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Abstract

Background: One common observation in infectious diseases caused by multi-strain
pathogens is that both the incidence of all infections and the relative fraction of infection
with each strain oscillate with time (i.e., so-called Epidemic cycling). Many different
mechanisms have been proposed for the pervasive nature of epidemic cycling.
Nevertheless, the two facts that people contact each other through a network rather
than following a simple mass-action law and most infectious diseases involve multiple
strains have not been considered together for their influence on the epidemic cycling.

Methods: To demonstrate how the structural contacts among people influences the
dynamical patterns of multi-strain pathogens, we investigate a two strain epidemic
model in a network where every individual randomly contacts with a fixed number of
other individuals. The standard pair approximation is applied to describe the changing
numbers of individuals in different infection states and contact pairs.

Results: We show that spatial correlation due to contact network and interactions
between strains through both ecological interference and immune response interact
to generate epidemic cycling. Compared to one strain epidemic model, the two strain
model presented here can generate epidemic cycling within a much wider parameter
range that covers many infectious diseases.

Conclusion: Our results suggest that co-circulation of multiple strains within a contact
network provides an explanation for epidemic cycling.

Keywords: Competition, Cross-immunity, Cyclical dominance of strains, Infectious
diseases, Contact network, Oscillatory epidemics

Background
Recurrent epidemics are a common behaviour of many endemic infectious diseases [1, 2].

Transmission and spread of infectious diseases depend, in part, on the way and frequency

of how people contact with each other. The mass-action law which assumes the homoge-

neous mixing among individuals has been traditionally employed in modelling contact

patterns because of simplicity and mathematical tractability. Based on the mass-action law,

however, simple transmission dynamics models cannot predict sustained oscillations in

incidence [3, 4]. To explain recurrent epidemics, many complicated aspects of both hosts

and infectious agents have been included. For example, seasonal forcing due to external

driving changes in host behaviour and/or susceptibility, and the intrinsic mechanisms such

as interactions between strains of the infectious agents (for a review see [5]). The models

that incorporate different elaborate aspects can generate the oscillatory epidemics under

certain, usually restricted, parameter ranges.
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The actual contact patterns among people surely deviate from the mass-action law [6, 7].

For example, contact patterns between people may display the characteristics of scale-free

networks [8] or small-world networks [9]. A recent study shows that it is the contact

heterogeneity, rather than transmission efficiency, that limits the emergence and spread of

canine influenza virus [10]. This indicates the crucial role of contact structure in infection

transmission and spread. Applying the network frameworks into infectious disease

modelling has attracted much theoretical attention and shown some novel features (e.g.

[11–15]). Letting infection spread on a homogeneous population with a fixed random

network structure, Rozhnova and Nunes [16] illustrate sustained cyclical epidemics within a

one strain susceptible-infective-recovered-susceptible (SIRS) model. They show that a

combination of intrinsic stochasticity due to a finite population size and spatial correlation

due to limited contacts may be enough to produce realistic oscillatory patterns observed in

recurrent epidemics. As they observed, however, the phase of sustained oscillations for

parameter values that correspond to diseases gets thinner with the number of contacts each

individual has (which is defined as the degree in network theory) so quickly that the

oscillatory phase disappears once the degree exceeds six.

Another striking characteristic of endemic infectious diseases is the fact that they are

mostly caused by multi-strain pathogens and the dominant strain alters between

epidemics [5]. For childhood diseases, for example, it might have been traditionally

thought that only one strain is involved in each disease. With advanced techniques

such as polymerase chain reaction and phylogenetic analysis, it has been now

recognised that more than one genotypes (or strains in general sense) are co-

circulated in, say, measles [17, 18], chicken pox [19–24], rubella [25, 26], pertussis

[27–30], mycoplasma pneumoniae [31], and hand-foot-mouth disease [32]. Further,

the accumulative evidence that reinfection does occur in, for instance, measles

[33–36], chicken pox [37–40], rubella [41–44] and pertussis [45, 46], mycoplasma

pneumoniae [47, 48], and hand-foot-mouth disease [49], indicates that immunity

against these childhood diseases that were built through nature infection or vaccin-

ation wanes. Many other infectious diseases are also caused by multi-strain pathogens

such as cholera, dengue, influenza, malaria, Neisseria meningitides and respiratory

syncytial virus infection.

