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Abstract: Four-dimensional (4D) biofabrication techniques aim to dynamically produce and control
three-dimensional (3D) biological structures that would transform their shapes or functionalities
with time, when a stimulus is imposed or cell post-printing self-assembly occurs. The evolution
of 3D branching patterns via self-assembly of cells is critical for the 4D biofabrication of artificial
organs or tissues with branched geometry. However, it is still unclear how the formation and
evolution of these branching patterns are biologically encoded. Here, we study the biofabrication
of lung branching structures utilizing a simulation model based on Turing instability that raises
a dynamic reaction–diffusion (RD) process of the biomolecules and cells. The simulation model
incorporates partial differential equations of four variables, describing the tempo-spatial distribution
of the variables in 3D over time. The simulation results present the formation and evolution process
of 3D branching patterns over time and also interpret both the behaviors of side-branching and
tip-splitting as the stalk grows and the fabrication style under an external concentration gradient of
morphogen, through 3D visualization. This provides a theoretical framework for rationally guiding
the 4D biofabrication of lung airway grafts via cellular self-organization, which would potentially
reduce the complexity of future experimental research and number of trials.

Keywords: reaction–diffusion mechanism; 4D biofabrication; 3D morphogenesis; self-organization
of cells

1. Introduction

Three-dimensional (3D) printing in health science mainly aims to mimic biological functions [1–3].
However, there are difficulties in controlling the shape and functions of the printed 3D
bio-constructs/materials because of the reorganization of the printed bio-construct via cellular
migration and proliferation [3–5]. Thus, the regulation of the transformation or functionalities of 3D
biological structures over time is critical for achieving the 3D bio-construct with the expected shape and
functions [5,6]. To reach this goal, a four-dimensional (4D) biofabrication technique might be utilized,
which aims to create dynamic 3D biological structures that can transform their shapes or functionalities
with time when an external stimulus is imposed or when cell post-printing self-assembly occurs [5,7].
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4D biofabrication can be used for the bioprinting of vascularized tissues with high resolution of
spatial and temporal control [6], shape-memory polymer (SMP)-based scaffolds for bone tissue
engineering [8], hollow self-folding tubes based on printing of cell-laden shape-morphing hydrogels [9],
and fabrication of 3D cellular structures within tubes, self-folded by thermosensitive shape-changing
polymer films [10]. The evolution of 3D patterns with a specific geometry via self-assembly of cells,
is critical for 4D biofabrication of artificial organs or tissues with branched geometry.

Recent research on organ morphogenesis has described an elaborate pattern of branching
phenomena [11,12]. In the lung, two primary forms of branching have been identified: side-branching
and tip-splitting. The branching occurs in sequence: first, side-branching creates the primary stalks,
then there is a change of mode to tip-splitting. The kidney developmental program encodes the
intricate branching and organization of approximately 1 million functional units (nephrons) [13].
These phenomena have been hypothesized to be under genetic control [11,14,15]. How genes could
possibly act to produce these patterns is still not clear. However, the coding of branch patterning is
possibly simplified by the repeated use of a branching mechanism, as in Mandelbrot’s fractal model
and other elegant algorithms [16–20].

