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Abstract
Pancreatic cancer is a deadly disease that is increasing in incidence throughout the world. There are no clear causal factors 
associated with the incidence of pancreatic cancer; however, some correlation to smoking, diabetes and alcohol has been 
described. Recently, a few studies have linked the human microbiome (oral and gastrointestinal tract) to pancreatic cancer 
development. A perturbed microbiome has been shown to alter normal cells while promoting cancer-related processes such 
as increased cell signaling, immune system evasion and invasion. In this article, we will review in detail the alterations within 
the gut and oral microbiome that have been linked to pancreatic cancer and explore the ability of other microbiomes, such 
as the lung and skin microbiome, to contribute to disease development. Understanding ways to identify a perturbed micro-
biome can result in advancements in pancreatic cancer research and allow for prevention, earlier detection and alternative 
treatment strategies for patients.
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1 Introduction

1.1  Pancreatic Cancer

Pancreatic cancer is a deadly and aggressive disease with 
increase in incidence rates throughout the world. Currently 
within the USA, the 5-year overall survival rate is 10.8% for 
pancreatic cancer [1]. Within the scope of pancreatic cancer, 
there are two main types of tumors: pancreatic ductal adeno-
carcinoma (PDAC) and pancreatic neuroendocrine tumors 

(PanNETs). PDAC tumors, the most common type, are epi-
thelial exocrine tumors that normally originate within the 
pancreatic ducts, whereas PNETs originate from pancreatic 
islet cells and are sometimes functioning endocrine tumors, 
capable of secreting various hormones such as insulin and 
glucagon [2–4]. Regardless of the type of pancreatic cancer, 
this deadly disease lacks early detection markers, has no 
effective therapies and has an overall poor prognosis.

Currently, there are some identified causes of pancreatic 
cancer including correlations to diet, obesity and smoking 
but the underlying genetic risk factors are largely unknown. 
PDAC has been linked to mutations in the Breast Cancer 
Gene 2 (BRCA2) protein and other DNA damage repair pro-
teins but these mutations are present only in a small subset 
of patients, 5–7% [3]. Individuals who carry familial syn-
dromes such as multiple endocrine neoplasia syndrome 1 
(MEN1), von Hippel-Lindau disease (VHL), neurofibroma-
tosis type 1 (NF-1) and tuberous sclerosis (TSC) are at a 
higher risk of developing PNET type tumors but this only 
accounts for < 10% of the PNET patient population [4]. 
Regardless of the cause of disease, the majority of pancreatic 
cancers are not detected until they are in their final stages 
due to ambiguous symptoms such as back pain and loss of 
appetite that are normally mistaken for other etiologies. 
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There is a lack of understanding of the underlying patho-
genesis of this disease as well as a lack of effective strategies 
for early detection and prevention. One route of exploration 
is the link between the human microbiome and pancreatic 
cancer development. In this review, we will highlight some 
of the cutting-edge research that is being performed in rela-
tion to pancreatic cancer and the microbiome and offer a 
fresh perspective into future directions and ways to enhance 
this area of study.

1.2  History of the Microbiome

Recent research has been dedicated to understanding human 
microbiome and how alterations within the microbiome con-
tributes to disease development. The microbiome consists of 
a large and heterogeneous population of bacteria that resides 
within a specific organ or region of the body and has a role 
in assisting the host in survival. There are various areas in 
the body where microbiomes reside including the gut, mouth 
and skin. The human microbiome has been identified as a 
contributing factor to disease as early as the 1600s [5]. In 
the 1860s, the pediatrician Theodor Escherich discovered 
the colon microbe Escherichia coli and revolutionized the 
concept that the human body symbiotically survives with 
microbial organisms [5]. Dr. Henry Tissier was the first to 
isolate Bifidobacterium and administer it as a probiotic [6]. 
The discovery of classical microbiology techniques such as 
the gram stain and bacterial isolation techniques have paved 
the way for current research into the human microbiome. 
Microbiome includes bacteria, viruses, archaea and fungi, 
whereas in healthy individuals all of these species coexist 
symbiotically to perform critical functions such as metabo-
lism, which the host needs to survive.

1.3  The Gut and Oral Microbiome

The gut microbiome is located within the gastrointestinal 
tract and is responsible for a variety of physiologic functions 
including enhancing digestion and metabolism and contrib-
uting to the host immune defense [7]. The gut microbiome 
is composed of two separate bacterial phyla: the Firmicutes 
and the Bacteroidetes, but the presence of other phyla such 
as Proteobacteria, Actinobacteria and organisms like yeast 
can also be present [7]. The microbiome of the oral cav-
ity consists of over 700 bacterial species along with fungi, 
viruses and protozoa with only around 60% of bacterial spe-
cies having been categorized [8, 9]. As the digestion process 
starts with saliva breakdown of food in the oral cavity, the 
microbiome’s role begins here.

