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ABSTRACT: PI3K (phosphatidylinositol 3-kinase) is an intracellular phosphatidylinositol kinase composed of a regulatory subunit,
p85, and a catalytic subunit, p110. Based on the different structures of the p110 catalytic subunit, PI3K can be divided into four
isoforms: PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ. As molecularly targeted drugs, PI3K inhibitors have demonstrated antiproliferative
effects on tumor cells and can also induce cancer cell death. In this study, a multiview deep learning framework (MVGNet) is
proposed, which integrates fragment-based pharmacophore information and utilizes multitask learning to capture correlation
information between subtasks. This framework predicts the inhibitory activity of molecules against the four PI3K isoforms (PI3Kα,
PI3Kβ, PI3Kγ, and PI3Kδ). Compared to baseline prediction models based on three traditional machine learning methods (RF,
SVM, and XGBoost) and four deep learning algorithms (GAT, D-MPNN, CMPNN, and KANO), our model demonstrates superior
performance. The evaluation results show that our model achieves the highest average AUC-ROC and AUC-PR values on the test
set, which are 0.927 ± 0.006 and 0.980 ± 0.002, respectively. This study provides a reference for exploring the structure−activity
relationship of PI3K inhibitors.

1. INTRODUCTION
PI3K, also known as phosphatidylinositol 3-kinase, catalyzes
the phosphorylation of phosphatidylinositol molecules. It is
divided into three categories: Class I, Class II, and Class III.
For drug discovery and development, the primary focus lies on
class I PI3K.1−3 Within Class I PI3K, its active subunit p110
has four isoforms: α, β, γ, and δ. Among these, p110α and
p110β are widely distributed in tissues, while p110γ and p110δ
are highly enriched in leukocytes. PI3K inhibitors are
promising small molecule drugs with antiproliferative effects
on tumor cells and beneficial effects on tumor cells and the
immune system leading to cancer cell death.4−6 PI3Kα
inhibitors exhibit promising results for breast cancer
indications; PI3Kβ inhibitors are considered potentially
effective for targeting PTEN-deficient tumors; PI3Kγ inhibitors
show potential for controlling immune disorders; and PI3Kδ
inhibitors are effective against hematological tumors. Based on
their selectivity, currently identified PI3K inhibitors can be
classified into three main groups: pan-PI3K inhibitors, PI3K

isoform-selective inhibitors, and dual inhibitors.7 Pan-PI3K
inhibitors, such as copanlisib, act simultaneously on all four
class I subtypes.8 However, the lack of selectivity of Pan-PI3K
inhibitors may lead to nonspecific inhibition of the entire
pathway, leading to various side effects. To address this issue,
PI3K subtype-selective inhibitors targeting specific subtype
isoforms have been extensively studied. In addition, dual PI3K-
mTOR inhibitors capable of inhibiting two isoforms, such as
Pictilisib (GDC-0941), have been proposed.9 However,
despite the potential of PI3K inhibitors, there are very few
PI3K inhibitor drugs currently on the market, mainly due to
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the high cost of translating drugs from basic science to early
stage clinical trials. To develop new PI3K inhibitors, experts
must screen a large number of candidate compounds for
factors such as activity and toxicity. However, relying solely on
chemical methods for this process results in high time and
economic costs, extensive experimentation, and a high failure
rate. Although PI3K inhibitors are widely recognized and used
in clinical practice, their molecular properties, including
toxicity, selectivity, and resistance, limit their clinical
utility.10−12

Computational methods have been increasingly used to
explore structure−activity relationships of PI3K inhibitors. For
example, Kumar et al. characterized salvianolic acid A as a dual
inhibitor of PI3K and mTOR using a structure-based
computational approach.13 Similarly, Das et al. identified
PI3Kα inhibitors for the treatment of hepatocellular carcinoma
through virtual screening and watermap analysis.14 Zhu et al.
developed a hybrid virtual screening (VS) approach combining
ligand pharmacophore modeling and molecular docking with
multiple PI3Kδ inhibitor complexes to target PI3Kδ proteins.15