Although the structured network plays an important role in infection transmission and

polymorphic infectious diseases are quite common, these two characteristics have not yet

been collectively investigated on their potential role in generating sustained epidemic

cycling. In this study, we consider a two strain SIRS epidemic model (e.g., [50]) and assume

that immunity wanes either because of immune loss within the human body or immune

escapement due to changes in the circulating strains. Further, following Rozhnova and

Nunes [16], two strains are assumed to co-circulate within a random network of a fixed

degree. We investigate how cross-immunity between strains and spatial correlation due to

contact structure interplay to produce the epidemic cycling, i.e., the concomitant occur-

rence of sustained oscillations in the total incidence and the alternation of dominant strains.

When dealing with polymorphic pathogens, it is worth pointing out the meanings of

“strains”. In empirical studies, strains of a pathogen are usually defined serologically or

phenotypically. In theoretical modelling, however, strains have been defined immunologic-

ally or genetically [51, 52]. In this study we assume this theoretical tradition to allow the

model framework to be widely applicable.
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Methods
Within the two strain SIRS model, the population is classified into eight different

compartments and modelled as a random network of a fixed degree κ. Individuals are

denoted by nodes and contacts between individuals by edges. The epidemic dynamics is

determined by the following transmission and transition processes. Susceptible nodes (S)

become infected with strain i, i = {1,2}, at rate λ through an edge with a node of primary

infection Ii or a node of secondary infection Ji. Primarily infected nodes (Ii) recover at rate

γ to become fully immune (Ri) to the infecting strain i and partially so to the other strain.

The recovered individuals (Ri) lose immunity at rate σ to become susceptible again, or

become secondarily infected at rate (1-ψ)λ through an edge with a node of infection (I3-i
or J3-i) to become secondarily infected J3-i, i = {1,2}. Here ψ reflects the reduction in

susceptibility due to the previous exposure to other strain (i.e., cross-immunity). Nodes of

secondary infection Ji, i = {1,2} recover at rate γ to become fully immune against all strains

(i.e., R). Nodes of fully immune (R) lose immunity at rate σ to become susceptible again.

These transitions and transmissions are defined according to the pairs or triplets involved

in the process [16, 53]. For simplicity we ignore the clustering in the network (c.f., [15, 53]).

Following Eames and Keeling [53], the numbers of people in eight different statuses

are represented by [S], [I1], [I2], [J1], [J2], [R1], [R2], and [R]. The additional mortality

caused by the virulence of infections is ignored, and birth and death occur at the same

rate μ to maintain a constant population size, N = [S] + [I1] + [I2] + [J1] + [J2] + [R1]

+ [R2] + [R]. There are (8 × 7)/2 = 28 heterogeneous pairs within the network in which

the two nodes of a pair are of different states. The number of homogenous pairs can

be found from these of heterogeneous pairs: e.g., [RR]= κ N−
X
Y≠R

Y½ �
 !

−
X
X≠R

XR½ � and

[SS]= κ S½ �−
X
X≠S

SX½ �. The state of the system is defined by seven integers of nodes and

28 integers of heterogeneous pairs. To focus on the impact of spatial correlation (i.e.,

competition among the limited number of partners) and cross-immunity between

strains, two strains are assumed to be antigenically indistinguishable.

