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Abstract 

Background:  The development of tools that could help emergency department clinicians recognize stroke dur-
ing triage could reduce treatment delays and improve patient outcomes. Growing evidence suggests that stroke is 
associated with several changes in circulating cell counts. The aim of this study was to determine whether machine-
learning can be used to identify stroke in the emergency department using data available from a routine complete 
blood count with differential.

Methods:  Red blood cell, platelet, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts were assessed 
in admission blood samples collected from 160 stroke patients and 116 stroke mimics recruited from three geograph-
ically distinct clinical sites, and an ensemble artificial neural network model was developed and tested for its ability to 
discriminate between groups.

Results:  Several modest but statistically significant differences were observed in cell counts between stroke patients 
and stroke mimics. The counts of no single cell population alone were adequate to discriminate between groups with 
high levels of accuracy; however, combined classification using the neural network model resulted in a dramatic and 
statistically significant improvement in diagnostic performance according to receiver-operating characteristic analysis. 
Furthermore, the neural network model displayed superior performance as a triage decision making tool compared 
to symptom-based tools such as the Cincinnati Prehospital Stroke Scale (CPSS) and the National Institutes of Health 
Stroke Scale (NIHSS) when assessed using decision curve analysis.

Conclusions:  Our results suggest that algorithmic analysis of commonly collected hematology data using machine-
learning could potentially be used to help emergency department clinicians make better-informed triage decisions 
in situations where advanced imaging techniques or neurological expertise are not immediately available, or even to 
electronically flag patients in which stroke should be considered as a diagnosis as part of an automated stroke alert 
system.

Keywords:  Stroke, Immune system, NLR, Digital health, WBC, Machine-learning, Emergency medicine, Stroke scales, 
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Introduction
Quick and confident recognition of stroke in the emer-
gency department dramatically increases the odds of 
intervention and positive outcome by facilitating timely 
intra or inter-hospital referral to stroke-specific care [1]. 
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Unfortunately, the tools available to emergency depart-
ment clinicians for stroke recognition can be limited. In 
smaller rural hospitals in particular, there is often not on-
demand access to the advanced neuroradiological imag-
ing techniques and expertise needed to reliably detect 
early stroke pathology, especially in the case of ischemic 
events [2, 3]. In such situations, critical early triage deci-
sions are made using symptom-based stroke recognition 
and severity scales, which can be limited in their accu-
racy [4, 5]. Furthermore, even in larger hospitals where 
advanced imaging techniques are more readily available, 
patients can be delayed in receiving such imaging due to 
a failure of the emergency medicine team to initially con-
sider stroke as a diagnosis, especially in cases presenting 
with mild, ambiguous, or non-traditional symptoms [6]. 
As a result, anywhere from 10 to 25% of stroke patients 
are misdiagnosed at initial assessment in the emergency 
department, leading to life-threatening delays in care [7, 
8]. Thus, if tools can be developed which can identify 
stroke using widely available and commonly used labo-
ratory measures, they could be employed to help emer-
gency department clinicians make better informed triage 
decisions when stroke is suspected, or even to automati-
cally flag patients whom stroke should be considered as a 
possible diagnosis.

The complete blood count with differential 
(CBC + diff) is one of the most commonly ordered labo-
ratory tests requested in the emergency department [9]; 
it can be performed in virtually any hospital lab, and 
increasingly at the point of care [10]. Stroke is pathophys-
iologically associated with a multitude of changes to the 
cellular composition of the peripheral blood. For exam-
ple, stroke triggers robust activation of the innate arm 
of the immune system, and simultaneous suppression of 
the adaptive arm of the immune system [11, 12]; this phe-
nomenon has been shown to result in a rise in the circu-
lating counts of innate immune cells such as neutrophils 
and monocytes, and a decrease in the circulating counts 
of adaptive immune cells such as lymphocytes [13]. Fur-
thermore, several studies have reported altered counts of 
red blood cells and platelets in stroke [14, 15], which is 
not surprising given their role in coagulation and throm-
bosis. Therefore, it is possible that stroke could be identi-
fied in the emergency department using stroke associated 
patterns of changes to the CBC + diff.

A recent study by Onder et  al. [16] reported that the 
ratio between circulating neutrophil count and lym-
phocyte count can be used to identify stroke at hospital 
admission, but with limited accuracy. However, the neu-
trophil-to-lymphocyte ratio (NLR) is a simplistic metric, 
and fails to account for changes in counts of other cell 
populations measured as part of the CBC + diff, and the 
potential advantage of considering them  all collectively. 

Thus, analysis considering the entirety of the CBC + diff 
using advanced pattern recognition techniques may 
be able to offer significantly greater levels of diagnostic 
performance. Artificial neural networks are biologically-
inspired machine-learning algorithms that can be used 
to solve multivariate classification problems involving 
complex nonlinear or indirect relationships [17]. In this 
study, our aim was to determine whether a machine-
learning strategy employing artificial neural networks 
can be implemented to identify stroke during triage using 
stroke-induced patterns of changes to circulating blood 
cell counts routinely measured as part of the CBC + diff.

Methods
Experimental design
A cohort of 160 patients with stroke and 116 stroke mim-
ics were recruited from three geographically distinct 
tertiary care hospitals (Ruby Memorial Hospital, Mor-
gantown, WV; University of Cincinnati Medical Center, 
Cincinnati, OH; Dell-Seton Medical Center, Austin, TX) 
between 2011 and 2019. Counts of red blood cells, plate-
lets, neutrophils, lymphocytes, monocytes, eosinophils, 
and basophils were determined in peripheral blood sam-
ples collected at emergency department admission. An 
ensemble neural network model discriminating between 
stroke patients and stroke mimics using the collective 
counts of all seven aforementioned cell populations as 
input was developed in a randomly selected training set 
comprised of 75% of the total subject pool, and validated 
in a test set comprised of the remaining 25% of the total 
subject pool. The diagnostic performance of this ensem-
ble neural network model was then compared to the 
diagnostic performance of the counts of each individual 
cell population, as well as NLR, using receiver operating 
characteristic (ROC) analysis. Finally, the potential clini-
cal benefit of using the ensemble neural network model 
as a triage decision making tool as opposed to symptom-
based assessments such as the Cincinnati Prehospital 
Stroke Scale (CPSS) and the National Institutes of Health 
Stroke Scale (NIHSS) was evaluated via decision curve 
analysis.

Patients
All patients admitted as suspected strokes were con-
sidered for enrolment, pending that study staff were 
available for blood collection. Patients who displayed 
definitive radiographic evidence of ischemic or hemor-
rhagic pathology on magnetic resonance imaging (MRI) 
or computed tomography (CT) were identified as strokes. 
Patients receiving a final definitive negative diagnosis 
for stroke upon neuroradiological imaging and clinical 
evaluation were identified as acute stroke mimics [18]. 
All diagnoses were adjudicated by an experienced stroke 
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physician. Patients were excluded if they received a 
non-definitive diagnosis, were diagnosed with transient 
ischemic attack, reported a prior hospitalization within 
30 days, were under 18 years of age, or were more than 
24  h past symptom onset. Time from symptom onset 
was determined by the time the patient was last known 
to be free of neurological symptoms. Demographic infor-
mation was collected from either the subject or legally 
authorized representative by a trained clinician.