In addition, perturbation theory machine learning (PTML)
models have been applied to dual-target/multitarget drug
discovery. They can be categorized into multitarget QSAR,
multiconditional QSAR, and multitasking models for quanti-
tative structure-biological effect relationships (mtk-QSBER).
For example, Speck-Planche et al. developed two different
multitarget models based on quantitative conformational
relationships (mt-QSAR) to predict multitarget BET bromo-
domain inhibitors.16 Speck-Planche et al. also used multi-
conditional QSAR models to virtually design and predict
molecules with dual pan-antiviral and anti-CS profiles.17 In this
study, a new model was developed for the design of molecules
with multitarget activity. Kleandrova et al. combined
perturbation theory and machine learning to construct a
multilayer perceptron network, PTML-MLP, which was
applied to the design of multiprotein and multicellular
inhibitors in pancreatic cancer research.18 These computa-
tional models and schemes have been instrumental in the
discovery of new PI3K inhibitors.
However, identifying highly selective molecules for specific

PI3K isoforms using structure-based VS methods or QSAR
modeling is challenging. This difficulty arises because the
binding active sites across the PI3K family exhibit high
sequence homology and structural similarity.19,20 To address
this, multitask models are often used to predict compounds
with high sequence homology and structural similarity. For
example, Nguyen-Vo et al. developed the iCYP-MFE frame-
work using multitask learning and molecular fingerprint
embedding encoding to predict inhibitory activity for five
CYP isoforms (1A2, 2C9, 2C19, 2D6, and 3A4).21 In 2022, Ai
et al. introduced a multitask FP-GNN framework that
accurately predicted the inhibitory activity of molecules against
four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-
5B).22 Recent advancements in machine learning have
significantly impacted the field of chemistry and materials,
particularly in drug property prediction. Due to the unique
properties of 2D molecular graphs, these graphs have been
widely used for drug property prediction. For example, Gilmer
et al. designed various message-passing neural networks
(MPNN) for molecular property prediction and achieved
high accuracy.23 Song et al. improved MPNNs by proposing a
directed graph-based communicating message-passing neural
network (CMPNN) that improved molecular graph embed-

ding through interactive updates of edge and node
embeddings, which greatly improved molecular property
prediction.24 The combination of molecular graphs with
other molecular features is also popular in research. For
example, Cai et al. combined molecular fingerprints and
molecular graphs and proposed the FP-GNN model for
molecular property prediction, which has a good performance
in terms of noise immunity.25 Zhu et al. combined molecular
fragments and molecular graphs and designed a plug-and-play
feature-level attention block to propose a hierarchical info-
graphics neural network framework (HiGNN), which is
capable of recognizing the key components of a molecule.26

Li et al. proposed the FG-BERT model by combining
functional groups and molecular graphs, which has a good
performance in terms of noise immunity. Li et al. proposed the
FG-BERT model by combining functional groups and
molecular graphs. This is a self-supervised pretrained deep
learning model by masking functional groups to learn more
useful molecular representations in pretraining.27 In addition,
with the development of knowledge graphs, Fang et al.
introduced KANO, a molecular property prediction method
based on the knowledge graph of chemical elements and
functional group hints. This method uses element-oriented
knowledge graphs as a priori, designs element-guided graph
expansions, and learns functional hints during fine-tuning to
evoke relevant knowledge for downstream tasks.28 Therefore,
applying machine learning and deep learning methods to
predict the bioactivity of candidate PI3K inhibitors can
efficiently screen out compounds with substandard bioactivity.
This approach effectively shortens the trial period, saves
research and development funds, and improves the clinical
translation rate.
In this study, a multiview PI3K inhibitor activity prediction

model called MVGNet was constructed. This model is based
on chemical reaction information and CMPNN, where the
molecule is cut into multiple fragments using BRICS.29 These
fragments are considered as a whole, with the bonds between
fragments serving as edges to form a new fragment view. The
multiview design enables the model to efficiently extract
pharmacophore and reaction information from molecular
fragments based on chemical reactions. In addition, multitask
learning is used to simultaneously predict four isoforms of
PI3K inhibitors (PI3K-α, PI3K-β, PI3K-γ, and PI3K-δ).
Meanwhile, in order to train and validate the performance of
the model, a new PI3K inhibitor prediction dataset was
generated based on data from online public databases, and data
cleaning and preprocessing steps were applied.