The reaction–diffusion (RD) system is one of the basic systems which can describe the evolution
of biological systems [21,22]. In 1952, Alan Turing described morphogens, patterns, and different
forms, about biological systems [21] and proposed the Turing principle of spatial patterns, showing
that diffusion could lead to instability. This type of instability can be called Turing instability. The RD
model based on Turing instability has shown its potential power in simulating the dynamic process
of molecules and tissue morphogenesis [23–25] with time. In our previous study of the dynamics
of 3D biopattern formation [2,3,26,27], we showed that Turing instability drove the evolution of
the self-organization of 3D multicellular patterns. Turing instability can induce spatial patterns
in mathematical models, such as stripes, spots, hole patterns, and more complicated 3D patterns,
and is applied to model biological patterning phenomena in natural animals and plants [28,29] or
the tissue morphogenesis [2–4]. The rational control of the RD system leads to a flexible guiding
methodology for artificial 3D tissue morphogenesis. There have been several typical mathematical
models that study lung branching phenomena. Menshykau et al. [30] proposed a Schnakenberg-type
Turing model based on the molecular interactions between fbroblast growth factor 10 (FGF10),
Sonic hedgehog (SHH), and Patched (Ptc), which reproduces the experimentally observed wild-type
branching pattern. Celliere et al. [31] then added FGF9 to the model, to simultaneously predict the
emergence of smooth muscles in the clefts between growing lung buds, and vascular endothelial
growth factor A (VEGFA) in the distal sub-epithelial mesenchyme. However, their model is not
a model of morphogenetic growth, but mainly a model of periodic spots appearing surrounding
the lung bud. Further, a ligand–receptor-based Turing model was used to predict the embryonic
areas of outgrowth and it supports branch outgrowth [25], implicating only two interacting factors
(the ligand FGF10 and its receptor fibroblast growth factor receptor 2b (FGFR2b)). Nevertheless, FGF10
is expressed only in the mesenchyme, while FGFR2b is expressed only in the epithelium, so there was
a particular geometry restricted for variables in this model that may lose the underlying process in
complex biological system. Other types of modalities mainly involve the mechanics-based model [32],
which outlines the pattern formation from a purely mechanical viewpoint. For example, cytoskeletal
tension mediated by Rho signaling plays a role during cleft formation in lung branching. Another form
of the mechanics-based model is the 3D vertex model [33], which enables the quantitative simulation
of multicellular morphogenesis based on single cell mechanics involving various cellular activities,
such as cell contraction, growth, rearrangement, division, and death. Yet, these mechanics-based
models may neglect some key underlying molecular processes in the biochemical environment.

Generally, the rational prediction-based RD mathematical model is flexible and is the most
commonly used methodology, which is also a suitable method to guide the 3D or 4D biofabrication
by predicting the dynamic evolution of 3D self-organized microstructures over time. The RD model
commonly requires a morphogen pair [34] (an activator–inhibitor pair) in which the inhibitor diffuses
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more rapidly than its activator. In recent studies of lung branching morphogenesis based on the
RD model [35,36], a four-variable partial differential equation (PDE) according to Meinhardt [17]
was utilized to describe the reaction and diffusion of morphogens involved in creating branched
lung development. Usually, bone morphogenetic protein-4 (BMP4) can serve as an activator, matrix
gamma-carboxyglutamic acid protein (MGP) can serve as an inhibitor, and the substrate S can be
fibroblast growth factor 10 (FGF10). In the microenvironment during lung development, FGF10 is
usually present, so the variable S describing this type of growth factor has to be incorporated into the
basic model. In order to describe the 3D structure of the branches assembled by the differentiated cells,
we need a variable representing the local concentration of differentiated cells. Here, Y is the variable
that indicates the concentrations of cell differentiation markers (Y = 0 indicates no differentiated
cell while Y = Ya (Ya is a threshold value and typically 0 < Ya ≤ 1) indicates totally differentiated
cells). Therefore, these four parameters, respectively, have their own different roles in describing
these RD multicellular systems and none could be omitted. We have previously presented the model
and simulation results on the emergence of side-branching and tip bifurcation [37]. In this paper,
we attempt to comprehensively and systematically study the features of the model and simulate the
time-dependent phenomena of stalk growing, side-branching, and tip bifurcationg by using a 3D
branching evolution model based on RD dynamics. In addition to the simulation and discussion on the
evolution of 3D structures, we also present and discuss the law governing the change of 3D bifurcation
patterns in 2D parameter domains, the fabrication style under an external concentration gradient of
morphogen, and the limitations of this prediction model. These studies are more extensive when
compared to our previous paper [37]. The simulated branching morphogenesis, both in longitudinal
(growth) and in transverse directions of the stalk, is demonstrated and analyzed. The simulation results
and analysis provide a theoretical framework of the 3D and 4D fabrication of branching structures for
lung or kidney in a cellular self-organization manner.