Transmission of infection among nodes occurs through pair-link and the change of

pairs is determined by the triples. The standard pair approximation SIRS model of two

strains is described by a set of 28 + 7 = 35 differential equations,

Equations describing the changing numbers of nodes

d
dt

S½ � ¼ μ N− S½ �ð Þ−λ SI1½ � þ SJ1½ � þ SI2½ � þ SJ2½ �ð Þ þ σ R½ � þ R1½ � þ R2½ �ð Þ
d
dt

I1½ � ¼ − μþ γð Þ I1½ � þ λ SI1½ � þ SJ1½ �ð Þ
d
dt

I2½ � ¼ − μþ γð Þ I2½ � þ λ SI2½ � þ SJ2½ �ð Þ
d
dt

R1½ � ¼ γ I1½ �− μþ σð Þ R1½ �−λ 1−ψð Þ R1I2½ � þ R1J2½ �ð Þ
d
dt

R2½ � ¼ γ I2½ �− μþ σð Þ R2½ �−λ 1−ψð Þ R2I1½ � þ R2J1½ �ð Þ
d
dt

J1½ � ¼ λ 1−ψð Þ R2I1½ � þ R2J1½ �ð Þ− μþ γð Þ J1½ �
d
dt

J2½ � ¼ λ 1−ψð Þ R1I2½ � þ R1J2½ �ð Þ− μþ γð Þ J2½ �
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Equations describing the changing numbers of pairs

d
dt

SI1½ � ¼ λ SSI1½ � þ SSJ1½ �− I1SI1½ �− J1SI1½ �− I2SI1½ �− J2SI1½ �ð Þ− λþ γð Þ SI1½ �
þσ RI1½ � þ R1I1½ � þ R2I1½ �ð Þ þ μ κ I1½ �−2 SI1½ �ð Þ

d
dt

SI2½ � ¼ λ SSI2½ � þ SSJ2½ �− I1SI2½ �− J1SI2½ �− I2SI2½ �− J2SI2½ �ð Þ− λþ γð Þ SI2½ �
þσ RI2½ � þ R1I2½ � þ R2I2½ �ð Þ þ μ κ I2½ �−2 SI2½ �ð Þ

d
dt

SR1½ � ¼ −λ I1SR1½ � þ J1SR1½ � þ I2SR1½ � þ J2SR1½ �ð Þ−λ 1−ψð Þ SR1I2½ � þ SR1J2½ �ð Þ þ γ SI1½ �
þσ R1R1½ � þ R1R2½ � þ R1R½ �− SR1½ �ð Þ þ μ κ R1½ �−2 SR1½ �ð Þ

d
dt

SR2½ � ¼ −λð I1SR2½ � þ J1SR2½ � þ I2SR2½ � þ J2SR2½ �−λ 1−ψð Þ SR2I1½ � þ SR2J1½ �ð Þ þ γ SI2½ �
þσ R1R2½ � þ R2R2½ � þ R2R½ �− SR2½ �ð Þ þ μ κ R2½ �−2 SR2½ �ð Þ

d
dt

SR½ � ¼ −λ I1SR½ � þ J1SR½ � þ I2SR½ � þ J2SR½ �ð Þ þ γ SJ1½ � þ SJ2½ �ð Þ
þσ R1R½ � þ R2R½ � þ RR½ �− SR½ �ð Þ þ μ κ R½ �−2 SR½ �ð Þ

d
dt

SJ1½ � ¼ λ 1−ψð Þ SR2I1½ � þ SR2J1½ �ð Þ−λ I1SJ1½ � þ J1SJ1½ � þ I2SJ1½ � þ J2SJ1½ �ð Þ− λþ γð Þ SJ1½ �
þσ RJ1½ � þ R1J1½ � þ R2J1½ �ð Þ þ μ κ J1½ �−2 SJ1½ �ð Þ

d
dt

SJ2½ � ¼ λ 1−ψð Þ SR1I2½ � þ SR1J2½ �ð Þ−λ I1SJ2½ � þ J1SJ2½ � þ I2SJ2½ � þ J2SJ2½ �ð Þ− λþ γð Þ SJ2½ �
þσ RJ2½ � þ R1J2½ � þ R2J2½ �ð Þ þ μ κ J2½ �−2 SJ2½ �ð Þ

d
dt

I1I2½ � ¼ λ 2 I1SI2½ � þ J1SI2½ � þ I1SJ2½ �ð Þ−2 γ þ μð Þ I1I2½ �
d
dt

I1R1½ � ¼ λ I1SR1½ � þ J1SR1½ �ð Þ−λ 1−ψð Þ I1R1I2½ � þ I1R1J2½ �ð Þ þ γ I1I1½ �− σ þ γ þ 2μð Þ I1R1½ �
d
dt