Gut dysbiosis was found to be a contributing factor to 
many diseases including inflammatory bowel disease (IBD), 
pancreatic cancer, obesity, allergies and autism [10]. Gut 
dysbiosis is also linked to chronic diseases. One example 

is Pseudomonas aeruginosa, which is found in the oral 
cavities of cystic fibrosis patients [11]. The integrity and 
composition of the oral microbiome is directly correlated 
to maintaining oral and systemic body health [12]. A clear 
link exists between poor oral health (untreated dental and 
periodontal diseases), improper dental care and an increased 
risk for disease development later in life such as cancer, 
heart attack, stroke, pneumonia and rheumatoid arthritis 
(RA) [13–17]. During inflammation of the oral cavity or 
periodontitis, the increase in pro-inflammatory cytokines 
and infiltration of T cells is an initiating stress event within 
the body leading to these conditions [13]. Moreover, it has 
been hypothesized that bacteria may invade endothelial 
cells and secrete toxins and other proteases, which contrib-
utes further to disease development. Patients that have had 
aortic aneurysms have been found to have an infiltration of 
various species of gram-positive bacteria like Streptococ-
cus mutans [15]. High-risk RA has been strongly linked 
to oral microbe dysbiosis and bacteria within the saliva of 
RA patients are being explored as potential biomarkers for 
this disease [16]. A socioeconomic disparity exists within 
populations of non-Caucasian descent exhibiting poorer oral 
microbial health due to difficulties either accessing care due 
to logistic or cost of care issues [18]. In addition, periodon-
titis microbiota of HIV infected individuals was assessed in 
order to understand how pathogenic microflora are altered 
in special patient populations [19].

Initially, studies involving the microbiome were focused 
on specific bacteria within a specific organ or region of 
the body. It was not until 1995 that the whole genome of a 
bacteria, Haemophilus influenzae, was sequenced and what 
followed was an explosion into the field of microbiology 
[20]. After the development of second- and third-generation 
sequencing, coined next-generation sequencing, samples of 
complex biological mixtures containing abundant and rare 
samples could be assessed using their 16S rRNA sequences, 
highly conserved nucleotide sequences and separated out 
using computational methods [21]. Nevertheless, the field 
lacks a streamlined way to obtain useful and clinically rel-
evant information from these massive datasets due to costs, 
time and other practical considerations.

1.4  The Skin Microbiome

The skin is the largest organ of the body and is a host to a 
variety of microbes including bacteria and fungi. Under-
standing the skin microbiome is a paradoxical concept as 
the skin protects the body from invading pathogens; how-
ever, it is a host to millions of these microbes. Depending 
on the condition of the skin: oily or dry, the composition of 
the microbiome differs. Grice et al. found that sebaceous 
sites (oily) had a large composition of Propionibacteria 
and Staphylococci species, whereas Corynebacterium 
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mainly colonized in moist sites and both ß-proteobacteria 
and flavobacteriales were in the sites of dry skin [22]. 
The microbiome of the skin evolves throughout life. The 
microflora of the skin forms during birth through initial 
bacterial colonization on the skin and during develop-
mental changes during puberty into adulthood, where the 
microbiome shifts further [23]. It is also important to note 
that females have more microbiota diversity than males 
due to sex hormones, thinner skin and less sweating and 
the skin microbiome may be more diverse than the gut 
microbiome [24, 25].

Since the skin is the barrier to the inside of the body, 
dysbiosis of the skin microbiome is mainly attributed to 
systemic infections and inflammatory skin diseases such as 
acne, psoriasis and rosacea [26]. Although these conditions 
are not as severe as others that are caused by the oral and 
gut microbiome, a case can be made for linking diseases of 
the skin to other systemic diseases. Psoriasis is normally 
found to be on the skin as abnormal growth of plaques but 
in a handful of patients (7%–26%) can also turn to psoriatic 
arthritis, a painful autoimmune condition, which has a simi-
lar presentation to RA. Severe cases have been linked to an 
increased risk of chronic pancreatitis, pancreatic and other 
gastrointestinal cancer development [27, 28]. Infection with 
the human papillomavirus (HPV), which can cause warts 
on the skin, has been linked to a variety of cancers includ-
ing cervical, anal and oral cancer [29]. Recently, a strain of 
HPV, HPV-16, was found to be present within a mucinous 
neoplastic cyst of the pancreas suggesting a possible role in 
pancreatic cancer carcinogenesis [30].

1.5  Lung Microbiome

The lung microbiome also consists of a variety of organisms 
(bacteria, viruses, fungi etc) that are commonly obtained 
from the air inhalation of a particular environment [31]. 
Depending on the environment, the inhalation can consist 
of either commensal bacterial species (Streptococcus spp., 
Haemophilus spp., Veillonella spp., Aspergillus spp. and 
Candida spp.) or specifically harmful bacteria (Haemo-
philus influenzae, Streptococcus pneumoniae and Morax-
ella catarrhalis) [31]. There is a proposed link between the 
lung and gut microbiome that requires further investigation. 
Unlike the gut, the lung microbiome is constantly exposed to 
changing conditions such as changes in temperature, pH and 
pressure and has to adapt accordingly [31]. Further, Wang 
et al. have found that patients who experience digestive prob-
lems, such as inflammatory bowel disease (IBD), have more 
issues with pulmonary abnormalities and increased inflam-
mation [32]. Recently, it was found that patients with chronic 
obstructive pulmonary disease (COPD) have a perturbed gut 
microbiome including increases in the Streptococcus and 

Lachnospiraceae species, particularly the Streptococcus 
parasanguinis B bacteria [33]. Although there is no direct 
anatomical connection between the two organs, the body is a 
dynamic and rapidly changing system that frequently experi-
ences cross talk between differing organ systems.