2. MATERIALS AND METHODS
2.1. Dataset Collection and Preparation. The modeling

dataset of PI3K inhibitors was mainly obtained from the
CHEMBL database (version 33),30 which is a large drug
discovery database containing therapeutic targets and
indications of clinical trial drugs and approved drugs. We
collected four subtypes of inhibitors of PI3K p110 (including
PI3K-α, PI3K-β, PI3K-γ, and PI3K-δ) acting on humans on
the CHEMBL database, and then cleaned and annotated them,
which were processed as follows: (1) Compounds with a clear
bioassay value (assay type = B), such as IC50, EC50, Kd, or Ki,
were retained. Compounds with null bioactivity data were
discarded; (2) all units of bioactivity data (e.g., g/mL, M, nM,
etc.) were converted to standard units of μM; (3) if a molecule
has more than one bioactivity data, the average of them was
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taken as the final value; (4) duplicate molecules were removed;
(5) the bioactivity values (e.g., pIC50,pEC50,pKd and pKi) ≤ 1
μM were labeled as active molecules, and vice versa as inactive
molecules;
After the above steps, the final dataset contained 17622

unique compounds with 21701 bioactive data points involving
four isoforms (i.e., PI3K-α, PI3K-β, PI3K-γ, PI3K-δ). In
addition, we divided the data into two categories: shared data
and distinct data. Shared data are compounds that are present
in all four subtype data sets. All other relevant compounds
except those that are shared data are referred to as distinct
data. Among them, the number of shared samples (compounds
present in all four subtype data sets) was 1894, all of which
were used as the training set. For the unique sample data sets,
each dataset is randomly divided into: training set, validation
set and test set according to 8:1:1 respectively. Table 1 lists the

total number of compounds and the number of active and
inactive compounds in each PI3K isoform dataset. Figure 1

illustrates the percentage of active and inactive compounds in
each PI3K isoform species, which is relatively balanced except
for the PI3K-δ dataset with a data imbalance problem (which is
difficult to solve in real-world drug discovery).
2.2. Methods. CMPNN is a directed graph-based

communication message-passing neural network that improves
molecular graph embedding by interactively updating edge and
node embeddings. Although CMPNN has been greatly
improved in the task of molecular property prediction, in the
task of PI3K inhibitor activity prediction, considering that the
binding active sites in the PI3K family exhibit a high degree of
sequence homology and their structures also show similarity.
The use of CMPNN model alone is not enough to learn more
association information between substructures, while the use of
multitask learning strategy can effectively solve this problem. In
addition, CMPNN pays more attention to the connection
between nodes and edges, and does not take into account the
influence of substructures such as functional groups on
molecular properties; in fact, the molecular properties of
drugs are often highly correlated with substructures, and the
inclusion of a priori knowledge can often help the model to
learn more effective knowledge. Therefore, in this study, the
molecular fragment view was introduced to partition the
molecule into different substructures, and the pharmacophore

information and reaction information on the substructures
were extracted to serve as the initial features.
For these considerations, a multiview PI3K inhibitor activity

prediction model (Figure 3) was constructed based on
chemical reaction information and CMPNN using multitask
learning as a way to predict the biological activity of four
subtypes of PI3K inhibitors. First, CMPNN was used as a
molecular map feature extractor for the model. BRICS is an
algorithm for segmenting molecules based on chemical
reaction templates that follow chemically sound rules.29 Jiang
et al. used BRICS to segment molecules and construct
heterogeneous molecular maps to predict molecular proper-
ties.31 BRICS is used to cut molecules into fragments while
preserving reaction information on the edges. Next, a fragment
view is constructed by treating each fragment as a different
point on the graph and the bonds connecting the fragments as
edges. Then, the features of the original molecular view and the
fragment view obtained after the BRICS cut are extracted
separately using CMPNN, and finally, the two features
(molecular graph features and fragment graph features) are
stitched together using a fully connected layer, and then the
prediction results of compound activities are output.
It should be noted that for the fragment view, RDKIT’s

feature factory was used to extract fragment features for the
pharmacophore of each fragment. Taking Figure 2 as an

example, the molecular fragment view uses Molecular Access
System (MACCS) molecular fingerprints (selected atomic
features include hydrogen bond acceptor, hydrogen bond, and
whether it has aromatic atoms or not, etc.), and extracts the
pharmacophore information on the substructures and splices
them with the MACCS molecular fingerprints as the initial
feature vectors of the fragments:

FP FP FPFragment MACCS Pharmacophore= || (1)

The initial features for the bonds connecting the fragments
were derived from the residual information obtained from the
BRICS cut. The inclusion of the fragment view allowed us to
efficiently obtain more compound-related a priori knowledge
and thus more key features.
In addition, since the binding active sites in the PI3K family

have a high degree of sequence homology and structural
similarity, the PI3K inhibitor dataset contains important
connections between subtasks. Using a single-task model
during training would result in the loss of correlation
information between these subtasks. This could lead to
misclassification, especially when there are two structurally
similar compounds. Therefore, multitask learning is critical for
predicting the activity of PI3K inhibitors. By sharing
parameters, the model can first learn the association
information between subtasks using multitarget samples, and
then fine-tune the model using single-target samples. This
approach improves the efficiency of sample usage and increases
the predictive accuracy of the model.