2. Mathematical Model

The mathematical model based on Turing’s reaction–diffusion (RD) dynamics, according
to Meinhardt [17], involves four concentration variables; activator, inhibitor, substrate, and cell
differentiation marker. Here, the four variables are labeled as activator (A), inhibitor (H), substrate (S)
and cell differentiation marker (Y). The mathematical expressions are as follows:

∂A
∂t

=
cA2S

H
− µA + DA∇2 A + ρAY (1)

∂H
∂t

= cA2S− νH + DH∇2H + ρHY (2)

∂S
∂t

= c0 − γS− εYS + DS∇2S (3)

∂Y
∂t

= dA− eY +
Y2

1 + f Y2 (4)

The model postulates four spatially continuous variables, each of which is a spatio-temporal
function. A, H, S, and Y are four concentration variables indicating the concentrations of activator,
inhibitor, substrate, and cell differentiation marker (Y = 0 indicates no differentiated cell, while Y = Ya
(Ya is a threshold value and typically 0 < Ya ≤ 1) indicates totally differentiated cells [28]). In the
model, µ, v, γ, and e represent the first-order degradation rate of A, H, S, and Y respectively; DA,
DH, and DS are the diffusion coefficient of activator, inhibitor, and substrate; the differentiated Y
cells secrete activator A and inhibitor H at the rates of ρA and ρH respectively; c is the positive rate
of activator A in the autocatalytic reaction; c0 and ε are the production and consumption rates of
substrate S. cA2S/H describes the autocatalytic generation of A under the action of S and H; cA2S
describes the generation of H during the interaction of A and S; dA describes cell differentiation
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markers generated by activator A; DA52A, DH52H, and DS52S describe the diffusion of activator,
inhibitor, and substrate, respectively. Equations (1)–(4) are also denoted as A-equation, H-equation,
S-equation, and Y-equation, respectively, in this study. High concentrations of activator A produces
cell commitment Y (the dA term in the Y-equation, e.g., Equation (4)). When the concentration of
activator A exceeds a certain critical value, cell differentiation (for example, Y = Ya indicates that cells
have been differentiated) is irreversibly activated. The reason of this could be explained by three steps.
Step 1: The A will increase because of self-production until it reaches a certain value, causing ∂Y/∂t
> 0 because of the term dA in Y-equation, and then Y will increase with time because of ∂Y/∂t > 0.
Step 2: The ∂Y/∂t cannot always be larger than zero because the term −eY + Y2/

(
1 + f Y2) will start

to less than zero when Y increases to a certain large value (here e = 0.1, f = 10) while the term dA
has a bounded value due to the A inhibited by H cannot unrestricted increase (here d = 0.008). Thus,
∂Y/∂t = dA− eY +Y2/

(
1 + f Y2) will tend to be increasingly smaller with continually larger Y. Step 3:

∂Y/∂t will continue to decrease and reach zero when the Y reaches a certain value, e.g., ∂Y/∂t = 0.
From this time, Y reaches the steady-state value and will not change with time because of ∂Y/∂t= 0.
Here, all physical quantities are dimensionless. In this study, the activator could be BMP4, the inhibitor
could be MGP, and the substrate is FGF10, according to the literature [36,38]. The diffusion rate of the
BMP4, is lower than that of the inhibitor MGP because the molecular weight of BMP4 is bigger than
that of MGP, which is in accordance with the parameter setting (DA < DH) in the model.

At the beginning of the simulation, almost all positions in the volume were set to Y = 0, meaning
that the positions did not contain a differentiated cell, but a small region within the center of the
whole computing domain is set to Y = 1, representing the initial lung stalk bud. Then, growth
happened from the initial sites converting from Y = 0 to Y = Ya, in the presence of high concentrations
of activator (the +dA term in the Y-equation). The tissue was represented by positions at which
Y = Ya. The mathematical model was solved by the finite difference method in the MATLAB platform
(MathWorks, Inc., Natick, MA, USA), and the parameters were traversed in a certain range, which was
also implemented for solving other RD models [26,27,39]. Three-dimensional data were displayed by
a 3D visual software (Voxler, trail version). The simulation ran on a computer with a 16-core CPU and
at least 32 Gigabytes of memory and a 2 Terabyte hard disk. Usually, one set of parameters needed
from about several hours to ten hours to complete.

All of the simulations in this study are highly reproducible. The simulated 3D branching structures
will remain the same through multiple simulations as long as the set of parameter values does
not change.

3. The Evolution of Side Branching

Lung development begins with side branches emerging in rows around the circumference of
the parent/primary branch. The parent branch elongates, and new side branches bud off. In this
model, the primary branch (Y-stalk) grows through the positive feedback of the peaks of activator
A. Also, inhibitor H is produced proportionally to the activator distribution, and H diffuses from a
high-concentration region, to a low-concentration region.