2  The Microbiome Influences Pancreatic 
Cancer Development

2.1  Inflammation and Pancreatic Cancer

Inflammation is among a root cause of pancreatic cancer 
development, specifically PDAC. Chronic inflammation 
of the pancreas, caused by chronic pancreatitis, results 
in exocrine and endocrine damage leading to a cycle of 
necrosis and fibrosis events mediated by pancreatic stel-
late cells (PSCs) [34]. PSCs are exocrine functioning cells, 
mainly the acini, which are involved in tissue repair and 
secreting digestion enzymes [35]. Not only are cells within 
the pancreas susceptible to inflammation signaling but also 
inflammatory changes alter the tumor microenvironment, 
specifically cancer associated fibroblasts (CAFs). CAFs 
compose a large portion of the pancreatic tumor micro-
environment and are involved with the secretion of extra-
cellular matrix and other inflammatory factors. CAFs are 
essentially differentiated PSCs that result in perpetuating 
disease and influencing treatment resistance [36]. CAFs 
have the ability to secrete various inflammatory signals 
such as interleukins, chemokines and inflammatory fac-
tors [37].

There has been a clear link established between inflam-
mation, via Ikß Kinase 2 or COX2, to P53 deficient pan-
creatic cells developing into PDAC [38]. Interleukin 
1a (IL-1a) is another pro-inflammatory cytokine that is 
secreted by the tumor microenvironment, specifically 
CAFs, that perpetuates this disease to drive KRAS signal-
ing [39]. STAT3, a well-known pancreatic cancer-driving 
gene, was found to be activated by KRAS mutant cells that 
recruit myeloid cells to secrete IL-6 and perpetuate disease 
development and progression [39]. CAFs are normally het-
erogeneous within the microenvironment and have either 
inflammatory functions or myofibroblastic functions 
[40]. Studies have shown that the myofibroblastic subset, 
although not specifically signaling for inflammatory mark-
ers, can indirectly increase the inflammatory CAF popula-
tion leading to a decrease in cytotoxic T-cells and expand 
regulatory T-cells leading to immune evasion [40].

Not only is PDAC regulated by inflammation but also 
inflammatory processes influence PanNETs development. 
Gaitanidis et al. performed a retrospective study of PNET 
patients and found that the neutrophil-to-lymphocyte ratio 
and metastatic potential were independently prognostic, 
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whereas platelet-to-lymphocyte ratio was indicative of 
disease progression and lymphocyte-to-monocyte ratio 
was indicative of tumor recurrence after surgical resec-
tion [41]. Individual cytokines such as interleukin-1 (IL-
1), tumor necrosis factor alpha (TNF-α) and interleukin-6 
have been implicated with chronic inflammation leading 
to a specific type of PNETs called gastroenteropancreatic 
neuroendocrine tumors (GEP-NETs) [42]. Clinically these 
GEP-NETs can be functional, and secrete various hor-
mones, or non-functional and are differentiated by serum 
IL-2 levels, TNF-α or IL-6 [42]. Although there have 
been inflammatory changes found within PNET tumor 
populations, little is known about the immune landscape 
of the PNET tumor microenvironment. It has been largely 
observed that the immune landscape is highly heteroge-
neous with infiltration of various immune cells, such as 
neutrophils and mast cells [43].

2.2  The Gut Microbiome and Pancreatic Cancer

Inflammation can be modulated by disturbances in the gut 
microbiome. Recently, it was found that the pancreatic 
cancer microbiome causes signaling of both adaptive and 
innate immune system responses resulting in immune sup-
pression and pancreatic cancer evasion [44]. An example 
of such microbes are Helicobacter pylori and Hepatitis B 
virus (HBV) [45]. H. pylori is a well-known bacterial car-
cinogen that perpetuates gastric cancer development and the 
evidence of its presence within pancreatic cancer patients 
is controversial and is largely linked to an indirect mecha-
nism based on triggering inflammatory processes [45]. The 
bacterial microbes can induce inflammation through secre-
tion of bacterial proteins such as lipopolysaccharide (LPS) 
chains that induce immune responses mainly through NF-kB 
activation [46]. The presence of LPS was found to induce 
severe pancreatitis, a precursor event to pancreatic cancer 
and modulate the CD4 + T-cells to secrete tumor necrosis 
factor alpha (TNF-a), interleukin 1 beta (IL-1β) and inter-
leukin 8 (IL-8) [47].

Bacteria are not the only organisms within the gut micro-
biome but viruses comprise a large portion of the population 
and a recent study has found over 100,000 viruses, many of 
which have not been previously identified or studied [8]. 
Many correlative studies suggest that past exposure to HBV 
is linked to pancreatic cancer development due to the prox-
imity between the pancreas and the liver [48]. The asso-
ciation of the same blood vessels and ducts allows HBV to 
travel between these two organs. A HBV infection marker, 
the Hepatitis B surface antigen, can be found within the pan-
creatic juice [49]. Although hepatitis mainly infects the liver, 
there is also a clear connection between the gut microbiome 

and HBV infection, which patients universally present with 
gastric mucosal lesions [50]. Currently, hepatitis infections 
are the only ones linked to pancreatic cancer development 
but because over 100,000 viruses exist within the micro-
biome, more work is needed to identify a link between the 
two. The mycobiome, which includes fungi and yeast, also 
contributes to pancreatic disease. The Candida genus is a 
diverse fungal component that makes up a large percent-
age of the mycobiome within the gut. A recent case report 
of a 56-year old immunocompromised male showed multi-
ple pancreatic cysts that were thought to be malignant [45]. 
After further investigation, it was found that the cysts were 
the result of the fungal infection Candidiasis that mimicked 
pancreatic cancer [51]. Further evidence suggests that 
patients with Candida infection that are immunocompro-
mised have increased rates of a variety of cancers, including 
pancreatic cancer [52].