Stroke scale scores
NIHSS scores were collected by a member of the clini-
cal care team at the time of blood draw. CPSS scores 
were retrospectively calculated from individual NIHSS 
items similar to the methodology employed by Purrucker 
et  al. [5] and Tarkanyi et. al. [19]. Specifically, values of 
greater than zero on item 4 of the NIHSS (facial palsy) 
were scored as abnormal for the facial droop item of the 
CPSS. Values of greater than zero on item 5 of the NIHSS 
(R/L arm motor drift) were scored as abnormal for the 
arm drift item of the CPSS. Finally, values of greater than 
0 on either items 9 or 10 of the NIHSS (language and 
dysarthria, respectively) were scored as abnormal for the 
speech item of the CPSS.

Circulating cell counts
Venous blood was collected in K2EDTA vacutainers (Bec-
ton Dickenson, Franklin Lakes, NJ) and immediately sub-
mitted to the clinical pathology laboratory for CBC + diff 
testing as described previously [20]. Results were subse-
quently retrieved from the medical record. NLR was cal-
culated as absolute neutrophil count divided by absolute 
lymphocyte count [16]. In situations where the counts of 
a cell population were too low for detection, zero values 
were used for downstream analyses.

Artificial neural network
Neural network analysis was performed in R version 3.6 
[21] using the ‘neuralnet’ and ‘NeuralNetTools’ pack-
ages [22]. An ensemble neural network model was devel-
oped discriminating between stroke patients and stroke 
mimics in the training set using the counts of all seven 
cell populations as input. This ensemble model was com-
prised of five individual feedforward neural network 
sub-models, each constructed using identical archi-
tecture, which was selected based on a simple prelimi-
nary grid search of hyper-parameters. Each sub-model 
of the ensemble used the sigmoid activation function, 
and consisted of an input layer with 7 nodes accepting 
0–1 scaled absolute cell counts, two hidden layers with 
5 and 3 nodes respectively, and an output layer with a 
single node producing a predicted probability of stroke. 
These sub-models used were trained via backpropagation 

using random starting weights and an error threshold of 
0.25 cross entropy to determine convergence. For each 
subject, the predicted probabilities of stroke generated 
across the sub-models were pooled by simple averaging 
to yield an ensemble predicted probability of stroke. The 
ensemble predicted probabilities of stroke were then sub-
jected to ROC analysis to determine diagnostic perfor-
mance. The diagnostic performance of the final ensemble 
model was subsequently evaluated in the test set, and sta-
tistically compared to that observed in the training set.

To gain insights into the associations between the 
counts of each cell population and stroke prediction 
probability in the final ensemble neural network model, 
Olden relative importance values [23] were generated for 
each sub-model and averaged.

Statistics
All statistics were performed in R version 3.6. Mann–
Whitney U test was used to compare continuous vari-
ables, while Fisher’s exact test was used to compare 
categorical variables. Stratified U testing was performed 
using the ‘coin’ package [24]. The strength and signifi-
cance of correlative relationships were assessed using 
Spearman’s rho.

The performance of continuous variables in binary 
classification was assessed via ROC analysis using the 
‘pROC’ package [25]. Sensitivity and specificity values 
associated with the diagnostic cutoff yielding the high-
est combined value (Youden index) were reported. The 
bootstrapping method described by DeLong et  al. was 
used to calculate 95% confidence intervals for area under 
curve (AUC) values, test the null hypothesis that AUC 
values = 0.5, compare AUC values from different ROC 
curves, and generate 95% confidence intervals for sensi-
tivity and specificity values [26]. 1,000 bootstrap samples 
were used for all bootstrap calculations.

Decision curve analysis [27] was performed using the 
‘dca’ package (https://​github.​com/​ddsjo​berg/​dca). The 
predicted probabilities of stroke generated by the neu-
ral network ensemble were used to generate decision 
curves directly, while CPSS and NIHSS scores were first 
converted to prediction probabilities via binary logis-
tic regression, which were subsequently used for deci-
sion curve generation. Decision curves were generated 
across threshold probabilities ranging from 0–1 and were 
smoothed via moving regression using a span value of 
0.25.

In the case of all statistical testing, the null hypothesis 
was rejected when p < 0.05. The sample size was arbitrar-
ily determined based on availability of resources. The 
parameters of all statistical tests performed are outlined 
in detail within the figure legends.

https://github.com/ddsjoberg/dca
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Results
Clinical and demographic characteristics
Across the total study sample, 84% of stroke cases were 
ischemic, and the remaining 16% were hemorrhagic. 
Stroke patients were significantly older than stroke mim-
ics, but relatively well matched in terms of sex, race, and 
the prevalence of cardiovascular disease risk factors such 
as hypertension, diabetes, and dyslipidemia. Unsurpris-
ingly, stroke patients displayed significantly higher scores 
on both the CPSS and the NIHSS than stroke mim-
ics. Similar clinical demographic trends were observed 
within the subsets of patients comprising both the train-
ing and test sets used for neural network model develop-
ment and evaluation (Table  1). The stroke mimic group 
displayed a relatively wide variety of final diagnoses, 
most common of which were seizure, complex migraine, 
hypertensive encephalopathy, psychogenic or psychiatric 
pathologies including conversion disorder, hypotension, 
and infection (Table 2).

Differences in circulating cell counts
Across the total study sample, neutrophil, monocyte, and 
red blood cell counts were significantly elevated in stroke 
patients compared to stroke mimics, independent of age. 
Basophil counts were also higher in the stroke group, but 
this difference was not statistically significant. Platelet 
and lymphocyte counts were both significantly lower in 
stroke patients compared to stroke mimics. Eosinophil 
counts were also lower in the stroke group, however this 
difference was not statistically significant. Unsurprisingly 
given the differences we observed in both neutrophil 
and lymphocyte counts, NLR was significantly higher in 
stroke patients relative to stroke mimics (Fig. 1A).

Despite many of these differences being statistically 
significant, none were adequate to discriminate between 
groups with high levels of accuracy when considered in 
isolation. The counts of the individual cell populations 
performed poorly in ROC analysis, producing AUC val-
ues ranging from 0.54–0.59, sensitivities ranging from 
24.4–68.1%, and specificities ranging from 45.7–85.3%. 
NLR exhibited slightly better diagnostic performance 
than the counts of any individual cell population, produc-
ing an AUC of 0.61 (0.95 CI: 0.55–0.68), but could still 
only discriminate between groups with 55.6% (0.95 CI: 
39.3–65.0%) sensitivity and 66.4% (0.95 CI: 50.8–74.1%) 
specificity. Comparatively, CPSS scores produced an 
AUC of 0.63 (0.95 CI: 0.57–0.670), and could differenti-
ate between groups with 50.0% (0.95 CI: 36.8–58.1%) 
sensitivity and 68.0% (0.95 CI: 50.9–76.7%) specificity, 
while NIHSS scores produced an AUC of 0.70 (0.95 CI: 
0.64–0.76) and could differentiate between groups with 

53.1% (0.95 CI: 38.1–60.9%) sensitivity and 84.5% (0.95 
CI: 65.8–91.2%) specificity (Fig. 1B).

Artificial neural network performance
The final ensemble neural network model developed in 
the training set is depicted in Fig.  2A. Our analysis of 
relative importance suggested that neutrophil, mono-
cyte, and basophil counts were the strongest predictors 
of stroke across the entire ensemble model, all exhibit-
ing positive associations with stroke in nearly every sub-
model. This was followed by platelet and lymphocyte 
counts, which exhibited negative associations with stroke 
in nearly every sub-model. Red blood cell and eosinophil 
counts were the weakest predictors of stroke across the 
entire ensemble, but did still offer high predictive value in 
some sub-models (Fig. 2B).