Table 1. PI3K Isoform Dataset

dataset molecules actives inactive

PI3K-α 7055 4926 2129
PI3K-β 2732 1607 1125
PI3K-γ 3792 2292 1500
PI3K-δ 4043 3146 896

Figure 1. Distribution of PI3K isoform samples.

Figure 2. Fragment feature representation, splicing the 167-bit
MACCS fingerprint with the 27-bit pharmacophore feature.
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2.3. Baseline Machine Learning and Deep Learning
Algorithms. To better illustrate the advantages of the model
in this study for the PI3K inhibitor prediction task, MVGNet is
compared to three machine learning models and four deep
learning models.

Machine Learning Baselines: Support Vector Machine
(SVM) is a binary classification model that achieves good
classification by finding a hyperplane that maximizes the
distance between two classes.32 Random Forest (RF) is a
classifier that uses multiple trees to train and predict samples

Figure 3. MVGNet basic framework diagram.

Table 2. Comprehensive Performance of the PI3K Inhibitor Dataset on Different Modelsa

model AUC-ROC AUC-PR ACC MCC RE SP F1

RF 0.806 ± 0.022 0.852 ± 0.020 0.734 ± 0.025 0.430 ± 0.057 0.790 ± 0.042 0.622 ± 0.069 0.768 ± 0.025
XGBoost 0.809 ± 0.022 0.859 ± 0.020 0.736 ± 0.023 0.441 ± 0.049 0.779 ± 0.037 0.654 ± 0.049 0.768 ± 0.024
SVM 0.701 ± 0.028 0.761 ± 0.030 0.657 ± 0.021 0.257 ± 0.047 0.776 ± 0.026 0.459 ± 0.060 0.716 ± 0.020
GAT 0.746 ± 0.022 0.837 ± 0.027 0.719 ± 0.026 0.301 ± 0.043 0.850 ± 0.078 0.404 ± 0.117 0.794 ± 0.028
DMPNN 0.886 ± 0.016 0.929 ± 0.013 0.818 ± 0.017 0.576 ± 0.043 0.887 ± 0.036 0.664 ± 0.066 0.862 ± 0.015
CMPNN 0.894 ± 0.020 0.921 ± 0.019 0.810 ± 0.015 0.603 ± 0.030 0.864 ± 0.049 0.719 ± 0.058 0.834 ± 0.021
KANO 0.891 ± 0.020 0.915 ± 0.020 0.806 ± 0.022 0.597 ± 0.048 0.850 ± 0.050 0.726 ± 0.076 0.826 ± 0.023
MVGNet 0.913 ± 0.011 0.949 ± 0.01 0.856 ± 0.012 0.659 ± 0.023 0.890 ± 0.027 0.725 ± 0.048 0.887 ± 0.013

aThe best-performing results are marked in bold.

Figure 4. Performance of all models on PI3K-α (A), PI3K-β (B), PI3K-γ (C) and PARP-delta (D) test sets.
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by randomly selecting the number of features, randomly
selecting the training data, and taking the prediction label with
the most occurrences for the same prediction as the final
prediction label.33 Extreme Gradient Boosting (XGBoost)
belongs to the Gradient Boosting Tree, which is a variant of
the Gradient Boosting Tree and is suitable for classification
and regression problems due to its efficient performance,
automatic handling of missing values, feature importance
assessment, regularization, etc;34

Deep learning baselines: Graph Attention Networks (GAT)
introduce the attention mechanism to spatial domain-based
graph neural networks, which can be used to learn different
weight depths for different neighbors.35,36 Directed Message
Passing Neural Networks (DMPNN) passes information no
longer between atoms but between individual bonds.37

CMPNN (2020) is an interactive update edge and node-
embedded communication message-passing neural network.24

KANO is a molecular property prediction method based on
chemical element knowledge mapping with functional group
hints.28