2.3  The Oral Microbiome and Pancreatic Cancer 
Development

The oral microbiome resides in the oral cavity and consists 
of a variety of bacteria that is significantly altered in pancre-
atic cancer patients. Wei et al. reported an increase in Strep-
tococcus spp. and Leptrotrichinia spp., bacteria in pancreatic 
cancer patients in a retrospective analysis, which may dis-
tinguish between the saliva of healthy individuals and those 
with pancreatic cancer [53]. These species were found to be 
present in the saliva of pancreatic cancer patients located in 
Asia. A retrospective study taken from patients within the 
USA suggested that the presence of Porphyromonas gingi-
vitis and Aggregatibacter actinomycetemcomitans resulted 
in higher rates of pancreatic cancer development, whereas 
when specifically assessed in the African American popu-
lation showed no significant differences in the oral micro-
biomes of healthy patients and those with pancreatic can-
cer. Regardless of this lack of difference, it was found that 
African American women were at higher risk of developing 
pancreatic cancer due to the socioeconomic disadvantages 
found within many African American communities [54–56].

Oral diseases, such as periodontal disease, were found to 
be significantly associated with pancreatic cancer (PDAC) 
development in an older population > 65 years old and were 
independent of other conditions such as diabetes or pan-
creatitis [57]. Periodontal disease occurs when there is rapid 
decay of the periodontal tissues leading to abscesses, infec-
tion and tooth loss. Many bacteria that are associated with 
periodontal disease are gram-negative anaerobic bacteria 
such as P. gingivitis and T. denticola [58]. The mechanism 
by which the oral and gut bacteria travels to the pancreas is 
still under investigation, but it is known that oral ingestion 
leads to a direct entry to the pancreas through portal circula-
tion of the lower gastrointestinal tract [59].
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2.4  The Skin Microbiome and Pancreatic Cancer

Although it seems unlikely that the skin microbiome could 
contribute to pancreatic cancer development, there is suffi-
cient indirect evidence connecting the two. The skin com-
monly has a large population of gram-positive bacteria, but 
recent 16S sequencing has revealed that there is a smaller 
population of gram-negative bacteria present specifically 
proteobacteria [60]. Proteobacteria were found to be present 
more so in patients with PDAC tumors than healthy individ-
uals [61]. Aykut et al. have found that PDAC tumors were 
enriched for Malassezia species and there was a significant 
loss of others such as the Candida and Saccharomyces species. 
The Malassezia species, a unicellular fungus, were found to 
contribute to oncogenic progression through binding of the 
mannose-binding lectin (MBL) and activate a complement 
cascade to evade immune processes and is over 3000 times 
higher in pancreatic cancer tissues than normal pancreatic tis-
sues [62]. This species of fungi is commonly found within the 
skin microbiome, mainly the scalp, and contributes to dandruff 
and seborrheic dermatitis [63]. Proteus spp. was also found to 
be highly upregulated in pancreatic cancer tumors [59]. Pro-
teus species were found to be present in ~ 90% of skin and 
urinary tract infections, has high virulence potential and linked 
to obesity [64, 65].

2.5  The Lung Microbiome and Pancreatic Cancer

As with the skin microbiome, there have been no studies iden-
tifying a direct link between the lung microbiome and pan-
creatic cancer development, but many of the processes that 
occur within the lung microbiome were found to contribute to 
pancreatic cancer development. For example, interleukin-17 
(IL-17) signaling activation was found to occur in patients with 
asthma and sarcoidosis and related to pathogenic bacteria colo-
nization within the lungs [31, 66]. Over-expression of IL-17 
was found to promote the progression of acinar–ductal meta-
plasia (ADM) and intraepithelial pancreatic neoplasia (PanIN) 
as well as PDAC due to enhanced states of inflammation and 
activation of ERK 1/2, fibrogenesis genes and the generation 
of reactive nitric oxide (NO) and oxidative species [66]. Not 
only do perturbations within the lung microbiome impact dis-
ease development but also the state of which the lungs operate 
due to trauma or microbial perturbations can contribute to pan-
creatic cancer development. Various lung diseases caused by 
bacterial or viral colonization, such as bronchitis, COVID-19 
and/or pneumonia, can cause hypoxic or hypoxemia condi-
tions. Pancreatic cancer development is commonly driven by 
hypoxic conditions, where the low vasculature creates hypoxic 
tumor microenvironment that prevents appropriate drug pen-
etration, leading to reduced response rates and poor overall 
survival. Specifically, the HIF-1α hypoxia genes have been 
shown to regulate pancreatic tumorigenesis [67].