In terms of diagnostic performance, in the training set, 
the final ensemble model produced an AUC of 0.84 (0.95 
CI: 0.78–0.89) in ROC analysis, and could discriminate 
between stroke patients and stroke mimics with 83.3% 
(0.95 CI: 69.2–91.7%) sensitivity and 70.1% (0.95 CI: 
55.2–79.3%) specificity at optimal diagnostic cutoff. In 
the test set, the model produced an AUC of 0.78 (0.95 CI: 
0.67–0.89), and could discriminate between groups with 
57.5% (0.95 CI: 22.5–75.0%) sensitivity and 89.7% (0.95 
CI: 58.6–96.6%) specificity. Finally, when considering the 
total subject pool, the final ensemble model produced an 
AUC of 0.82 (0.95 CI: 0.78–0.87), and could discriminate 
between groups with 68.1% (0.95 CI: 52.5–75.6%) sensi-
tivity and 82.8% (0.95 CI: 68.1–89.7%) specificity. Statis-
tical comparison of area under ROC curves revealed no 
statistical difference in model performance between the 
training and test sets (Fig. 2C).

When considering the total subject pool, correlational 
analysis revealed a weak but statistically significant posi-
tive relationship between time from symptom onset to 
blood collection and the prediction probability of stroke 
produced by the final ensemble neural network model 
in stroke patients, suggesting that the model may offer 
slightly lower levels of sensitivity at earlier time points in 
the progression of pathology (Fig. 3A). Areas under ROC 
curves generated in subsets of patients respectively eval-
uated within three hours, from three to six hours, and 
greater than six hours from symptom onset were highly 
similar; however, when considering  the overall shape 
of the ROC curves, there did appear to be a slight shift 
from higher specificity at the earliest timeframe towards 
higher sensitivity at the latest timeframe (Fig. 3B).

Comparison of the artificial neural network model to other 
decision‑making tools
Statistical comparison of area under ROC curves 
revealed that the final ensemble neural network model 
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provided a significantly greater overall level of diagnos-
tic performance than the counts of any individual cell 
population, or NLR, in each of the training set, test set, 
and total subject pool (Fig. 4). Similarly, area under ROC 
curves associated with the final ensemble neural network 
model were significantly greater than those associated 

with CPSS scores across all subsets of subjects. Area 
under ROC curves associated with the final ensemble 
neural network model were also greater than those asso-
ciated  with NIHSS scores across all subsets of subjects, 
however this difference was only statistically significant 
in the training set and the total subject pool (Fig. 5A).

Table 1  Clinical and demographic characteristics

a Intergroup comparison of medians via Mann–Whitney U-Test; bIntergroup comparison of proportions via Fisher’s exact test; *Statistically significant

All subjects (n = 276) Training set (n = 207) Test set (n = 69)

Mimic
(n = 116)

Stroke (n = 160) p-value Mimic
(n = 87)

Stroke (n = 120) p-value Mimic
(n = 29)

Stroke
(n = 40)

p-value

aAge median 
(IQR)

58 (49–70) 71 (60–81)  < 0.001* 58 (48–68) 71 (60–82)  < 0.001* 66 (54–73) 69 (59–80) 0.184

bFemale n (%) 65 (56.0) 73 (45.6) 0.113 47 (54.0) 57 (47.5) 0.399 18 (62.1) 16 (40.0) 0.090
bAmerican 
Indian n (%)

2 (1.7) 0 (0.0) 0.176 1 (1.1) 0 (0.0) 0.420 1 (3.4) 0 (0.0) 0.420

bWhite n (%) 93 (80.2) 137 (85.6) 0.254 72 (82.8) 99 (82.5) 1.000 21 (72.4) 38 (95.0) 0.014*
bAsian n (%) 0 (0.0) 1 (0.6) 1.000 0 (0.0) 1 (0.8) 1.000 0 (0.0) 0 (0.0) 1.000
bBlack / African 
American n (%)

21 (18.1) 22 (13.8) 0.401 14 (16.1) 20 (16.7) 1.000 7 (24.1) 2 (5.0) 0.030*

Ischemic stroke 
n (%)

- 135 (84.4) - - 103 (85.8) - - 32 (80.0) -

Hemorrhagic 
stroke n (%)

- 25 (15.6) - - 17 (14.2) - - 8 (20.0) -

aCPSS median 
(IQR)

1 (0–1) 1.5 (0–3)  < 0.001* 1 (0–1) 2 (1–3)  < 0.001* 1 (0–1) 1 (0–3) 0.390

aNIHSS median 
(IQR)

2 (0–5) 7 (2–14)  < 0.001* 2 (1–5) 7 (2–13)  < 0.001* 3 (2–5) 7.5 (1–15) 0.038*

aTime from 
onset median 
(IQR)

241 (145–467) 282 (135–651) 0.222 236 (137–458) 282 (142–651) 0.089 264 (195–498) 306 (110–647) 0.617

bHypertension 
n (%)

72 (62.1) 115 (71.9) 0.091 51 (58.6) 90 (75.0) 0.016* 21 (72.4) 25 (62.5) 0.446

bDyslipidemia 
n (%)

48 (41.4) 71 (44.4) 0.625 33 (37.9) 50 (41.7) 0.667 15 (51.7) 21 (52.5) 1.000

bDiabetes n (%) 35 (30.2) 41 (25.6) 0.416 28 (32.2) 33 (27.5) 0.537 7 (24.1) 8 (20.0) 0.771
bPrevious 
stroke n (%)

23 (19.8) 38 (23.8) 0.466 19 (21.8) 32 (26.7) 0.514 4 (13.8) 6 (15) 1.000

bPrevious TIA 
n (%)

16 (13.8) 17 (10.6) 0.456 9 (10.3) 14 (11.7) 0.826 7 (24.1) 3 (7.5) 0.082

bHistory of 
atrial fibrilla‑
tion n (%)

11 (9.5) 34 (21.3) 0.013* 7 (8.0) 23 (19.2) 0.028* 4 (13.8) 11 (27.5) 0.240

bHistory of 
myocardial 
infarction n (%)

12 (10.3) 26 (16.3) 0.215 8 (9.2) 21 (17.5) 0.106 4 (13.8) 5 (12.5) 1.000

bHypertension 
medication 
n (%)

66 (56.9) 100 (62.5) 45 (51.7) 78 (65.0) 0.063 21 (72.4) 22 (55.0) 0.208

bCholesterol 
medication 
n (%)

41 (35.3) 67 (41.9) 30 (34.5) 50 (41.7) 0.315 11 (37.9) 17 (42.5) 0.806

aAnticoagulant 
or antiplatelet 
n (%)

48 (41.4) 82 (51.3) 35 (40.2) 63 (52.5) 0.092 13 (44.8) 19 (47.5) 1.000

bSmoking n (%) 24 (20.7) 40 (25.0) 0.471 16 (18.4) 33 (27.5) 0.139 8 (27.6) 7 (17.5) 0.382
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Our decision curve analysis suggested that the afore-
mentioned differences in diagnostic performance would 
result in clinical benefit if the final ensemble neural net-
work model were used as a triage decision-making tool 
as opposed to either the CPSS or the NIHSS, at least in 
our study population. It could be argued that the deci-
sion threshold to triage a patient as stroke should reason-
ably fall somewhere between a 10–50% probability that 
they are indeed having a stroke, depending on the spe-
cific triage decision (inter-hospital transfer, intra-hospital 
referral, etc.). In most situations, the use of a threshold 
over 50% would result in an unacceptable risk of triaging 
strokes as mimics, and the use of a threshold of less than 
10% would incur unnecessary cost and resource strain 
associated with triaging too many mimics as strokes. 
Across this entire range of clinically relevant decision 
thresholds, the net benefit of using the final ensemble 
neural network model to triage stroke was greater than 
that of using either the CPSS or the NIHSS, in each of the 
training set, test set, and total subject pool (Fig. 5B).