In this model, the activator peak forms because of the positive feedback of A on itself. The activator
peak then produces differentiated cells Y (via the +dA term in Y-equation). The region occupied
by activated Y indicates the geometry of the Y-stalk. The initial micro-region, represented by the
isosurface of the Y value, is usually not able to be a standard spherical geometry because the A and
H concentrations have a 5% fluctuation, and thus the propagate of Y = Ya from the initial point to
surrounding region is not spherical in symmetry. So, the initial region consisting of differentiated cells
(Y = Ya) will be geometrically polarized, which leads to the formation of a slightly elongated Y-stalk. Y
cells consume S (the −εYS term in S-equation), while the region without Y cells consumes less S. Thus,
the gradient of S forms, which is the main driver of activator migration, so the newly formed activator
peak will move in the direction of the gradient of S concentration. On the other hand, the inhibitor H is
produced in response to the activator peak and diffuses (the terms–cA2S and DH∇2H in H-equation).
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The stalk can elongate because both ends of the stalk have peaks of activator A that produce new
Y cells, and H diffuses to the side of the primary branch serving as lateral inhibition, resulting in a
filamentary elongation of the Y-stalk rather than a circular or isotropic expansion.

The peaks of activator A appear at both ends and at the middle of the parent branch, are attracted
by the substrate (the term +cA2S/H in A-equation), and migrate to the direction of high S
concentration (arrows in Figure 1a,b). When the concentration of activator A exceeds a certain
critical value, cell differentiation is irreversibly activated (the detailed reason is elucidated in Section 2).
The spatial distribution of the cellular differentiation marker Y is indicated by the green part in Figure 1.
The activator peaks with high concentration produce cell commitment Y because of the term dA in
Equation (4), the activator peaks migrate in the direction of the arrows, and a side branch forms in the
middle position of the Y-stalk, as shown in Figure 1b. Therefore, the Y-branches appear in the region
where high concentrations of activation peaks migrate. In addition, it is clear that S concentration
is lower at the location of the Y-stalk, but is relatively higher away from the Y-stalk (the −εYS term
in S-equation).
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Figure 1. Concentration distribution of A, H, and S in side branching. (a) Simulation result at
t = 1500 steps; (b) Simulation result at t = 2000 steps. The green part is the spatial distribution of the
cellular differentiation marker Y; the orange spherical structure is the peaks of activator A; the contour
lines indicated the distribution of H; the red rectangle is the spatial distribution of the substrate S.
Substrates are actually distributed in the area formed by the white rectangular border. To clearly
show the intrinsic association of A, H, and S concentration profiles, half of the substrate was hidden.
The numbers under the images denote the step number in the simulation. Parameters: c = 0.04, µ = 0.3,
v = 0.03, ρA = 0.03, ρH = 0.0001, c0 = 0.02, γ = 0.02, ε = 0.042, d = 0.008, e = 0.1, f = 10, DA = 0.1, DH = 0.26,
DS = 0.06.

The Y-stalk elongates because the H that diffuses to the side of the primary branch serves as
lateral inhibition that is presented by the contour lines in Figure 1a, which results in vimineous
elongation of the Y stalk, as shown in Figure 1. The elongation of the activator peak continues to
generate differentiated cells Y. Thus, the elongated primary branch is formed (Figure 2). However,
Y cells consume S (refer to the −εYS term in the S-equation), and thus S concentration becomes
lower at the location of the Y-stalk but remains relatively higher away from the Y-stalk. Therefore,
a gradient of S forms, which is the main driver of activator migration, because the activator A is always
seeking the substrate S according to the term +cA2S/H in the A-equation. Consequently, the newly
formed activator peak will migrate in the direction from low S concentration to high S concentration,
as indicated by the arrows in Figure 2e,f. Along the direction perpendicular to the primary stalk,
side branches form and grow longer when the attraction of the substrate overcomes the inhibition
(Figure 2f–h). Next, more branches appear along the direction of the primary Y-stalk elongation
(Figure 2h–l). Each activator peak in 3D on the Y-stalk leads to a side branch, as that activator peak
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migrates perpendicularly into regions of high concentrations of S, far away from the main Y-stalk
where Y cells have depleted S (refer to the −εYS term in the S-equation).
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4. Tip Bifurcation

In the simulation, tip bifurcation is another typical branching type in addition to the
side-branching. Tip bifurcations occur at the tips of a stalk, not in middle positions as during
side-branching. Tip bifurcation begins with the lateral extending of the activator A concentration
profile. Since substrate S in the current position is exhausted, the activator no longer moves in the
former direction and has to look for new substrate S in new directions deviating from the former stalk
extension direction (Figure 3).