I1R2½ � ¼ λ I1SR2½ � þ J1SR2½ �ð Þ−λ 1−ψð Þ I1R2I1½ � þ I1R2J1½ � þ I1R2½ �ð Þ þ γ I2I1½ �− σ þ γ þ 2μð Þ I1R2½ �
d
dt

I1R½ � ¼ λ I1SR½ � þ J1SR½ �ð Þ þ γ I1J1½ � þ I1J2½ �ð Þ− σ þ γ þ 2μð Þ I1R½ �
d
dt

I1J1½ � ¼ λ I1SJ1½ � þ J1SJ1½ � þ SJ1½ �ð Þ þ λ 1−ψð Þ I1R2I1½ � þ I1R2J1½ � þ I1R2½ �ð Þ−2 γ þ μð Þ I1J1½ �
d
dt

I1J2½ � ¼ λ I1SJ2½ � þ J1SJ2½ �ð Þ þ λ 1−ψð Þ I1R1I2½ � þ I1R1J2½ �ð Þ−2 γ þ μð Þ I1J2½ �
d
dt

I2R1½ � ¼ λ I2SR1½ � þ J2SR1½ �ð Þ−λ 1−ψð Þ I2R1I2½ � þ I2R1J2½ � þ I2R1½ �ð Þ þ γ I2I1½ �− σ þ γ þ 2μð Þ I2R1½ �
d
dt

I2R2½ � ¼ λ I2SR2½ � þ J2SR2½ �ð Þ−λ 1−ψð Þ I2R2I1½ � þ I2R2J1½ �ð Þ þ γ I2I2½ �− σ þ γ þ 2μð Þ I2R2½ �
d
dt

I2R½ � ¼ λ I2SR½ � þ J2SR½ �ð Þ þ γ J1I2½ � þ J2I2½ �ð Þ− σ þ γ þ 2μð Þ I2R½ �
d
dt

I2J1½ � ¼ λ I2SJ1½ � þ J2SJ1½ �ð Þ þ λ 1−ψð Þ I2R2I1½ � þ I2R2J1½ �ð Þ−2 γ þ μð Þ I2J1½ �
d
dt

I2J2½ � ¼ λ I2SJ2½ � þ J2SJ2½ � þ SJ2½ �ð Þ þ λ 1−ψð Þ I2R1I2½ � þ I2R1J2½ � þ I2R1½ �ð Þ−2 γ þ μð Þ I2J2½ �
d
dt

R1R2½ � ¼ −λ 1−ψð Þ R1R2I1½ � þ R1R2J1½ � þ I2R1R2½ � þ J2R1R2½ �ð Þ þ γ I1R2½ � þ R1I2½ �ð Þ−2 σ þ μð Þ R1R2½ �
d
dt

R1R½ � ¼ −λ 1−ψð Þ I2R1R½ � þ J2R1R½ �ð Þ þ γ I1R½ � þ R1J1½ � þ R1J2½ �ð Þ−2 σ þ μð Þ R1R½ �
d
dt

R1J1½ � ¼ λ 1−ψð Þ R1R2I1½ � þ R1R2J1½ �− I2R1J1½ �− J2R1J1½ �ð Þ þ γ I1J1½ �− γ þ σ þ 2μð Þ R1J1½ �
d
dt

R1J2½ � ¼ λ 1−ψð Þ R1R1I2½ � þ R1R1J2½ �− I2R1J2½ �− J2R1J2½ �− R1J2½ �ð Þ þ γ I1J2½ �− γ þ σ þ 2μð Þ R1J2½ �
d
dt

R2R½ � ¼ −λ 1−ψð Þ I1R2R½ � þ J1R2R½ �ð Þ þ γ I2R½ � þ R2J2½ � þ R2J1½ �ð Þ−2 σ þ μð Þ R2R½ �
d
dt

R2J1½ � ¼ λ 1−ψð Þ R2R2I1½ � þ R2R2J1½ �− I1R2J1½ �− J1R2J1½ �− R2J1½ �ð Þ þ γ I2J1½ �− γ þ σ þ 2μð Þ R2J1½ �
d
dt