Discussion
The primary aim of this investigation was to determine 
whether machine-learning can be used to identify stroke 
during triage by analyzing patterns of stroke-induced 
changes in routinely measured circulating blood cell 
counts. The final ensemble neural network model gen-
erated in our analysis was able to discriminate between 

stroke patients and stroke mimics with relatively high 
levels of accuracy at emergency department admission 
using only information extracted from the CBC + diff. 
Our results suggest that machine-learning based tools 
could be implemented in the future to help clinicians rec-
ognize stroke in the acute phase of care via this widely 
available and commonly performed laboratory test.

Many of the differences in circulating cell counts which 
we observed between stroke patients and stroke mim-
ics were similar to those reported in prior investigations, 
providing further evidence that the cellular complexion 
of the peripheral blood is altered in stroke. However, to 
our knowledge, our analysis is one of the first to make 
direct case–control comparisons of these cell popula-
tions between stroke patients and true stroke mimics in 
the acute phase of care, as opposed to previous analy-
ses which have predominantly employed neurologically 
normal controls [13–15, 28–36]. It has become increas-
ingly evident that stroke triggers a general activation of 
the innate arm of the peripheral immune system, and a 
general suppression of the adaptive arm of the periph-
eral immune system [11, 12]. Accordingly, numerous 
prior studies of both ischemic and hemorrhagic pathol-
ogy have reported that stroke induces an increase in 
circulating numbers of neutrophils and monocytes, 
and a simultaneous decrease in the number of circulat-
ing lymphocytes [13, 28–31, 35–37]. Our results are 
highly consistent with these prior reports, as some  of 

Table 2  Final diagnoses of stroke mimics

Total sample (n = 116) Training set (n = 87) Test set (n = 29)

Seizure n (%) 20 (17.2) 16 (18.4) 4 (13.8)

Complex migraine n (%) 13 (11.2) 8 (9.2) 5 (17.2)

Hypertensive encephalopathy n (%) 7 (6.0) 5 (5.7) 2 (6.9)

Psychogenic event / psychiatric disorder n (%) 7 (6.0) 6 (6.9) 1 (3.4)

Hypotension / syncope n (%) 7 (6.0) 5 (5.7) 2 (6.9)

Sepsis / infection n (%) 7 (6.0) 6 (6.9) 1 (3.4)

Adverse drug reaction n (%) 6 (5.2) 4 (4.6) 2 (6.9)

Space occupying lesion n (%) 6 (5.2) 4 (4.6) 2 (6.9)

Bell’s palsy n (%) 5 (4.3) 4 (4.6) 1 (3.4)

Alcohol intoxication n (%) 4 (3.4) 2 (2.3) 2 (6.9)

Hypoglycemia n (%) 3 (2.6) 2 (2.3) 1 (3.4)

Dementia n (%) 3 (2.6) 3 (3.4) 0 (0.0)

Dehydration n (%) 3 (2.6) 3 (3.4) 0 (0.0)

Vestibular dysfunction n (%) 3 (2.6) 1 (1.1) 2 (6.9)

Peripheral neuropathy n (%) 2 (1.7) 2 (2.3) 0 (0.0)

Transient global amnesia n (%) 2 (1.7) 1 (1.1) 1 (3.4)

Parkinson’s disease n (%) 2 (1.7) 2 (2.3) 0 (0.0)

Multiple sclerosis n (%) 2 (1.7) 2 (2.3) 0 (0.0)

Hepatic encephalopathy n (%) 2 (1.7) 1 (1.1) 1 (3.4)

Other n (%) 12 (10.3) 10 (11.5) 2 (6.9)
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the most statistically significant differences we observed 
between stroke patients and controls were in these 
three cell populations. A small number of prior stud-
ies of ischemic stroke have suggested a possible drop in 
circulating eosinophil counts early in pathology [32, 38]; 
while we did observe slightly lower eosinophil counts in 
stroke patients versus stroke mimics, this difference was 
not statistically significant. To our knowledge, there have 
been no prior case control studies of circulating basophil 
counts in stroke; we observed a slight increase in baso-
phil counts in stroke patients versus controls, but this 
difference was again not statistically significant. How-
ever, given that there appeared to be a relatively strong 
positive association between basophil count and stroke in 
nearly every sub-model of our neural network ensemble, 
the effect of stroke on basophil count may warrant fur-
ther investigation.

With respect to non-immune cell populations, sev-
eral prior case control studies have reported lower cir-
culating platelet counts in patients with both ischemic 
and hemorrhagic stroke at hospital admission [14]. It is 
theorized that this phenomena is at least in part a result 

of stroke-related increases in platelet activation and 
depletion in the absence of changes in platelet produc-
tion [39]. Our results were strongly supportive of these 
prior studies, as we too observed significantly lower 
platelet counts in stroke patients versus stroke mimics. 
There is less definitive prior evidence regarding stroke-
associated changes in red blood cell counts in stroke in 
the acute phase of care. There is evidence that condi-
tions which result in both abnormally high or abnor-
mally low red blood cell counts can increase the risk of 
stroke [40], however there have been surprisingly few 
case–control analyses of red blood cell counts in stroke 
patients during early pathology; those that have been 
performed have investigated ischemic stroke specifically, 
and reported either similar or decreased red blood cell 
counts in stroke patients relative to controls [15, 33, 34]. 
Here, we observed slightly higher red blood cell counts 
in the stroke group compared to the stroke mimic group, 
a difference that was only statistically significant after 
controlling for age. Interestingly, red blood cell count 
was strongly positively associated with stroke in two sub-
models of our neural network ensemble, and strongly 

Fig. 1  Comparison of circulating cell counts between stroke patients and stroke mimics. A Circulating red blood cell, platelet, neutrophil, 
lymphocyte, monocyte, eosinophil, and basophil counts, as well as neutrophil-to-lymphocyte ratios in stroke patients and stroke mimics at 
hospital admission. Bloxplots indicate median and interquartile range. Some axes are broken to display extreme values, as indicated by dashed 
line. Intergroup statistical comparisons were performed via two-sided Mann–Whitney U test, both stratified and unstratified by age quartile. B ROC 
curves depicting the individual abilities of circulating cell counts to discriminate between stroke patients and stroke mimics, compared to the CPSS 
and the NIHSS. Sensitivity and specificity values are indicated for the diagnostic cutoff which produced the highest Youden index. Bootstrapped 
95% confidence intervals associated with all diagnostic statistics are indicated. P-values indicate the probability that area under ROC curve values 
differ from 0.5. *Statistically significant
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negatively associated with stroke in another two; because 
stroke can be secondary to both conditions that result in 
increases or decreases in red blood cell count, it is plau-
sible that these different sub-models are modeling dif-
ferent stroke etiologies, which highlights a benefit of our 
ensemble learning strategy.