2.4. Performance Evaluation of Models. The following
metrics were used to evaluate the performance of all models in
this study, including specificity (SP), recall (RE), accuracy
(ACC), F1 score (F1), Matthews correlation coefficient
(MCC), the area under the receiver operating characteristic
(ROC) curve (AUC-ROC), and the area under the precision
recall (PR) curve (AUC-PR), in comparison with the results of
the multibaseline model comparison experiments. The results
of the comparison experiments with several baseline models.
The area under the receiver operating characteristic curve
(AUC-ROC) and the area under the precision recall curve
(AUC-PR) are the two determinants used for model
evaluation. These evaluation metrics are defined below:

SP
TN

TN FP
=

+ (2)

RE
TP

TP FN
=

+ (3)

ACC
TP TN

TP TN FP FN
= +

+ + + (4)

F1 2
PR RE
PR RE

2 TP
2 TP FN FP

= × ×
+

= ×
× + + (5)

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN PN)

=
× ×

+ + + +
(6)

where TP is true positive; FP is false positive; TN is true
negative; FN is false negative.

3. RESULTS AND DISCUSSION
3.1. Performance Evaluation of Models. To fairly

compare model performance, the single-task MVGNet model

was compared to all baseline models, and then the multitask
MVGNet model was compared to four deep learning baseline
models with multitask learning. All models were cross-
validated with 5-fold cross-validation, with three independent
experiments for each task. All models were trained on 30
epochs with a learning rate of 1 × 10−4. The best-performing
model on the validation set was selected as the final model.
Three machine learning methods (RF, XGBoost, SVM) and

four deep learning methods (GAT, DMPNN, CMPNN,
KANO) were applied to the four subtyped data sets of
PI3K. The mean performance across these methods was used
as the final overall performance measure to compare all model

Table 3. Comprehensive Performance of the PI3K Inhibitor Dataset on the Multitask Modela

model AUC-ROC AUC-PR ACC MCC RE SP F1

GAT 0.726 ± 0.028 0.871 ± 0.022 0.755 ± 0.021 0.285 ± 0.051 0.887 ± 0.061 0.350 ± 0.116 0.841 ± 0.019
DMPNN 0.893 ± 0.025 0.954 ± 0.013 0.861 ± 0.018 0.600 ± 0.052 0.931 ± 0.029 0.631 ± 0.096 0.909 ± 0.012
CMPNN 0.912 ± 0.016 0.965 ± 0.012 0.874 ± 0.015 0.636 ± 0.045 0.928 ± 0.020 0.690 ± 0.067 0.917 ± 0.012
KANO 0.908 ± 0.016 0.960 ± 0.008 0.870 ± 0.014 0.636 ± 0.046 0.933 ± 0.019 0.673 ± 0.062 0.914 ± 0.009
MVGNet 0.927 ± 0.006 0.980 ± 0.002 0.889 ± 0.008 0.643 ± 0.028 0.940 ± 0.014 0.730 ± 0.045 0.930 ± 0.005

aThe best-performing results are marked in bold.

Figure 5. Comparison of AUC-ROC for single-task and multitask
models.

Figure 6. Results of ablation experiments on four PI3K subtype
inhibitor data sets, green represents the baseline model CMPNN used
in this study, purple represents the results obtained without multiview
and only with multitask learning, light orange represents the results
obtained without multitask learning and only with multiview, and
light red is the model MVGNet used in this study that combines
multiview and multitask learning.
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performances. The area under the receiver operating character-
istic curve (AUC-ROC) and the area under the precision recall
curve (AUC-PR) were the two crucial metrics used for model
evaluation. The experimental results (Table 2) show that
MVGNet performs better among all the models. Compared
with other message-passing graph neural network models,
MVGNet achieves a relatively large improvement in both
AUC-ROC and AUC-PR metrics.
In addition, a visual heat map was created to illustrate the

performance of the four subtypes of PI3K data sets across all
models. It used AUC-ROC as the primary evaluation metric,
where darker colors indicated higher metric values, implying
better model performance. As shown in Figure 4, MVGNet
performed well on all four different test sets, with AUC-ROC
and AUC-PR metrics leading the other models. The remaining
three message-passing neural network-based models
(DMPNM, CMPNN, and KANO) also showed good
performance compared to the machine learning model and
the classical GAT model, demonstrating the superiority of
messaging neural networks in predicting PI3K inhibitor
activity.
Table 3 shows the combined performance of the PI3K

inhibitor dataset on a multitask MVGNet with four deep
learning baseline models after increasing multitask learning.