R2J2½ � ¼ λ 1−ψð Þ R2R1I2½ � þ R2R1J2½ �− I1R2J2½ �− J1R2J2½ �ð Þ þ γ I2J2½ �− γ þ σ þ 2μð Þ R2J2½ �
d
dt

RJ1½ � ¼ λ 1−ψð Þ RR2I1½ � þ RR2J1½ �ð Þ þ γ J1J2½ � þ J1J1½ �ð Þ− γ þ σ þ 2μð Þ RJ1½ �
d
dt

RJ2½ � ¼ λ 1−ψð Þ RR1I2½ � þ RR1J2½ �ð Þ þ γ J1J2½ � þ J2J2½ �ð Þ− γ þ σ þ 2μð Þ RJ2½ �
d
dt

J1J2½ � ¼ λ 1−ψð Þ I1R2J2½ � þ J1R2J2½ � þ J1R1I2½ � þ J1R1J2½ �ð Þ−2 γ þ μð Þ J1J2½ �

ð1Þ

(1)
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Here [XYZ] represents the number of triple XYZ with node Y having contacts with

both X and Z. To close the system, the number of triples is approximated in terms of

the number of pairs as in [53],

XYZ½ �≈ k−1
k

XY½ � YZ½ �
Y½ � ð2Þ

Noting that there are 15 × 8 = 120 transmission and transition processes in the two

strain SIRS model, the above eqs. (1, 2) can also be obtained by a coarse description

where the effect of the change in state of a given node on the κ pairs that it forms is

averaged over each pair type [16].

The complexity of the two strain dynamics allows us to investigate the combined

effects of cross-immunity and competition between two strains on dynamic patterns of

endemic infectious diseases, along with spatial correlation embedded within the

random network. To ignore the stochasticity due to the limited size of population, here

we consider a human population of a very large size N. The fourth order Runge-Kutta

algorithm is used to solve the eqs. (1, 2) and the programme is coded in R3.2.0 [54] to

simulate the dynamical process.

Results and discussion
For simplicity, the time scale is set so that γ =1 (i.e. the average infectious duration is

taken as the time unit). The numerical calculations show that the final dynamic

patterns of epidemic time series are independent of the initial conditions. The phase

diagram of the two strain SIRS model is shown in Fig. 1, which is divided into three

parts as that for one strain model (see Fig. 1 of [16]). When infection rate λ is less than

a critical value λc ≈ (σ + 1)/[(κ − 2) + σ(κ − 1)] from [16], disease cannot survive (disease-

free phase). For a given infection rate λ that is larger than λc, only a steady endemic

Fig. 1 Phase diagram in the (λ,σ) plane for pair approximation model of two strain SIRS model. Other parameters:
κ = 4, μ = 0.0005, and ψ = 0.0. The boundary of the one strain model of [16] is included for comparison. Region I is
the constant endemics phase where the number of new infections is balanced by the number of recoveries and
region II the oscillatory epidemics phase. The critical infection rate that separates disease-free phase and
region I is λc ≈ 0.5. Data for the four childhood infectious diseases are from [16]. As the infectious period
is used as the unit of time, the birth and death rate of μ = 0.0005 is equivalent to a life span of about
50 years in the model system for infectious diseases which have infectious periods of 1-2 weeks (such as
Measles, chickenpox, rubella). It is worth mentioning that our predicted threshold waning rate of immunity in
one strain SIRS model with μ = 0.0005 (i.e., the dashed line) are only slightly smaller than that presented in [16]
who do not consider the birth rate
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with constant incidence is possible if immunity waning rate σ is larger than a critical

value σc (region I: constant incidence phase); otherwise, the sustained oscillatory epi-

demic emerges (region II: oscillatory incidence phase). Comparison of our model with

another two strain model that assumes homogeneous mixing [50] suggests that the

spatial correlation due to network structure induces the sustained epidemic cycling as

in the one strain model [16]. From Fig. 1, it is obvious that the critical value σc for the

two strain model is much higher than that for the one strain model. (Note that

resonant amplification of stochastic fluctuations due to a finite population size can only

slightly increase the values of σc in the one strain deterministic model [16]). This indi-

cates that under the circumstance of the same epidemic characteristics, the two strain

model allows for oscillatory epidemics in infectious diseases that have much shorter

immunity periods, and thus expands model parameter range for oscillatory epidemics.

