the hepatic triacylglycerol contents and lipogenesis gene mRNA levels of 
SP and CP rats. However, the hepatocytes of SP rats were slightly hypertrophic. In addition, histological analysis revealed 
that the pancreases of SP rats had more islet areas than those of CP rats. This study demonstrated that feeding an SP-on-
ly diet for 12 days induces glucose intolerance, suggesting that the consumption of absorbable food, like a soft diet, may 
trigger glucose metabolism insufficiency and lead to life-threatening diseases.
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INTRODUCTION

Individuals with insulin resistance are predisposed to 
develop type 2 diabetes mellitus (T2DM) (1). T2DM is 
associated with a number of comorbidities, including 
dyslipidemia and inflammation, which are collectively 
referred to as metabolic syndrome (2). In the insulin re-
sistant state, the effect of insulin to maintain blood glu-
cose homeostasis is compromised, leading to hyper-
secretion of insulin from pancreatic beta cells (3,4). 

Food texture is thought to affect feeding behavior and 
energy metabolism (5). Eating behavior has long been of 
interest as a factor contributing to the development of 
obesity (6-9). Fujise et al. reported that meal size and 
eating speed increased in rats fed a soft pellet (SP) diet 
compared to rats fed a hard pellet diet (10). In previous 
studies, long-term feeding of an SP diet induced a larger 
increase in body weight and body fat content than long- 
term feeding of a hard pellet diet (11,12). These findings 
indicate that there is a close relationship between eating 
habits, food texture differences, and obesity or obesity- 
related disease. Similarly, we recently reported that rats 
fed an SP diet for 14 weeks displayed signs of glucose in-

tolerance and de novo lipogenesis (13). These findings 
suggest that long-term intake of an SP diet may induce 
obesity or insulin resistance. However, it is not yet known 
whether short-term intake of an SP diet affects lipid me-
tabolism and insulin sensitivity. Therefore, in the pres-
ent study we investigate the effects of short-term (i.e., 
12 days) feeding of an SP diet on lipid metabolism and 
insulin sensitivity in rats. 

MATERIALS AND METHODS

Animals and diet
Twenty 7-week-old, male Wistar rats (Charles River 
Japan, Inc., Shiga, Japan) were used for this study. Rats 
were individually housed in plastic cages kept at a con-
stant room temperature with a 12 h light/12 h dark cy-
cle (light: 08:00∼20:00). The rats were randomly di-
vided into two groups (n=10 per group) and were fed 
either control pellets (CP) or SPs for 12 days. The CP 
group was fed a standard laboratory chow containing 
51% carbohydrate, 25% protein, and 4.6% fat (CLEA 
Japan, Inc., Tokyo, Japan). The SP group was fed a mix-
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Table 1. PCR amplification primer sequences

Gene               Primer sequence (5’→3’)

SREBP-1c

ACC

FAS

36B4

Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse

GCGGAGCCATGGATTGCAC
CTCTTCCTTGATACCAGGCCC
GAGGTTGGAGGCAAAGGACAT
TACAGCATCGCCAGCTTAAGG
AGGCGTCGAACTTGGACAGAT
AGTTCTGGGCCAACCTCATTG
AGGTCCTCCTTGGTGAACACAAA
TCATTGTGGGAGCAGACAATGTG

ture of standard laboratory chow and water (1 g of stan-
dard laboratory chow with 1.4 mL of water). Because we 
planned to measure glucose and insulin concentrations 
pre-, mid-, and post-feeding, the rats were given access 
to food between 09:00 and 12:00 (i.e., a 3-h restricted 
feeding schedule). All rats were allowed ad libitum access 
to water throughout the study. Body weight and food in-
take were measured daily throughout the study. All pro-
cedures were performed in accordance with the Japanese 
Physiological Society’s guidelines for animal care. The 
study protocol was approved by the Ethics Review 
Committee for Animal Experimentation in the Faculty 
of Medicine, University of Miyazaki.