There are two lateral extending behaviors of activator A concentration profiles in the horizontal
and vertical planes, respectively (Figure 3). The white border represents the boundary of the simulation
domain; the red rectangle represents substrate S, which distributes throughout the simulation domain
space. Here, only about 1/4 is taken for description, and the deeper the color, the higher the substrate
S concentration. The green part represents the differentiated cells (Y = Ya, here Ya = 0.5). The orange
ellipsoid indicates the isosurface of activator A. It can be seen from Figure 3 that the concentration of
substrate S is lower around the differentiated cells (the term −εYS in the S-equation leads to the local
S decreases), whereas activator A extends to the high S direction (the term cA2S/H in the A-equation
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leads to a large value of A in the region of high S). A high concentration of substrate S exists in the
domain perpendicular to the original direction, which results in the transversal expanding of activator
A. The concentration of activator A therefore exhibits a flat, long profile.
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Figure 3. Schematic illustration of the profile of activator concentration along the direction transverse
to stalk elongation. The tip bifurcation direction deviates from the primary stalk extension direction.

In order to study the distribution and relative time-dependent changes of activator A and inhibitor
H in the transverse direction perpendicular to that of stalk extension, typical bifurcation (tip-splitting)
was simulated. Here, we selected the simulation results after 2800, 3150, and 3600 steps respectively,
and drew the corresponding 3D graphics of multicellular morphologies for analysis. The specific
numerical values and variation tendencies of activator A and inhibitor H along a certain spatial
coordinate axis k are shown in Figure 4.
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Figure 4. Simulation results for branching behaviors in typical tip bifurcation. (a–c) Spatial distributions
of the cellular differentiation marker Y after 2800, 3150, and 3600 steps, respectively. Variation tendencies
of the activator and inhibitor along the spatial axis k after 2800, 3150, and 3600 steps, respectively (d–f).
The tip bifurcation could be examined along the spatial axis k on the plane defined by the blue, closed
contours. The coordinates on the horizontal and vertical axes are dimensionless. Parameters: c = 0.04,
µ = 0.8, v = 0.08, ρA = 0.03, ρH = 0.0001, c0 = 0.02, γ = 0.02, ε = 0.042, d = 0.008, e = 0.1, f = 10, DA = 0.1, DH

= 0.26, DS = 0.06.
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Figure 4a–c shows 3D representations of the cell differentiation marker Y isosurface. Stalk I
extends longitudinally in the original direction (Figure 4a). The tip of stalk I then becomes large and
flat, indicating that the tip is expanding perpendicularly, transverse to the original direction (Figure 4b).
Finally, the tip of stalk I completely splits, and stalk I is divided into two daughter branches, branch II
and branch III (Figure 4c). The symmetrical center plane of stalk I serves as a tangent plane (planes
defined by blue and green contours, Figure 4a–c). A line crossing the largest width through the tip of
stalk I is made on the tangent plane (white dotted lines, Figure 4a–c) and it serves as the spatial axis k
in Figure 4d–f. Figure 4d–f show the concentration distributions and change laws of activator A and
inhibitor H along the spatial axis k. Since inhibitor H is generated by activator A, the concentration
of inhibitor H is relatively high in the large A region. A and H have roughly the same change laws
along the spatial axis k when stalk I extends in the longitudinal direction (Figure 4d). When the tip of
stalk I starts expanding transversely (Figure 4b), the concentration distribution profile of activator A
appears as two peaks (Figure 4e). Meanwhile, inhibitor H maintains a unimodal distribution pattern at
2800 and 3150 steps and only later appears as two peaks (Figure 4d–f). Consequently, the concentration
distribution change of inhibitor H lags behind that of activator A. The delayed inhibitor peak resembles
a knife, significantly reducing the concentration of the activator in the corresponding regions and
forcing the activator to divide into two peaks with lateral expansion. After the tip splits completely,
the inhibitor peak also divides into two peaks, and its distribution along the spatial axis k is almost the
same as that of activator A (Figure 4c,f). Further research for the 4D biofabrication may rely on the 3D
culture techniques [3,27,40] that are essentially constructing and regulating the dynamic structures
composed of numerous cells.