The published data for childhood infectious diseases that occur recurrently fall into

the oscillatory phase of the two strain model (see Fig. 1); comparably, only some infec-

tion data are within the oscillatory phase of the one strain model [16]. This difference

results from the competition between strains. The competition comes from two differ-

ent aspects. One is ecological interference [55] that infectiousness with one strain

avoids further being infected by another strain as in multi-strain models (e.g. [56]). This

acts equivalently as a kind of convalesce with respect to another strain and enhances

the emergence of sustained oscillations in incidence [57, 58]. The other is spatial correl-

ation due to contact network structure. The limited number of nodes each node links

in the contact network leads to the competition, which increases as the degree κ

decreases and then induces cyclical epidemics [16]. These two aspects work together to

expand greatly the oscillatory phase in the two strain model.

Introduction of cross-immunity between strains further enlarges the oscillatory phase

in the two strain model (Figs. 2 and 3). In contrast to the one strain model where oscil-

latory phase disappears on networks of degree κ > 6 [16], the oscillatory epidemics in

the two strain model persist on contact networks of a very high degree κ (Fig. 2). This

implies that the ecological interference and cross-immunity in some ways compensate

weakened spatial correlation at highly contact networks. Therefore, the two strain SIRS

Fig. 2 The effect of the degree on the oscillatory phase under three levels of cross-immunity. Region I is for
constant endemics where the number of new infections is balanced by the number of recoveries and region II
for the oscillatory epidemics. The transmission rate is λ = 10 and the birth rate is μ = 0.0005
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epidemic model can easily explain the oscillatory behaviours observed in childhood

infectious diseases. Under the extreme circumstance of complete cross-immunity, the

oscillatory phase decreases considerably (Fig. 3); for the situation shown in Fig. 2

recurrent epidemics emerge only on contact networks of a degree κ < 5.

Gupta et al. [59] investigate multi-strain SIR models within a randomly mixing popula-

tion in which strains can exchange through mutation and recombination. They illustrate

that host immunity dictates the structure and dynamics of the pathogen population, with

cyclical dominance of non-overlapping sets of strains occurring only at intermediate levels

of cross-immunity. Though Buckee et al. [12] show a significant role of host contact

network structure in mediating pathogen strain structure and dynamics, qualitatively

similar patterns dictated by cross-immunity remains: cyclical epidemics emerges only at

the intermediate levels of cross-immunity. Spreading through a random network structure

with a fixed degree, however, our two strain SIRS epidemics show cyclical epidemics even

under circumstances of no cross-immunity (Figs. 1, 2 and 3) and of complete cross-

immunity (Figs. 2 and 3). The difference comes from that, comparing to the SIR models

of [12, 59], here we consider waning immunity which takes place through both immunity

loss and immunity escapement. Although we do not explicitly model the continuous

changes in two strains, these changes have been taken into and reflected in the waning

immunity of our model. The models of Gupta et al. [59] and Buckee et al. [12] do not

assume immunity loss in human body; however, immunity escapement occurs due to the

continuous exchanges in strains through mutation and recombination. Under the two

extreme circumstances: complete cross-immunity wherein there is no immunity escape-

ment, and no cross-immunity wherein all strains become independently and act as a

single strain, it is a quite straightforward result that no recurrent epidemics will be gener-

ated within their models. This is compatible with the pattern shown in Fig. 2: When each

individual can contact many others, our model will also prohibit recurrent epidemics

under the two extreme circumstances.