Plasma samples preparation and analysis
Blood samples were obtained from the tail vein of 
9-week-old CP and SP rats (n=6 per group) immediately 
pre-meal (t=0 min), mid-meal (t=60 min into the 
meal), and post-meal (t=30 min postprandial). Blood 
was collected into tubes containing a protease inhibitor 
cocktail (Roche, Basel, Switzerland), immediately centri-
fuged (2,000 g, 4oC, 10 min), and then stored at −80oC 
until analysis. Plasma insulin levels were measured with 
ELISA kits (Insulin; Morinaga Institute of Biological 
Science, Inc., Yokohama, Japan) at the three points de-
scribed above. Blood glucose measurements were per-
formed with a hand-held glucometer (Bayer, Osaka, 
Japan) at the three points mentioned above. 

Hepatic triacylglycerol content
Nine-week-old CP and SP rats (n=3 per group) were 
fasted overnight and then anesthetized with an intra-
peritoneal injection of a 50 mg/kg dose of pentobarbital. 
To measure hepatic triacylglycerol content, the lipids 
from 25 mg of liver tissue were extracted in 1 mL of 
chloroform-methanol [2:1 (v/v)] mixture, as previously 
described (14), and the triacylglycerol content was quan-
tified with a triglyceride E kit (Wako Pure Chemical 
Industries, Ltd., Osaka, Japan).

Histological analysis
The liver and pancreas were removed from the anes-
thetized rats (n=3 per group), rinsed with saline and 
fixed in a buffer solution of 3.7% formalin. Portions of 
each fixed tissue specimen were processed for paraffin 
embedding. Three-micrometer tissue sections were cut 
from the paraffin-embedded specimens, spread onto a 
slide, and baked at 60oC for 1 h. The slides were stained 
with hematoxylin and eosin (H&E) examined under an 
optical microscope (Nikon, Tokyo, Japan). The islets 
of Langerhans were measured with ImageJ software 
(http://rsb.info.nih.gov/ij/download.html).

Quantitative real-time PCR
The liver was removed from overnight-fasted, anesthetized 
9-week-old rats (n=5 or 6 per group), and total RNA 
was rapidly extracted with TRIzolⓇ reagent (Invitrogen 
Corp., Carlsbad, CA, USA). First-strand cDNA was syn-
thesized from 1 μg of total RNA using a commercially 
available SuperscriptⓇ III First-Strand Synthesis System 
kit (Invitrogen Corp.), and the resulting cDNA was used 
for quantitative PCR analysis. Quantitative PCR was 
conducted on a LightCyclerⓇ system (Roche Diagnostics 
GmbH, Mannheim, Germany) using the SYBRⓇ Premix 
Ex TaqTM system (Takara Bio Inc., Shiga, Japan) with 
sterol regulatory element-binding protein (SREBP)-1c, 
acetyl CoA carboxylase (ACC), and fatty acid synthase 
(FAS) primers. The gene specific primers used are de-
scribed in Table 1. The relative abundance of all reaction 
products was normalized to the level of ribosomal pro-
tein 36B4 mRNA.

Statistical analysis
Data were analyzed using the Statistical Package for the 
Social Sciences (SPSS) soft version 12.0 for windows 
(SPSS Inc., Chicago, IL, USA). All data are presented as 
the mean±SEM. Statistical significance was evaluated by 
Student's t-tests. The trapezoidal method was used for 
all area under the curve (AUC) calculations. P-values 
less than 0.05 were considered significant.

RESULTS AND DISCUSSION

In the present study, we investigated lipogenesis and in-
sulin sensitivity in rats fed an SP diet for 12 days. The 
caloric intake, body weight, and energy efficiency rate 
were not significantly different between groups (Fig. 1). 

Blood glucose and insulin responses to feeding are 
shown in Fig. 2. At 30 min post-feeding, the blood glu-
cose level was significantly greater in the SP group than 
the CP group (Fig. 2A). However, there was no differ-
ence between the blood glucose AUC values of the two 
groups (Fig. 2B). Furthermore, at the 60 min (i.e., mid- 
meal) time point, SP rats had significantly greater in-
sulin levels than CP rats (Fig. 2C). The insulin response 
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Fig. 2. Blood glucose (A and B) and insulin (C and D) levels in rats fed control pellets or soft pellets. All values are mean±SEM.
Statistical significance was evaluated by Student’s t-test at P<0.05. AUC, area under the curve.