3  Gut Microbiome Dysbiosis and its Impact 
on the Efficacy of Cancer Therapeutics

Although microbiome disturbances have been connected 
to a variety of systemic diseases, such as ulcerative coli-
tis and IBD, the focus of this article is to understand the 
disturbances in the human microbiome and its relation to 
pancreatic cancer pathogenesis. Normally the pancreas is 
an immune cold site that does not have immune infiltration 
unless there is an acute case of pancreatitis or autoim-
mune pancreatitis. In the case of pancreatic cancer, this is 
a unique condition where disturbances within the human 
microbiome can trigger immune processes, such as inflam-
mation, and lead to disease development. Below we will 
detail evidence that correlates these two adverse events 
and how the presence of an imbalanced gut microbiome 
can alter treatment efficacy of commonly used clinical 
therapeutics.

3.1  The Gut Microbiome: Metabolic Dysfunction

The imbalance in gut microbiome can alter normal met-
abolic processes that have been linked to cancer devel-
opment. This can occur with a rapid proliferation of the 
genera Bacteroidetes over Firmicutes [68]. Bacteroidetes 
genera consist of large and diverse gram-negative bacterial 
species that normally assists in breaking down complex 
carbohydrates whereas Firmicutes are gram-positive bac-
teria and assist in energy resorption [69, 70]. The ratio of 
Firmicutes to Bacteroidetes (12 to 260) is considered a 
factor that helps reduce obesity and Type 2 diabetes and a 
change to this ratio can lead to physiologic consequences 
[68, 71].

The impact of harmful gut microbes or microbiome 
perturbations include a thickening of the mucus layer 
secreted by these microorganisms, secretion of bacterial 
metabolites that dampen host defenses to perpetuate and 
the transformation of bacterial metabolites [72]. Harmful 
metabolites include the secretion of bile acids, complex 
amino acids, trimethylamine N-oxide and indole deriva-
tives leading to metabolic disorders, such as Type 2 dia-
betes [72]. Type 2 diabetes is a common metabolic dis-
ease that is sometimes followed by a pancreatic cancer 
diagnosis. Statistics show that around 80% of new onset 
pancreatic cancer patients have had metabolic dysfunction, 
either hyperglycemic or diabetes, at diagnosis and newly 
onset diabetes is associated higher with pancreatic cancer 
risks and this risk decreases during disease progression 
[73]. A recent Italian case–control study has showed that 
there was a relationship between metabolic syndrome and 
pancreatic cancer development [74]. Metabolic syndrome 
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is defined as the presence of three metabolic conditions 
including diabetes, hypertension, hyperlipidemia and/or 
obesity. This study showed a positive correlation between 
metabolic syndrome and pancreatic cancer risk (RR 1.55) 
[74].

The secretion of metabolites from the gut microbiome 
has been shown to increase the risk for pancreatic cancer 
development. Huang et al. found TMAO, a choline metabo-
lite, secreted from the gut microbiome had a positive asso-
ciation to pancreatic cancer development, whereas other 
groups have found in response to deoxycholate (DCA) che-
nodeoxycholate (CDCA) the body produces inflammatory 
signals such as cyclooxygenase, COX2 and prostaglandin 
E2 (PGE2) [75–78].

Gut bacteria can also mediate resistance to commonly 
used chemotherapies. For example, perturbations in the gut 
with upregulation of pathogenic bacteria, such as Escheri-
chia/ Shigella and Enterobacter, have been shown to affect 
the efficacy of antimetabolite compounds like 5-fluorouracil 
(5-FU) [79]. Sensitivity to gemcitabine, an antimetabolite 
chemotherapeutic agent used in pancreatic cancer, can be 
altered by the presence of intra tumoral bacteria such as the 
Gammaproteobacteria class Klebsiella pneumoniae [80]. 
Using a mice model, Panebianco et al. have suggested that 
gemcitabine treatment decreased the Firmicutes and Bacte-
roidetes compositions while increasing the Proteobacteria 
and Verrucomicrobia phyla leading to an increase in inflam-
mation producing bacteria and a decrease in purine metabo-
lites such as xanthine [81]. The Bifidobacterium and Lacto-
bacillus microbes have shown anti-cancer properties by their 
ability to induce apoptosis and inhibit cell cycle leading to 
cancer cell death and anti-metabolite chemotherapies, such 
as methotrexate, were found to reduce the composition of 
Bifidobacterium and Lactobacillus after treatment [82, 83].

It is clear that metabolic dysfunction caused by perturba-
tions in the gut microbiome lead to inflammatory processes 
that contribute to pancreatic cancer development. Further 
investigation is needed to identify interventions to use the 
gut microbiome as a tool to treat this disease.

3.2  The Gut Microbiome: Immunotherapy Blockade

Results from clinical trials have made it clear that immuno-
therapies such as Programmed Death Ligand 1 (PD-L1) and 
Programmed Cell Death Protein 1 (PD-1) inhibitors do little 
to mitigate pancreatic cancer disease [84]. This is in part due 
to a low tumor mutational rate in pancreatic cancer as well 
as low PD-L1 expression and immunosuppressive properties 
[84]. Clinical trials for pancreatic cancer and immunothera-
pies have shown little success including the Phase II rand-
omized clinical trial with PD-L1 and CTLA-4 inhibitors that 
showed a response rate of 3.1% with combination PD-L1 
and cytotoxic T-lymphocyte associated protein (CTLA-4) 

inhibitors but a 0% response rate with either monotherapy 
[85, 86]. An alternative explanation for pancreatic cancer 
immune evasion may be due to perturbations within the 
microbiome.