The results in Table 3 and Figure 5 show that most models
have a relatively significant improvement in their performance
in predicting the biological activity of PI3K inhibitors with the
addition of multitask learning. This also demonstrates the
positive role of multitask learning in predicting the biological
activity of PI3K inhibitors.
3.2. Ablation Experiment. To demonstrate the effective-

ness of multiview and multitask learning, ablation experiments
were conducted. Figure 6 visually compares the baseline model
CMPNN, the model utilizing only multitask learning, the
model employing only multiview learning, and our proposed
model MVGNet. AUC-ROC was chosen as the primary
evaluation metric across four PI3K subtype inhibitor data sets
to evaluate these models. As shown in the figure, both
multiview and multitask learning show a relatively large
improvement compared to the original results of the baseline
model CMPNN. The best experimental results are obtained
with MVGNet after combining multiview and multitask
learning. In addition, the experimental results of different
models for predicting the activity of the four PI3K subtype
inhibitors were averaged. Table 4 displays the final results of
the four models across seven evaluation metrics on the test set
of PI3K inhibitors. The results show that either the model
using only multitask learning or the model using only
multiview worsens the prediction performance, with the
CMPNN-only model having the worst results. And after
adding multiview and multitask learning, all the metrics have a
relatively large improvement.
3.3. Feature Visualization. To better demonstrate the

robust representation learning capabilities of our model, t-
distributed stochastic neighborhood embedding (t-SNE) was
used to visualize the default hyperparameters of molecular
representations within the PI3K-α dataset. Active compounds
were labeled 1 and inactive compounds were labeled 0. Given
that feature spaces with similar activities tend to have greater
similarity, t-SNE was used to visualize their embeddings and
assess whether molecular representations were effectively
learned by the model based on the clarity of the boundaries
between active and inactive molecules. As shown in Figure 7,

Table 4. Overall Prediction Performance of CMPNN, the Model Using Only Multitask Learning, the Model Using Only
Multiviews, and MVGNeta

model AUC-ROC AUC-PR ACC MCC RE SP F1

CMPNN 0.894 ± 0.020 0.921 ± 0.019 0.810 ± 0.015 0.603 ± 0.030 0.864 ± 0.049 0.719 ± 0.058 0.834 ± 0.021
w/o multiview 0.909 ± 0.005 0.964 ± 0.004 0.862 ± 0.009 0.633 ± 0.026 0.912 ± 0.018 0.704 ± 0.049 0.906 ± 0.007
w/o multitask 0.913 ± 0.011 0.949 ± 0.010 0.856 ± 0.012 0.659 ± 0.023 0.890 ± 0.027 0.725 ± 0.048 0.887 ± 0.013
MVGNet 0.927 ± 0.006 0.980 ± 0.002 0.889 ± 0.008 0.643 ± 0.028 0.940 ± 0.014 0.730 ± 0.045 0.930 ± 0.005

aThe best-performing results are marked in bold.

Figure 7. Visualization of molecular features. Molecular features of PI3K-α from (a) DMPNN, (b) CMPNN and (c) MVGNet were visualized
using t-SNE. Any molecule with a label of 1 is an active compound, while any molecule with a label of 0 is an inactive compound, where active
compounds are colored blue and inactive ones are colored red.

Table 5. Information on the Structural Features of the
Pharmacophore in Duvelisib and Tenalisib

pharmacophore Duvelisib Tenalisib

SingleAtomDonor 1 1
SingleAtomAcceptor 1 1
imidazole 1 1
ZnBinder5 1 1
ZnBinder6 1 1
Arom6 1 1
Arom7 1 1
ThreeWayAttach 1 1
ChainTwoWayAttach 0 1
RH6_6 1 1
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the molecular representation generated by MVGNet clearly
separates active from inactive molecules in PI3K-α, followed by
CMPNN, while DMPNN performs poorly. This further
confirms that MVGNet has achieved enhanced representation
learning capabilities by integrating reaction information and
fragment pharmacophore information from multiview, coupled
with multitask weight sharing.
3.4. Case Study. Dual inhibitors are increasingly used in

the current treatment of breast cancer and tumors, etc. Among
these new-generation drugs, orally active Pictilisib