Despite many being statistically significant, none of the 
aforementioned differences we observed in cell counts 
between stroke patients and stroke mimics were able to 
discriminate between groups with high levels of accu-
racy in isolation, nor was the NLR. However, our final 
ensemble neural network model was able to identify 

Fig. 2  Final ensemble neural network model. A Visual representation of the final ensemble neural network model developed in the training set, 
which was comprised of five individual sub-models. The synaptic weights and node bias terms associated with each of the five sub-models are 
indicated. All input values were scaled between 0 and 1 for training. Sigmoid activation functions were used at all nodes. Final ensemble stroke 
prediction probabilities were generated via simple averaging of the sub-model prediction probabilities. Pr, probability. B The relative importance 
of each cell type in each of the five individual sub-models which comprise the final ensemble neural network model, as calculated using the 
Olden method. Averaged importance values for each cell type across the five sub-models are also indicated. Values of 0 indicate little importance, 
while values approaching 1 and -1 indicate strong positive and negative associations with stroke prediction probability respectively. C ROC curves 
depicting the ability of the final ensemble neural network model to discriminate between stroke patients and controls in the training set, test set, 
and total study population. Sensitivity and specificity values are indicated for the diagnostic cutoff which produced the highest Youden index. 
Bootstrapped 95% confidence intervals associated with all diagnostic statistics are indicated. P-values indicate the probability area under ROC curve 
values differ from 0.5. Training set and test set AUC values were statistically compared using the DeLong method. *Statistically significant
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Fig. 3  Effect of time from symptom onset on model performance. A Relationship between time from symptom onset to blood collection and the 
prediction probability of stroke produced by the final ensemble neural network model, in both stroke patients and stroke mimics, across the total 
study population. Strength and significance of correlations were accessed using Spearman’s rho. B ROC curves comparing the ability of the final 
ensemble neural network model to discriminate between stroke and stroke mimicking conditions in patients evaluated less than 3 h, from 3 to 
6 h, or greater than 6 h from symptom onset. Sensitivity and specificity values are indicated for the diagnostic cutoff which produced the highest 
Youden index. Bootstrapped 95% confidence intervals associated with all diagnostic statistics are indicated. P-values indicate the probability area 
under ROC curve values differ from 0.5. AUC values were statistically compared across timepoints using the DeLong method. *Statistically significant

Fig. 4  Comparison of the final neural network model to individual cell counts for stroke recognition. ROC curves depicting the ability of the final 
ensemble neural network model to discriminate between stroke patients and stroke mimics, in comparison to the abilities of each individual cell 
count, with respect to the training set, test set, and total study population. Bootstrapped 95% confidence intervals associated with area under ROC 
curve values are indicated. AUC values were statistically compared using the DeLong method. *Statistically significant
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stroke with levels of diagnostic performance that exceed 
those of the CPSS and the NIHSS, which are two of the 
most widely used symptom based tools used to evaluate 
stroke in the emergency department. Not only does this 
highlight the power of machine learning-based analy-
sis and the benefit of diagnostically considering the col-
lective pattern of changes across the entirety of cellular 
populations present in the blood, but it also suggests that 
the strategy which we employed here could have true 
clinical utility. Algorithmic evaluation of the CBC + diff 
using machine-learning tools could be used to provide 

a stroke probability which could be used to help emer-
gency department clinicians make better-informed 
transfer, referral, and treatment decisions in  situations 
when stroke is expected; this could be especially use-
ful in smaller rural hospitals where stroke expertise 
or advanced imaging techniques may not be immedi-
ately available [2, 3]. Perhaps more intriguing, because a 
CBC is ordered for a majority of emergency department 
patients [9], it could be used to flag individuals who may 
be experiencing a stroke as part of an automated stroke 
alert system which is integrated with the electronic 

Fig. 5  Comparison of the final neural network model to symptom-based scales for stroke recognition. A ROC curves depicting the ability of the 
final ensemble neural network model to discriminate between stroke patients and stroke mimics, in comparison to CPSS scores and NIHSS scores, 
with respect to the training set, test set, and total study population. Bootstrapped 95% confidence intervals associated with area under ROC curve 
values are indicated. AUC values were statistically compared using the DeLong method. *Statistically significant. B Decision curves comparing 
the observed net benefit of using the final ensemble neural network model as a triage tool to those of the CPSS and the NIHSS, across a range of 
decision thresholds
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medical record. Such a system could expedite care in sit-
uations where stroke is not initially being considered as 
a diagnosis, such as cases with atypical presentations or 
mild symptoms [6], and help reduce treatment lags stem-
ming from delayed recognition in frequently mistriaged 
populations such as the young and minorities [41, 42].

It is pertinent to note that this is not the first work to 
attempt to employ machine-learning methods to develop 
diagnostic tools for stroke. There have been several stud-
ies published by our group and others over the past 
decade that have used similar methodology to develop 
diagnostic models; however, they have largely focused on 
the analysis of neuroradiological images [43, 44] or non-
standard-of-care molecular biomarkers [45–48], whereas 
to our knowledge, this study is the first to focus solely 
on the analysis of circulating cell counts which are rou-
tinely assessed as part of stat testing ordered in the emer-
gency department. The aforementioned imaging-based 
tools certainly have demonstrated that they can serve an 
important role in the diagnostic pathway, however, they 
only have utility if a patient is first referred to said imag-
ing based on positive results in initial symptom-based 
screening. Furthermore, the aforementioned strategies 
developed using non-standard-of-care biomarkers in 
conjunction with machine-learning methods have yet to 
be trialed in studies using true stroke mimics, and their 
diagnostic performance has never been directly com-
pared to the symptom-based tools currently used for 
initial triage; even if they do show strong performance 
in future testing, they would be expensive to implement, 
and would require an initial suspicion of stroke to be 
ordered.

While our results are exciting, further refinements 
and validation are needed before such strategies could 
be clinically implemented. While the model we devel-
oped here only considered the absolute cell counts, 
there is other information available as part of the 
CBC + diff that could also be included to potentially 
increase accuracy. For example, platelet and red blood 
cell mean volume and distribution width have been 
shown to be altered in stroke [14, 49], and are now 
generated by most hematology analyzers. Further-
more, because of the relatively small number of hem-
orrhagic stroke patients in our study cohort, we chose 
to combine both ischemic and hemorrhagic stroke 
patients into a single pooled stroke group; while both 
types of stroke appear to be associated with a similar 
general pattern of cellular changes to the peripheral 
blood, there may be subtle differences that could fur-
ther differentiate between the two. For example, while 
neutrophil, monocyte, and lymphocyte counts are all 
altered in both hemorrhagic and ischemic stroke [13, 
28–31, 35–37], prior studies suggest that magnitude 

of these alterations may be different [35, 50]. Thus, in 
larger future investigations where it is more feasible, 
these stroke subtypes could be modeled as separate 
groups; given that they result in slightly different blood 
changes, doing so may actually improve the accuracy 
of overall stroke recognition. Also, given the size and 
preliminary nature of our analysis, we chose to exclude 
patients with transient ischemic attack; clearly, future 
studies will need to include and determine how to diag-
nostically account for this population.