H. pylori infection and its influence on pancreatic cancer 
development remains controversial. At the same time, stud-
ies have linked H. pylori infection to suppressed efficacy 
of immune checkpoint blockade in several cancers [87]. 
Oster et al. found that non-small cell lung cancer (NSCLC) 
patients infected with H. pylori were found to have reduced 
sensitivity rates to PD-1 immunotherapy (9.3 month over-
all survival compared to 21.7 month overall survival) [88]. 
Recently, H. pylori has been shown to be positively and 
significantly associated with PDAC development in those 
with a family history of pancreatic cancer and may be a 
reason why immunotherapy is somewhat ineffective [89]. 
Studies showed enrichment of pancreatic cyst fluid in Bac-
tericides and Escherichia/Shigella spp [90]. The Bacteroi-
detes genus has both stimulating and repressive effects on 
CTLA-4 immunotherapy depending on the type of bacte-
ria. For example, Bacteroidales fragils and Bacteroidales 
thetaiotaomicron were found to enhance CTLA-4 immuno-
therapy in both patients and mice, whereas most of the other 
microbes belonging to the Bacteroides spp. are associated 
with worse tumor prognoses in melanoma patients treated 
with the CTLA-4 immunotherapy ipilimumab [91]. Further, 
a subgroup of Escherichia coli bacteria that produces coli-
bactin has been shown to have precancerous properties and 
interferes with PD-1 immunotherapy in colorectal cancer 
through impairing the T-cell response [92]. Various bac-
teria are associated with enhanced responses to immune 
checkpoint therapy in other disease models. For example, a 
B16 melanoma model treated with PDL-1 immunotherapy 
showed enhanced responses in the presence of Bifidobacte-
rium, whereas in a RET melanoma and LLC lung carcinoma 
models Akkermansia muchinphilia and Alistipes were shown 
to enhance responses to PD-1 immunotherapy [93–95]

Viruses can also modulate immunotherapy responses 
and disease outcomes. Patients who have undergone PD-1 
targeted immunotherapy were shown to have a significant 
increase in developing a hepatitis flare-up if they have been 
previously infected with the HBV virus [96]. Although some 
viruses have been shown to dampen the immunotherapy 
response many are trying to utilize viruses to treat cancer, 
some of which can be found within the gut microbiome. 
Oncolytic viruses are genetically engineered viruses (herpes 
simplex, adenoviruses, poliovirus and measles) which can-
not replicate in normal cells but preferentially infect and kill 
tumor cells and are under investigation in melanoma, pan-
creatic cancer and colorectal cancer [97]. The most prom-
inent example of a successful oncolytic virus is the Tali-
mogene laherparepvec (T-VEC) which is a herpes simplex 
virus-1 derived immunotherapy used to treat patients with 
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advanced melanoma (23.3 month overall survival) that was 
FDA approved in 2015 [98]. In pancreatic cancer, the modi-
fied adenovirus ONYX-015 is an oncolytic virus found to be 
beneficial in a Phase I trial where four patients had partial 
or minor disease regressions and six had stable disease after 
8 weeks of treatment in combination with gemcitabine [99].

The mycobiome of the gut and organs is also being inves-
tigated whether it can influence responses to immunother-
apy. Studies have shown that PD-1 and CTLA-4 immuno-
therapy can improve survival in patients with fungal sepsis 
while other studies have reported that PD-1 immunotherapy 
has been linked to clear specific types of protective fungi 
lung infections in mice models [100, 101]. Pancreatic cancer 
patients undergoing chemotherapy or radiation treatment are 
highly susceptible to fungal infections due to their immu-
nocompromised states and a clearer understanding of how 
immunotherapy alters the mycobiome is needed.

3.3  The Gut Microbiome and Radiation

Dysbiosis of the gut microbiome also contributes to damp-
ened efficacy with radiation in cancer patients. Radiation is 
frequently given to pancreatic cancer patients in a palliative 
setting but Phase I/II clinical trials are currently testing radi-
ation in combination with immunotherapies [102]. Radiation 
currently gives somewhat of a benefit to pancreatic cancer 
patients as has been demonstrated by Krishnan et al., who 
suggests that radiation doses above 70 grays increases over-
all survival (17.8 months vs 15.0 months) [103]. Further 
re-irradiation of stereotactic body radiotherapy showed an 
increased overall survival rates, disease control rates and 
pain reduction [104]. Although there is some progress in 
understanding the impacts of radiation in pancreatic cancer, 
the correlation between response rates to radiation and the 
gut microbiome has not been explored in pancreatic cancer 
as it was studied in other cancers. Further investigation may 
improve response rates.

Gamma irradiation can produce significant changes to 
the gut microbiome including an increase in the Alistipes 
spp. (Bacteroidetes) and Corynebacterium (Actinobacteria) 
genera and decreases in the Prevotella genus (Bacteroidetes) 
[105]. The Alistipes species, particularly A. onderdonkii, is 
downregulated in pancreatic cancer and its upregulation was 
linked to the proliferation suppression of pancreatic can-
cer cells [105]. A comparison between pancreatic cancer 
patients and healthy patients revealed a suppression of the 
Corynebacterium genera while there was increased levels 
of the Prevotella genera which contributed to innate and 
adaptive immune suppression [106, 107]. These results sug-
gest that radiation is not only influencing pancreatic cancer 
cell death through inducing DNA damage to the tumor but 
also influencing the composition of the gut microbiome. 
This topic requires further investigation to uncover ways to 

enhance radiation therapy by altering the microbiome with 
probiotics or other intervention strategies.