Without cross-immunity, our model demonstrates that the total incidence oscillates

and two strains anti-synchronize as shown in Fig. 4a, which can be understood as a

Fig. 3 The effect of cross-immunity on the oscillatory phase. The parameter area for cycling epidemics (II)
increases with cross-immunity but reduces rapidly when cross-immunity becomes complete. Other parameters:
κ = 8, λ = 10 and two birth rates are assumed: μ = 0.0005 (solid line) and μ = σ (dashed line). In the later
situation the threshold waning rate of immunity nearly halves, which indicates that most of individuals
stay in the recovery and immune compartments
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consequence of competition between strains and spatial correlation of nodes within the

random network as argued above (cf., [58, 59]). On another extreme situation of full

cross-immunity (ψ = 1.0), the total incidence oscillates but two strains synchronizes as

shown in Fig. 4f. This is in agreement with the conclusions from [5] who consider

complete cross-immune strains within a well-mixing population. However, the under-

lying mechanisms for oscillatory epidemics are different. In this study it is due to the

interplay of competition and spatial correlation in contact structure while in [5], it is

due to the enhanced infectivity within concurrent infection. With intermediate levels of

cross-immunity, recurrent epidemics oscillate irregularly and dominant strains alternate

between epidemics (Figs. 4b–e; cf., [12, 59]).

Three possible interactions have been examined for sustained oscillatory epidemics:

ecological interference which arises from the exclusion of strain during the infectious

period [56–58], and immune-mediated competition which takes into effect during the

immunity period [12, 59], network-mediated spatial correlation which makes the whole

population in some way act as many spatial subpopulations [16]. It is worth pointing

out the difference between the first two interactions. The ecological interference occurs

during the infectious period and because of the removal of individuals from the suscep-

tible pool during the period of being infected with one strain (see [55, 60]). The

Fig. 4 Examples of incidence time series under eight different levels of cross-immunity. Other parameters:
κ = 4, λ = 10, σ = 0.005, and μ = 0.0005. Two strains are represented by different lines. In graph (f) ψ = 1,
two strains completely synchronize so that their incidences overlap
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immune-mediated competition (i.e., cross-immunity) takes place when individuals

recover from infection with one strain and then become immune against the infecting

strain and also (partially) immune against another strain during the immunity period.

As demonstrated, each of these together with other factors can induce oscillatory

epidemics. However, the conditions for oscillatory epidemics appear to be quite re-

stricted. The three interactions act collectively in our two strain SIRS epidemic model

and epidemic cycling is shown to emerge in a much less restrictive parameter space.

Although we focus on a system of two strains, the results of this study are generally

applicable to the multi-strain setting. Technically, it is not trivial to write down the

differential equations even for the epidemic system caused by three strains; however,

the logical reason for this is simply that with more strains co-circulating within the

same network, the three interactions just discussed will increase, which consequently

facilitates the emergence of recurrent epidemics. In this study, we show the potential of

SIRS epidemic models that allow multiple strains to co-circulate within a network

structural population to generate recurrent epidemics. Although childhood diseases

were used in Fig. 1 as examples to demonstrate how our two strain model makes recur-

rent epidemics more likely than the one strain model of Rozhnova and Nunes [16], the

model framework presented here should be also applicable to other infectious diseases

caused by multi-strain pathogens. To explore the specific mechanism for a particular

infectious disease caused by multiple strains, however, we need to estimate the exact

values of model parameters by fitting the model outputs to the empirical dynamical

patterns observed in human populations such as the duration and size of epidemics

and the gap between epidemics (as in [61]). This is the issue we will aim at in future.

Conclusion
We consider the pair approximation of a two strain SIRS epidemic model in a host

population with every individual in contact with a fixed number of other individuals.

We show that interactions between strains due to ecological interference and limited

contacts within a network structured population can induce sustained oscillatory pat-

terns in both total incidence and dominant strains. Though our model is simplified in

that clustering and heterogeneity in contact network and stochasticity have been

neglected, inclusion of these more realistic aspects will facilitate the diversity [12, 15]

and fluctuation [16, 62] and therefore cannot change our conclusion. Our results

suggest another possible mechanism for the observed epidemic cycling: interplay of

spatial correlation due to contact network and interactions between strains through ex-

clusion of other infection during the infectious period and immune protection during

the immunity period (cf., [5]).
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