5. The Evolution of Tip Bifurcation

The whole evolution process of tip bifurcation was investigated by simulation based on the
following parameter values: c = 0.04, µ = 0.48, v = 0.06, ρA = 0.03, ρH = 0.0001, c0 = 0.02, γ = 0.02,
ε = 0.042, d = 0.008, e = 0.1, f = 10, DA = 0.1, DH = 0.26, DS = 0.06. With the depletion of substrate S,
only a small amount of substrate S remains in the leading segment of stalk growth, and the activation
peak would exhaust substrate S in this region. To look for new substrate S, the activator peak naturally
expands transversely after a period of time, resulting in tip bifurcation events (Figure 5a–c). After the
first-round tip bifurcation, the daughter branches generated could be called the 1st round branches
(Figure 5c). With the evolution of this RD process, the second round tip bifurcation occurs at the
outer tips of the first round branches (Figure 5d,e). As time progresses, another round of bifurcation
occurs at the tips of branches, which generates the thirrd round branches (Figure 5g–h). Following that,
more and more sub-branches are generated via the tip splitting process, and these sub-branches grow
longer and generate further sub-branches (Figure 5i–p). This creates a hierarchical 3D structure with
several-level geometric features. The number of branches and sub-branches increases very rapidly,
especially in the later period of the evolution, because tip splitting behaviors of all sub-branches happen
simultaneously. This could be a parallel fabrication manner for creating branched 3D structures.

For the tip bifurcation events illustrated in the simulation, the distance between a bifurcation
point and the next adjacent bifurcation point is defined as the spatial separation of bifurcation events
in this study. It is determined by the distance of the extension of the leading activator peak before the
next bifurcation event. In order to develop the Turing instability-driven 4D biofabrication method,
we needed to investigate the size control approach for these 3D structures. Controlling the distance
of spatial separation in 3D branching structure could be achieved by adjusting the consumption
(or depletion) rates ε of Substrate S. When the ε is large, only a small amount of S remains in the
leading segment of the stalk growth, and the activation peak will promptly exhaust S in this region
when continuously moving forward. To look for new substrate S, the activator peak will naturally
expand transversely after a very short period of time, resulting in bifurcation events with small spatial
separation (Figure 6a). In contrast, when ε is smaller, the activation peak propagates transversely and
produces branches at a lower rate. Considering the low consumption rate of substrate S, there is a large



Micromachines 2018, 9, 109 9 of 18

amount of substrate S residues in front of the growing stalk. Therefore, the activator peak will continue
to expand along the original direction rather than expanding transversely until the S at the current
position is depleted, resulting in large spatial separation of bifurcation events (Figure 6b). A comparison
of bifurcation events with short and long spatial separation based on different parameters is shown
in Figure 6. It can be seen that the spatial interval of the bifurcation events is relatively short when
ε = 0.084, and the bifurcation events have a relatively longer spatial interval when ε is reduced to 0.032.
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6. Distribution Law of Bifurcation Patterns in Parameter Domains

The activator and the inhibitor are usually biomolecules such as proteins. In this study, the
activator could be BMP4, the inhibitor could be MGP, and the substrate could be FGF10, according to
the literature [36,38]. In 3D simulations, branch patterns and spatial separation between branch
points can be altered by changing one or more parameter values. The degradation rates of
protein molecules (BMP4/MGP/FGF10) are relatively easy to control in the experiment by adding
a corresponding amount of chemical substances such as modulator, enzyme inhibitor, or antagonist
for these proteins [41–44]. The diffusion rates of the proteins (BMP4/MGP/FGF10) can be changed
by varying the density of the 3D hydrogel matrix in the experiments. The degradation rates are also
influenced by the extracellular matrix, i.e., the hydrogel, and one form of “degradation” expected for
both BMP-4 and MGP could probably be the sequestration into the extracellular matrix [45]. Therefore,
these parameters in this model can be connected to corresponding conditions in the experiments, and
the first-order degradation rates of A, H, S, and Y could be candidates for control parameters.