Finally, in a future larger follow-up analysis, it is pos-
sible that a different neural network implementation or 
other type of machine-learning algorithm may offer bet-
ter performance. Here, because of relatively small sam-
ple size, we decided to use an ensemble strategy and a 
relatively low error threshold for neural network con-
vergence within the composite sub-models to increase 
generalizability. However, in a larger sample size, such 
hyper-parameters may be able to be adjusted to increase 
accuracy without as much risk of overfitting. Further-
more, different machine-learning classifiers can be bet-
ter trained and offer better performance versus others in 
different use scenarios depending on factors such as the 
degree of linearity in the relationships between predic-
tor variables and output variables  or the ratio between 
the number of predictor variables and number of cases. 
While we used artificial neural networks successfully 
here, follow-up investigations employing more predictors 
or modeling different stroke subtypes as separate groups 
such should also assess and empirically compare addi-
tional algorithms such as support vector machine and 
random forest to identify the approach which will offer 
the best diagnostic performance.

Conclusions
Modeling patterns of stroke associated changes to 
the CBC + diff using machine-learning could yield 
tools with the potential to help emergency depart-
ment clinicians make better informed triage decisions 
in  situations where advanced imaging techniques or 
neurological expertise are not immediately available. 
Furthermore, the principles demonstrated in this work 
could provide the foundation for development of an 
automated stroke alert system which pulls hematology 
data from the electronic medical record and returns a 
flag to identify patients in which stroke is likely.

Abbreviations
CBC: Complete blood count; CBC + diff: Complete blood count with dif-
ferential; AUC​: Area under curve; ROC: Receiver operating characteristic; CPSS: 
Cincinnati prehospital stroke scale; NIHSS: National Institutes of Health stroke 
scale; NLR: Neutrophil-to-lymphocyte ratio.



Page 12 of 13O’Connell et al. BMC Neurology          (2022) 22:206 

Acknowledgements
We would foremost like to thank the subjects and their families; this work 
would not have been possible without their selfless contributions. We would 
also like to thank Shanell Hill, PhD candidate, School of Nursing, Case Western 
Reserve University, for assistance with data management.

Authors’ contributions
The study was conceived by GCO. KBW, TJM, SJW, and TLB supervised recruit-
ment of patients and collection of clinical data. CW and SR aggregated and 
cleaned data collected across clinical sites. CGS and BLA scored stroke scales. 
GCO analyzed the data. The manuscript was drafted by GCO with contribu-
tions from KBW, TJM, CW, CGS, and BA. The author(s) read and approved the 
final manuscript.

Funding
Work was funded by Valtari Bio Incorporated (Morgantown, WV), as well as 
new investigator start-up funds issued to GCO by the Francis Payne Bolton 
School of Nursing at Case Western Reserve University.

Availability of data and materials
The data that support the findings of this study are available from Valtari Bio 
Incorporated but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly avail-
able. Data are however available from the corresponding author upon reason-
able request and with permission of Valtari Bio Incorporated.

Declarations

Ethics approval and consent to participate
All methods were carried out in accordance with relevant guidelines and 
regulations, and were approved by the Institutional Review Boards of West 
Virginia University/Ruby Memorial Hospital (IRB protocol # 1410450461R001), 
University of Cincinnati Medical Center (IRB protocol # IRB16-00291), and 
Dell-Seton Medical Center (IRB protocol # STUDY20180221). Written informed 
consent was obtained from all subjects or their authorized representatives 
prior to any study procedures.

Consent for publication
Not applicable.

Competing interests
KBW, TJM, and SJW were financially compensated for their work by Valtari Bio 
Incorporated. TLB serves as Chief Scientific Officer of Valtari Bio Incorporated. 
GCO is a former employee of Valtari Bio Incorporated.

Author details
1 School of Nursing, Case Western Reserve University, 10900 Euclid Avenue, 
Cleveland, OH 44106‑4904, USA. 2 Molecular Biomarker Core, Case Western 
Reserve University, Cleveland, OH, USA. 3 Department of Emergency Medicine, 
College of Medicine, University of Cincinnati, Cincinnati, OH, USA. 4 Gardner 
Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA. 5 Dell 
Seton Medical Center, University of Texas, Austin, TX, USA. 6 School of Nursing, 
Ohio State University, Columbus, OH, USA. 7 Valtari Bio Incorporated, Morgan-
town, WV, USA. 

Received: 18 November 2021   Accepted: 17 May 2022

References
	1.	 WJ Powers, AA Rabinstein, T Ackerson. et al. 2018 Guidelines for the early 

management of patients with acute ischemic stroke: a guideline for 
healthcare professionals from the american heart association/american 
stroke association. Stroke. 2018;49. https://​doi.​org/​10.​1161/​STR.​00000​
00000​000158

	2.	 Shultis W, Graff R, Chamie C, et al. Striking rural-urban disparities 
observed in acute stroke care capacity and services in the pacific 
northwest: implications and recommendations. Stroke. 2010;41:2278–82. 
https://​doi.​org/​10.​1161/​STROK​EAHA.​110.​594374.

	3.	 EC Leira, DC Hess, JC Torner, HP Adams. Rural-urban differences in acute 
stroke management practices: a modifiable disparity. Arch Neurol. 
2008;65. https://​doi.​org/​10.​1001/​archn​eur.​65.7.​887

	4.	 Rudd M, Buck D, Ford GA, Price CI. A systematic review of stroke recogni-
tion instruments in hospital and prehospital settings. Emerg Med J. 
2016;33:818–22. https://​doi.​org/​10.​1136/​emerm​ed-​2015-​205197.

	5.	 Purrucker JC, Hametner C, Engelbrecht A, et al. Comparison of stroke rec-
ognition and stroke severity scores for stroke detection in a single cohort. 
J Neurol Neurosurg Psychiatry. 2015;86:1021–8. https://​doi.​org/​10.​1136/​
jnnp-​2014-​309260.

	6.	 Lever NM, Nyström KV, Schindler JL, et al. Missed opportunities for rec-
ognition of ischemic stroke in the emergency department. J Emerg Nurs. 
2013;39:434–9. https://​doi.​org/​10.​1016/j.​jen.​2012.​02.​011.

	7.	 Arch AE, Weisman DC, Coca S, et al. Missed ischemic stroke diagnosis 
in the emergency department by emergency medicine and neurology 
services. Stroke. 2016;47:668–73.

	8.	 Tarnutzer AA, Lee S-H, Robinson KA, et al. ED misdiagnosis of cerebrovas-
cular events in the era of modern neuroimaging: a meta-analysis. Neurol-
ogy. 2017;88:1468–77. https://​doi.​org/​10.​1212/​WNL.​00000​00000​003814.

	9.	 MM Johnson, KB Lewandrowski. Analysis of Emergency Department Test 
Ordering Patterns in an Urban Academic Medical Center: Can the Point-
of-Care Option in a Satellite Laboratory Provide Sufficient Menu to Permit 
Full Service Testing. 2007;6:5

	10.	 Mooney C, Byrne M, Kapuya P, et al. Point of care testing in general hae-
matology. Br J Haematol. 2019;187:296–306. https://​doi.​org/​10.​1111/​bjh.​
16208.

	11.	 Chamorro Á, Meisel A, Planas AM, et al. The immunology of acute stroke. 
Nat Rev Neurol. 2012;8:401–10. https://​doi.​org/​10.​1038/​nrneu​rol.​2012.​98.