Fig. 1. Caloric intake (A), body weight (B), and energy effici-
ency rate (C) of rats fed control pellets or soft pellets. All 
values are mean±SEM. Statistical significance was evaluated 
by Student’s t-test at P<0.05.
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Fig. 3. Histological analysis (A) and pancreatic islet size (B) 
of rats fed control pellets or soft pellets. All values are mean±
SEM. Statistical significance was evaluated by Student’s
t-test at P<0.05.

AUC of the SP group was also significantly greater than 
the insulin response AUC of the CP group (Fig. 2D). 
Our data are in agreement with the work of Nojima et 
al., which showed that consumption of a soft diet can 
have a blood glucose increasing effect (15). Previous 
studies have also indicated that the texture of absorbable 
food can trigger hyperglycemia and hyperinsulinemia 
(13). In other words, even short-term consumption of an 
SP diet may promote glucose metabolism insufficiency 
in rats.

Insulin producing pancreatic β-cells maintains blood 
glucose levels within a narrow range by secreting insulin 
in response to glucose (16). In rats, glucose infusion in-
duces β-cell replication and increased β-cell size and 
mass (17,18). In the early stages of diabetes, pancreatic 
β-cells, which are closely regulated by glucose flux and 
hormonal effects (19), are hyperplastic and produce a lot 
of insulin (20). H&E staining was used to assess the is-
let morphology of pancreas sections collected from CP 
and SP rats (Fig. 3A). The surface area of pancreatic is-
lets from the SP group was 90.45% greater than the sur-
face area of pancreatic islets from the CP group (Fig. 
3B). Recent studies suggest that both CP and SP diets 
increase β-cell mass and worsen insulin sensitivity (13). 
The present data suggest that the short-term consump-
tion of an absorbable SP diet induces sustained hypergly-

cemia. This is followed by β-cell hyperplasia, which 
causes an increase in plasma insulin levels.

We examined the histology, triacylglycerol content, 
and lipogenesis-related gene (i.e., SREBP-1c, ACC, and 
FAS) expression of livers collected from rats in the CP 
and SP groups. Photomicrographs of H&E-stained liver 
tissue sections revealed the histological structure of the 
liver (Fig. 4A). Triacylglycerol levels were increased in 
the SP group, but not significantly (Fig. 4B). There were 
no significant differences in hepatic SREBP-1c, ACC, 
and FAS mRNA expression between the CP and SP 
groups. However, the ACC and FAS mRNA levels of the 
SP group were greater than the ACC and FAS mRNA 
levels of the CP group (Fig. 4C). SREBP-1c expression is 
stimulated by insulin. The targets (e.g., ACC and FAS) 
of SREBP-1c are involved in the lipogenic pathway. 
Activation of the lipogenic pathway increases liver trigly-
ceride concentrations (21,22). In the present study, we 
found that triacylglycerol levels, ACC mRNA expression, 
and FAS mRNA expression tended to be greater in the 
SP rats compared to the CP rats; however, these differ-
ences were not significant. Our previous studies in-
dicated that rats fed an SP diet for 14 weeks had signs of 
liver de novo lipogenesis (13), indicating that a longer 
period of SP diet consumption is necessary for the in-
duction of hepatic lipogenesis.
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Fig. 4. Photomicrographs of H&E-stained liver sections (A), hepatic triacylglycerol content (B), and lipogenesis-related mRNA levels 
(C). All values are mean±SEM. Statistical significance was evaluated by Student’s t-test at P<0.05.

In conclusion, our current data demonstrate that rats 
fed an SP diet, even for a short period (i.e., 12 days), de-
velop hyperinsulinemia with postprandial hyperglycemia, 
but not de novo lipogenesis. Our previous study revealed 
that rats fed an SP diet for 14 weeks developed insulin 
resistance and lipogenesis. However, the data obtained 
from the present study suggest that the SP diet itself 
could disturb glucose homeostasis, indicating that con-
tinuous consumption of an SP diet would lead to insulin 
resistance and lipogenesis. The results of our present 
study, as well as those of our previous study, have pro-
vided a new insight into the development and pre-
vention of metabolic syndrome. Food texture might be 
an important factor when selecting foods to improve the 
control of human lifestyle-related diseases.
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