(GDC0941), a PI3K α/δ inhibitor, has shown a favorable
safety profile in combination with other anticancer drugs for
the treatment of breast cancer, advanced solid tumors, and
nonsquamous nonsmall-cell lung cancers.9 It is also moderately
selective for p110β and p110γ, with an IC50 value of 75 nM for
PI3Kγ. Duvelisib (IPI-145, marketed as Copiktra) is a novel
selective PI3K δ/γ inhibitor, and clinically, Duvelisib is
approved for the treatment of hematological malignancies.38

Tenalisib (RP6530) is a new generation of PI3K δ/γ inhibitors,
and preclinical studies have demonstrated the ability to induce

Figure 8. Case study. A case study of molecular characterization on the PI3K-γ dataset based on t-SNE visualization of CMPNN and MVGNet,
where the active molecules of the PI3K-γ inhibitors were labeled as blue, the inactive molecules were labeled as light red, and the three special cases
of active molecules were labeled as a diamond pattern and differentiated by different colors. Three of these molecules, which were shown to be
active in clinical trials, were selected for case studies.
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apoptosis and antiproliferative activity, thereby reducing
angiogenesis.39

Pharmacophores are the core structural units of molecules
that interact with biological targets, and the ability to identify
and add useful structural information about pharmacophores
can help strengthen molecular characterization. To demon-
strate that pharmacophore structure information was success-
fully learned by MVGNet, the molecules in the PI3Kγ dataset
were visualized, focusing on the three molecules known to be
active in PI3Kγ clinical trials. The PI3Kγ inhibitor active
molecules were labeled in blue, the inactive molecules were
labeled in light red, and the three special molecules were
labeled in a diamond pattern if they were active and were
distinguished using different colors to differentiate them, where
black represents Pictilisib, green represents Duvelisib, and
purple represents Tenalisib. As PI3Kδ/γ inhibitors, both
Duvelisib and Tenalisib are structurally characterized by the
presence of the 6-(methylamino)-purine substructure and have
many of the same pharmacophores. As shown in Table 5, the
leftmost column of the table lists all the pharmacophore
structural information in Duvelisib and Tenalisib, and if there
is relevant pharmacophore structural information, it is marked
as 1, otherwise it is marked as 0. It is obvious that they both
have the same pharmacophore structural features such as
SingleAtomDonor, SingleAtomAcceptor, and so on. Therefore,
if the model has the ability to capture the pharmacophore
information, then these two molecules will be clustered
together. Figure 8a shows that in CMPNN, Duvelisib and
Tenalisib with similar pharmacophore structure information do
not cluster well after visualization. In contrast, Figure 8b shows
that MVGNet can cluster Duvelisib and Tenalisib with similar
pharmacophore structure information together and distinguish
them from inactive molecules. This indicates that the
embedded representation learned by MVGNet can effectively
capture pharmacophore structure information.
To investigate exactly which fragment contributes more to

the prediction of PI3K inhibitor biological activity, molecule-
fragment similarity assessment was introduced. Here, mole-
cule-fragment cosine similarity was calculated using the
following equation:

h h
h h

cos( )F
G F

G F
= ·

· (7)

where hG and hF represent the feature vectors of the molecular
graph and fragments, respectively, and · denotes the vector dot
product.
Figure 9 visualizes the importance of each fragment in

Duvelisib and Tenalisib, and it can be seen that both Duvelisib,
and Tenalisib are more focused on purines, and the cosine
similarity scores are much higher than the other fragments.
Purines are also one of the common backbones of PI3K
inhibitors and play an important role in the inhibition of PI3Kγ
by Duvelisib and Tenalisib. This also indicates that MVGNet
can accurately identify the key backbones.

4. CONCLUSIONS
In this study, we propose a multitask MVGNet model. The
model obtains the fragment view of the molecule through the
BRICS algorithm, extracts the pharmacophore information on
the fragment and the reaction information between the
fragments, and obtains more molecular feature information
through multiple views. In addition, multitask learning allows
models to learn more about the associations between subtasks
by sharing parameters. The experimental results show that
MVGNet achieves state-of-the-art performance in predicting
PI3K inhibitor activity. The results of ablation experiments
show that the combination of molecular fragment pharmaco-
phore information and multitask learning can effectively obtain
the correlation information between subtasks. Finally, three
molecules that exhibited activity in clinical trials were selected
for case studies, and MVGNet successfully learned similar
substructural information and distinguished them from inactive
molecules.
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