	12.	 O’Connell GC, Tennant CS, Lucke-Wold N, et al. Monocyte-lymphocyte 
cross-communication via soluble CD163 directly links innate immune 
system activation and adaptive immune system suppression following 
ischemic stroke. Sci Rep. 2017;7:12940–12940. https://​doi.​org/​10.​1038/​
s41598-​017-​13291-6.

	13.	 Vogelgesang A, Grunwald U, Langner S, et al. Analysis of lymphocyte sub-
sets in patients with stroke and their influence on infection after stroke. 
Stroke. 2008;39:237–41. https://​doi.​org/​10.​1161/​STROK​EAHA.​107.​493635.

	14.	 Sadeghi F, Kovács S, Zsóri KS, et al. Platelet count and mean volume 
in acute stroke: a systematic review and meta-analysis. Platelets. 
2020;31:731–9. https://​doi.​org/​10.​1080/​09537​104.​2019.​16808​26.

	15	 Sharif S, Ghaffar S, Saqib M, Naz S. Analysis of hematological parameters 
in patients with ischemic stroke. Endocrinology & Metabolism Inter-
national Journal. 2020;8:17–20. https://​doi.​org/​10.​15406/​emij.​2020.​08.​
00271.

	16.	 Onder H, Cankurtaran M, Ozyurek O, Arslan G. Neutrophil-to-Lymphocyte 
ratio may have a role in the differential diagnosis of ischemic stroke. 
Neurol Asia. 2020;10:93–101.

	17.	 Krogh A. What are artificial neural networks? Nat Biotechnol. 2008;26:195–
7. https://​doi.​org/​10.​1038/​nbt13​86.

	18.	 Kidwell CS, Warach S. Acute Ischemic Cerebrovascular Syndrome: Diag-
nostic Criteria. Stroke. 2003;34:2995–8. https://​doi.​org/​10.​1161/​01.​STR.​
00000​98902.​69855.​A9.

	19.	 Tarkanyi G, Csecsei P, Szegedi I, et al. Detailed severity assessment of Cin-
cinnati Prehospital Stroke Scale to detect large vessel occlusion in acute 
ischemic stroke. BMC Emerg Med. 2020;20:64. https://​doi.​org/​10.​1186/​
s12873-​020-​00360-9.

	20.	 GC O’Connell, MB Treadway, AB Petrone. et al 2017 Leukocyte Dynamics 
Influence Reference Gene Stability in Whole Blood: Data-Driven qRT-PCR 
Normalization Is a Robust Alternative for Measurement of Transcriptional 
Biomarkers Laboratory Medicine 48 https://​doi.​org/​10.​1093/​labmed/​
lmx035

	21.	 Ross I, Gentleman R, Ihaka R, Gentleman R. R: A Language for Data Analy-
sis and Graphics. J Comput Graph Stat. 1996;5:299–314. https://​doi.​org/​
10.​1080/​10618​600.​1996.​10474​713.

	22.	 Beck MW. NeuralNetTools: Visualization and Analysis Tools for Neural Net-
works. J Statistical Software. 2018;85. https://​doi.​org/​10.​18637/​jss.​v085.​i11

	23.	 Olden JD, Joy MK, Death RG. An accurate comparison of methods for 
quantifying variable importance in artificial neural networks using simu-
lated data. Ecol Model. 2004;178:389–97. https://​doi.​org/​10.​1016/j.​ecolm​
odel.​2004.​03.​013.

https://doi.org/10.1161/STR.0000000000000158
https://doi.org/10.1161/STR.0000000000000158
https://doi.org/10.1161/STROKEAHA.110.594374
https://doi.org/10.1001/archneur.65.7.887
https://doi.org/10.1136/emermed-2015-205197
https://doi.org/10.1136/jnnp-2014-309260
https://doi.org/10.1136/jnnp-2014-309260
https://doi.org/10.1016/j.jen.2012.02.011
https://doi.org/10.1212/WNL.0000000000003814
https://doi.org/10.1111/bjh.16208
https://doi.org/10.1111/bjh.16208
https://doi.org/10.1038/nrneurol.2012.98
https://doi.org/10.1038/s41598-017-13291-6
https://doi.org/10.1038/s41598-017-13291-6
https://doi.org/10.1161/STROKEAHA.107.493635
https://doi.org/10.1080/09537104.2019.1680826
https://doi.org/10.15406/emij.2020.08.00271
https://doi.org/10.15406/emij.2020.08.00271
https://doi.org/10.1038/nbt1386
https://doi.org/10.1161/01.STR.0000098902.69855.A9
https://doi.org/10.1161/01.STR.0000098902.69855.A9
https://doi.org/10.1186/s12873-020-00360-9
https://doi.org/10.1186/s12873-020-00360-9
https://doi.org/10.1093/labmed/lmx035
https://doi.org/10.1093/labmed/lmx035
https://doi.org/10.1080/10618600.1996.10474713
https://doi.org/10.1080/10618600.1996.10474713
https://doi.org/10.18637/jss.v085.i11
https://doi.org/10.1016/j.ecolmodel.2004.03.013
https://doi.org/10.1016/j.ecolmodel.2004.03.013


Page 13 of 13O’Connell et al. BMC Neurology          (2022) 22:206 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	24.	 Hothorn T, Hornik K, Wiel MA van de, Zeileis A. Implementing a Class 
of Permutation Tests: The coin Package. J Statistical Software. 2008;28. 
https://​doi.​org/​10.​18637/​jss.​v028.​i08

	25.	 Robin X, Turck N, Hainard A, et al. pROC: an open-source package for 
R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 
2011;12:1–8. https://​doi.​org/​10.​1186/​1471-​2105-​12-​77.

	26.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a non-
parametric approach. Biometrics. 1988;44:837–45.

	27.	 Vickers AJ, Elkin EB. Decision Curve Analysis: A Novel Method for Evaluat-
ing Prediction Models. Med Decis Making. 2006;26:565–74. https://​doi.​
org/​10.​1177/​02729​89X06​295361.

	28.	 Urra X, Cervera Á, Villamor N, et al. Harms and benefits of lympho-
cyte subpopulations in patients with acute stroke. Neuroscience. 
2009;158:1174–83. https://​doi.​org/​10.​1016/j.​neuro​scien​ce.​2008.​06.​014.

	29.	 Haeusler KG, Schmidt WUH, Föhring F, et al. Cellular Immunodepres-
sion Preceding Infectious Complications after Acute Ischemic Stroke in 
Humans. Cerebrovasc Dis. 2008;25:50–8. https://​doi.​org/​10.​1159/​00011​
1499.

	30.	 Hug A, Dalpke A, Wieczorek N, et al. Infarct Volume is a Major Determiner 
of Post-Stroke Immune Cell Function and Susceptibility to Infection. 
Stroke. 2009;40:3226–32. https://​doi.​org/​10.​1161/​STROK​EAHA.​109.​
557967.

	31.	 Urra X, Cervera Á, Obach V, et al. Monocytes are major players in the 
prognosis and risk of infection after acute stroke. Stroke. 2009;40:1262–8. 
https://​doi.​org/​10.​1161/​STROK​EAHA.​108.​532085.

	32.	 O’Connell GC, Chang JHC. Analysis of early stroke-induced changes in 
circulating leukocyte counts using transcriptomic deconvolution. Transl 
Neurosci. 2018;9:161–6. https://​doi.​org/​10.​1515/​tnsci-​2018-​0024.