4  The Oral and Skin Microbiomes 
and the Efficacy of Cancer Therapeutics

There have been few studies assessing the impact of compo-
sition of the gut microbiome on cancer treatment efficacy but 
some have shown the oral and skin microbiome dominant 
organisms can alter the efficacy of anti-metabolites that are 
used to treat pancreatic cancer [108]. Some of the organ-
isms found to be in abundance among the oral microbiome 
of pancreatic cancer patients includes Porphyromonas gin-
givitis and Aggregatibacter actinomycetemcomitans [108].

Porphyromonas gingivitis belongs to the Bacteroidetes 
genus, a gram negative and anaerobic pathogenic bacte-
rium. This bacterium makes and secretes peptidyl-arginine 
deaminase (PAD), an enzyme that catalyzes the Arginine 
residues to proteins to citrulline, which can boost free radi-
cal production, such as nitric oxide, within the body that 
has damaging effects on the body in large amounts [109]. 
In gastric cancer, it was shown that upregulation of pepti-
dyl-arginine deaminase 4 (PAD4) with the anti-metabolite 
5-FU suppressed gastric cancer growth and was reversed by 
downregulation of PAD4 expression [110]. Further, it was 
found that depletion of arginine, a product of citrulline and 
aspartate, induced apoptotic cell death in leukemia models, 
whereas upregulation of L-citrulline rescued the effects of 
arginine deprivation in PDAC cells suggestive of the impact 
of this enzyme [111].

Aggregatibacter actinomycetemcomitans is a gram-neg-
ative anaerobe that metabolizes lactate into carbon dioxide, 
lactic and acetic acids ultimately to make the  H2O2 free 
radical as a byproduct [112]. Pancreatic cancer is largely 
driven by glycolysis and produces lactic acid within the 
tumor microenvironment leading to an increased expression 
of angiogenesis genes such as HIF-1α [113]. Lactic acid 
also forms an acidic buffer within the tumor microenviron-
ment that promotes invasion while the glycolysis intermedi-
ates help the tumor grow via Connexin-43 channels [114]. 
 H2O2 is a two-edged sword that can drive pancreatic cancer 
growth while also being explored for its ability to treat this 
disease. Lei et al. have found that hydrogen peroxide medi-
ates the invasive ability of pancreatic cancer by driving the 
MAPK/ERK growth pathway while also driving inflamma-
tory processes within cancer cells through NF-kB upregu-
lation and HIF-1α simultaneously also driving the tumor 
storm through inflammation and inducing DNA damage 
[115–119]. Antioxidants and free radicals, such as  H2O2, 
were found to decrease the apoptotic effect of the compound 
5-FU in colon cancer, whereas gemcitabine is known to 
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elevate peroxiporins, or aquaporin channels that transport 
 H2O2 across the membrane [120, 121].

Studies have shown that a colonization of fungi within 
the gut, specifically the Malassezia spp., contributes to 
the pathogenesis of pancreatic cancer in mice and humans 
through infection with the mannose-binding lectin protein 
(MBL) and infiltration of pancreatic tumors and targeting 
this fungus was shown to cause enhanced sensitivity to gem-
citabine treatment [55]. More work is needed to identify the 
impact of perturbed microbiomes on the efficacy of thera-
peutics being used to treat pancreatic cancer.

5  Utilizing the Microbiome as a Preventative 
or Therapeutic for Pancreatic Cancer

5.1  Fecal Transplants

Fecal transplantation is a way to treat a perturbed micro-
biome by transplanting the stool from a healthy donor into 
a recipient donor [122]. For pancreatic cancer, there have 
been studies dedicated to exploring the therapeutic benefit 
of this treatment and a Phase I clinical trial is underway 
(NCT04975217). The overall rationale for using this type of 
treatment is due to the fact that (1) there is bacteria within 
the pancreatic tumor, such as Aggregatibacter actinomycet-
emcomitans, Porphyromonas gingivalis and Fusobacterium, 
(2) healthy individuals have been shown to have a differ-
ent composition of bacterial species within their gastroin-
testinal microbiomes that seem to suppress these harmful 
bacteria and (3) suppression of these pancreatic cancer 
driving bacteria can lead to a reversal of cancer promot-
ing phenotypes such as immune evasion, sensitization to 
immunotherapy while also down-regulating metastatic and 
invasive properties. Although fecal transplantation seems to 
be a promising strategy to treat pancreatic cancer, there is 
more work needed to truly identify the microbiome profile 
of a candidate healthy donor along with more characteriza-
tion and discovery into rare bacteria that may be located 
within the donor’s microbiome. A recent report showed that 
a death was caused by a fecal transplant due to a drug resist-
ant bacteria found within the sample [123]. Although the 
drug resistant bacteria did not cause harm to the donor, its 
transplantation into an immunocompromised individual was 
detrimental [123].