	33.	 Chitsaz A, Tolou-Ghamari Z, Ashtari F. Preliminary evaluations related to 
the ranges of hematological and biochemical variables in hospitalized 
patients with stroke. Int J Prev Med. 2013;4:S347-352.

	34.	 Mercuri M, Ciuffetti G, Robinson M, Toole J. Blood cell rheology in acute 
cerebral infarction. Stroke. 1989;20:959–62. https://​doi.​org/​10.​1161/​01.​
STR.​20.7.​959.

	35.	 Vural G, Gümüşyayla Ş, Akdeniz G. Neutrophil/Lymphocyte Ratio In Stroke 
Patients And Its Relation With Functional Recovery. Medeniyet Med J. 
2018. https://​doi.​org/​10.​5222/​MMJ.​2018.​83097.

	36.	 Jiang C, Wang Y, Hu Q, et al. Immune changes in peripheral blood 
and hematoma of patients with intracerebral hemorrhage. FASEB J. 
2020;34:2774–91. https://​doi.​org/​10.​1096/​fj.​20190​2478R.

	37.	 O’Connell GC, Treadway MB, Tennant CS, et al. Shifts in Leukocyte Counts 
Drive the Differential Expression of Transcriptional Stroke Biomark-
ers in Whole Blood. Transl Stroke Res. 2018. https://​doi.​org/​10.​1007/​
s12975-​018-​0623-1.

	38.	 Wang J, Ma L, Lin T, et al. The significance of eosinophils in predicting the 
severity of acute ischemic stroke. Oncotarget. 2017;8. https://​doi.​org/​10.​
18632/​oncot​arget.​22199

	39.	 Tohgi H, Suzuki H, Tamura K, Kimura B. Platelet volume, aggregation, 
and adenosine triphosphate release in cerebral thrombosis. Stroke. 
1991;22:17–21. https://​doi.​org/​10.​1161/​01.​STR.​22.1.​17.

	40.	 Grotta JC, Manner C, Pettigrew LC, Yatsu FM. Red blood cell disorders and 
stroke. Stroke. 1986;17:811–7. https://​doi.​org/​10.​1161/​01.​STR.​17.5.​811.

	41.	 Kuruvilla A, Bhattacharya P, Rajamani K, Chaturvedi S. Factors Associated 
With Misdiagnosis of Acute Stroke in Young Adults. J Stroke Cerebrovasc 
Dis. 2011;20:523–7. https://​doi.​org/​10.​1016/j.​jstro​kecer​ebrov​asdis.​2010.​
03.​005.

	42.	 Newman-Toker DE, Moy E, Valente E, et al. Missed diagnosis of stroke 
in the emergency department: a cross-sectional analysis of a large 
population-based sample. Diagnosis. 2014;1:155–66. https://​doi.​org/​10.​
1515/​dx-​2013-​0038.

	43.	 Soun JE, Chow DS, Nagamine M, et al. Artificial Intelligence and Acute 
Stroke Imaging. AJNR Am J Neuroradiol. 2021;42:2–11. https://​doi.​org/​10.​
3174/​ajnr.​A6883.

	44.	 Mainali S, Darsie ME, Smetana KS. Machine Learning in Action: Stroke 
Diagnosis and Outcome Prediction. Front Neurol. 2021;12:734345. 
https://​doi.​org/​10.​3389/​fneur.​2021.​734345.

	45.	 O’Connell GC, Petrone AB, Treadway MB, et al. Machine-learning 
approach identifies a pattern of gene expression in peripheral blood that 
can accurately detect ischaemic stroke. npj Genom Med. 2016;1:16038–
16038. https://​doi.​org/​10.​1038/​npjge​nmed.​2016.​38.

	46.	 O’Connell GC, Chantler PD, Barr TL. Stroke-associated pattern of gene 
expression previously identified by machine-learning is diagnosti-
cally robust in an independent patient population. Genomics data. 
2017;14:47–52. https://​doi.​org/​10.​1016/j.​gdata.​2017.​08.​006.

	47.	 O’Connell GC, Stafford P, Walsh KB, et al. High-Throughput Profiling of Cir-
culating Antibody Signatures for Stroke Diagnosis Using Small Volumes 
of Whole Blood. Neurotherapeutics. 2019;16:868–77. https://​doi.​org/​10.​
1007/​s13311-​019-​00720-9.

	48.	 Tiedt S, Prestel M, Malik R, et al. RNA-Seq Identifies Circulating miR-
125a-5p, miR-125b-5p, and miR-143-3p as Potential Biomarkers for Acute 
Ischemic Stroke. Circ Res. 2017;121:970–80. https://​doi.​org/​10.​1161/​CIRCR​
ESAHA.​117.​311572.

	49.	 H Kara, S Degirmenci, A Bayir. et al. Red cell distribution width and neuro-
logical scoring systems in acute stroke patients. Neuropsychiatr Dis Treat. 
2015;733. https://​doi.​org/​10.​2147/​NDT.​S81525

	50.	 Cortina MG, Campello AR, Conde JJ, et al. Monocyte count is an underly-
ing marker of lacunar subtype of hypertensive small vessel disease: The 
role of monocyte count in lacunar stroke. Eur J Neurol. 2008;15:671–6. 
https://​doi.​org/​10.​1111/j.​1468-​1331.​2008.​02145.x.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1016/j.neuroscience.2008.06.014
https://doi.org/10.1159/000111499
https://doi.org/10.1159/000111499
https://doi.org/10.1161/STROKEAHA.109.557967
https://doi.org/10.1161/STROKEAHA.109.557967
https://doi.org/10.1161/STROKEAHA.108.532085
https://doi.org/10.1515/tnsci-2018-0024
https://doi.org/10.1161/01.STR.20.7.959
https://doi.org/10.1161/01.STR.20.7.959
https://doi.org/10.5222/MMJ.2018.83097
https://doi.org/10.1096/fj.201902478R
https://doi.org/10.1007/s12975-018-0623-1
https://doi.org/10.1007/s12975-018-0623-1
https://doi.org/10.18632/oncotarget.22199
https://doi.org/10.18632/oncotarget.22199
https://doi.org/10.1161/01.STR.22.1.17
https://doi.org/10.1161/01.STR.17.5.811
https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.03.005
https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.03.005
https://doi.org/10.1515/dx-2013-0038
https://doi.org/10.1515/dx-2013-0038
https://doi.org/10.3174/ajnr.A6883
https://doi.org/10.3174/ajnr.A6883
https://doi.org/10.3389/fneur.2021.734345
https://doi.org/10.1038/npjgenmed.2016.38
https://doi.org/10.1016/j.gdata.2017.08.006
https://doi.org/10.1007/s13311-019-00720-9
https://doi.org/10.1007/s13311-019-00720-9
https://doi.org/10.1161/CIRCRESAHA.117.311572
https://doi.org/10.1161/CIRCRESAHA.117.311572
https://doi.org/10.2147/NDT.S81525
https://doi.org/10.1111/j.1468-1331.2008.02145.x

	Use of deep artificial neural networks to identify stroke during triage via subtle changes in circulating cell counts
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Experimental design
	Patients
	Stroke scale scores
	Circulating cell counts
	Artificial neural network
	Statistics

	Results
	Clinical and demographic characteristics
	Differences in circulating cell counts
	Artificial neural network performance
	Comparison of the artificial neural network model to other decision-making tools

	Discussion
	Conclusions
	Acknowledgements
	References