5.2  Probiotics

Probiotics are live bacteria and yeast, which can be found in 
fermented foods such as yogurt and cheese or in pill form. 
The live bacteria within probiotics are normally belonging 
to the Lactobacillus genus. Lactobacillus spp. are gram-
positive anaerobes categorized as “good bacteria” which 

metabolizes carbohydrates and competes against more 
harmful bacteria within the gut. Chen et al. found that the 
probiotic Lactobacillus synergizes with gemcitabine in an in 
vivo pancreatic cancer model where Konishi et al. found that 
Aspergillus oryzae was found to have anti-tumor properties 
through altering MAPK/ERK signaling [124, 125]. Pancre-
atic cancer was also found to be inhibited by the ferrichrome 
compound, an iron molecule that can be found in probiotics, 
and was shown to be effective in 5-FU resistant cells [126]. 
Probiotics have a preventative effect against pancreatic can-
cer in addition to their ability to enhance pancreatic cancer 
cell death. Studies have shown that a diet rich in probiotics 
can reduce inflammation, which leads to pancreatitis and in 
some cases, can cause pancreatic cancer [127, 128].

5.3  Preventative Strategies

Forty-eight percent of the population is estimated to have 
periodontal disease and/or is living with risk factors leading 
to this condition like smoking, diabetes, age, stress and poor 
oral hygiene [129]. In addition to the correlation between 
the poor periodontal health and cardiovascular disease, 
also it seems to contribute to pancreatic cancer, as we have 
discussed above. In addition, socioeconomic disparities, 
such as limited access to dental health, the ability to obtain 
unhealthy food at cheaper costs than healthy food, increases 
in tobacco use and living in rural communities, make it dif-
ficult for a large percentage of the population to maintain 
good oral health. A better understanding and awareness of 
the risks of poor oral health and pancreatic cancer develop-
ment in the healthcare field and the community will help 
address solutions to close the disparities gap within vulner-
able communities.

Poor diet can lead to perturbed microbiomes within the 
body, which can in turn lead to pancreatic cancer develop-
ment. Education and understanding healthy food choices 
over processed foods, fats and sugars may be a key to keep-
ing the microbiome in check. Increasing the consumption 
of fermented foods, such as yogurt, high fiber and whole 
foods has been shown to reverse the pathogenic activity of 
bacteria within the gut microbiome [130, 131]. In the US, 
food insecurity, hunger and inability to access healthy food 
is a major issue. It is estimated that 10.5% of households 
have experienced food insecurity in 2020, according to the 
USDA, whereas the official poverty rate was 11.4% in 2020, 
which has increased since 2019 [132, 133]. These numbers 
indicate that access to healthy foods, oral care and health 
care is non-existent for a percentage of the population and 
may lead to dire health consequences in the future, such as 
pancreatic cancer. Although this topic is not within the scope 
of this manuscript, these issues need to be addressed at the 
local, state and federal levels and a comprehensive solution 
is needed to assist those in need.
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Smoking is another factor that can alter the human micro-
biome and lead to growth of pathogenic bacteria in the gut, 
which can alter the intestinal pH [134]. Moreover, smoking 
was shown to enhance the intestinal pH through the effects 
of nicotine either directly or by exposing the microbiome to 
harmful additives in cigarettes such as polycyclic aromatic 
hydrocarbons, volatile organic compounds and aldehydes 
[134]. Smoking is directly linked to pancreatic cancer devel-
opment and is associated with a twofold increased risk. It 
also negatively influences the human microbiome. Prevent-
ing the use of nicotine and tobacco products would be help-
ful in stopping some of the risk that tobacco use has on 
health while also protecting the microbiome from eliciting 
pathogenic effects on the body [135].

Finally, there are many studies that show conclusive evi-
dence that taking supplements and vitamins is beneficial 

to maintaining a healthy microbiome. For example, it was 
found that taking B-vitamins supports positive gut microbi-
ome health by suppressing pathogenic and competitive bac-
terial species while also supporting the symbiotic relation-
ship between the host and the gut microbiome [136]. Taking 
vitamin D supplements has shown benefit to maintaining a 
healthy microbiome, specifically in older men [137]. Using 
a diversity analysis from 16S rRNA bacterial sequencing, 
it was found that increases in vitamin D, specifically with 
higher levels of 1, 25(OH) 2D levels, had increases in the 
Firmicutes phylum and specifically have more butyrate-pro-
ducing bacteria [137]. Butyrate was shown to inhibit pancre-
atic cancer invasion and can sensitize pancreatic cancer cells 
to therapeutics such as histone deacetylases and gemcitabine 
[138–140].
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6  Conclusions

Pancreatic cancer is a highly aggressive and deadly disease. 
Some mechanisms of pathogenicity have been identified 
including the association with other health conditions, such 
as Type 2 diabetes and pancreatitis, but there is currently no 
clear understanding of how we can screen for this disease in 
its early stages to thwart disease progression and/or devel-
opment. Evidence is emerging on the correlation between a 
disturbed human microbiome and pancreatic cancer devel-
opment, specifically in relation to the Bacteroidetes/Firmi-
cutes ratio. Although the gut is the most well-studied area of 
microbiome, there is evidence to support that other microbi-
omes (lung, skin, oral cavity) within the body contribute to 
pancreatic cancer development and can enhance or inhibit 
the effects of therapeutics used to treat cancer (Fig. 1). In 
recent years, there has also been a correlation between poor 
oral health and pancreatic cancer development due to the 
pathogenicity and invasiveness of specific oral microbes, 
such as P. gingivalis. Understanding the impacts of the gut 
microbiome is critical toward making advancements to pan-
creatic cancer research. Further, understanding ways to uti-
lize this knowledge as a preventative is just as critical and 
a step toward reducing the risks associated with pancreatic 
cancer that can be found in everyday life.
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