Here, µ and v were investigated within the ranges of µ ∈ [0, 0.8], v ∈ [0, 0.1], in which variant 3D
patterns emerged, as shown in Figure 7. The parameter µ represents the abscissa and the parameter v
represents the y-axis; µ-v are combined to form the 2D parameter domain. A series of points in the
simulation domains were calculated to explore the states of branch patterns by altering the parameters
µ and v individually or by simultaneously changing both together. This systematic study of branch
pattern conversions under a parameter domain provides a potentially reasonable adjustment method
for the reconstruction of branches with different organizational structures.

The µ-v parameter domain is composed of five different branch patterns, which are: Y = 1 branches
present everywhere (spatial spillover type, Figure 7, area A), no branching events (no branch type,
Figure 7, area B), only branches (only parent branch type, Y represents the Y variable in the equation,
Figure 7, area C), side branches (side branches type, Figure 7, area D), and tip bifurcation (tip splitting
type, Figure 7, area E). The multicellular morphology corresponding to each pattern is also shown
in Figure 7. Area A, located on the left of the parameter domain, represents the Y = 1 everywhere
pattern. In this region, the corresponding patterns are very thick and almost fill in the entire simulation
domain. Additionally, increasing µ can switch the Y = 1 “everywhere” pattern to any other pattern,
except for the “no branching” pattern. Area B is in the lower-right of the µ-v domain, indicating
that the “no branching events” pattern exists for a smaller range of parameter v (Figure 7, area B).
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When µ ∈ [0.2, 0.6], the boundary curve of area B gradually increases, and the v of the highest point is
about 0.04. When µ ∈ [0.6, 0.7], the boundary curve of area B decreases sharply and finally becomes
horizontal. The “no branching events” pattern resembles a sphere (Figure 7b) and is essentially an
isotropic or circular expansion of the stalk, rather than the normal filamentary elongation. This is
because the inhibitor H diffuses to the circumference of the stalk and results in circular inhibition
instead of lateral inhibition. Area C, representing only the “Y-stalk” pattern as shown in Figure 7c,
occupies the smallest area of the five patterns in the µ-v domain. The pattern easily switches to
other modes following slight changes in µ or v. Area D, the “side branches” pattern, is above area C.
The border of area D gradually widens to 0.45 in the case of µ > 0.6. The reasons for pattern formation
in area D are detailed in Section 3. The most significant feature of the “side branches” pattern is
that area D is adjacent to all four other regions, indicating that the “side branches” pattern can easily
change to any other mode by changing the parameters µ and v. This provides rich and flexible guiding
information for a future experimental study. Area E represents the “tip-splitting” pattern and is an
approximately rectangular area located in the upper part of the µ-v domain. It occupies roughly 1/3 of
the entire parameter domain. When µ ≥ 0.02 and v ≥ 0.05, the “tip bifurcation” pattern completely
encompasses the µ-v domain. Area E is adjacent to areas A and D, indicating that the “tip bifurcation”
mode can switch to the Y = 1 “everywhere” pattern via a reduction in µ, or it can transform into
the “side branches” pattern via a reduction in v. It could be an effective guidance for the practical
manipulation of the degradation rates (µ and v) of protein molecules.

Based on the simulation results of the µ-v domain, we found that the greatest effect of parameter µ

was on the thickness of the branches, and that parameter v was positively correlated with the number
of branches. A large µ indicates a high degradation rate of activator A, resulting in a smaller branch
width and a lower value of the initially formed activator singlet. The initially formed activator singlet
migrates toward new substrate S, and the Y cells form branches on the path passed by the activation
peak. Therefore, the formed branch is narrow in the case of a narrow activator singlet. The activation
peak must extend transversely to a sufficient width to accommodate two new simultaneous activation
peaks before activation peak splitting. Here, tip bifurcation can be produced by broadening the
activation peak region or narrowing the inhibitor domain of the activator peak. A large v leads to
rapid degradation of inhibitor H, which produces a smaller inhibitor domain of the activator peak.
Therefore, the activation peak is more likely to split, increasing the number of formed branches.
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found that the concentration gradient of activator generated 3D tip-splitting branch structures with 
no need of the initially placed differentiated cells in the center of the domain. This could be a useful 
discovery because it would greatly simplify future experiments, with no need to prepare and place 
the differentiated cells just in the small center region within the 3D matrix domain at the initial time. 
This generated branching pattern, under the external concentration gradient, remains robust even if 
the initial setting of A, H, S are slightly changed after many simulations. 

Figure 7. (a) The distribution laws of the types of branching behaviors within the µ-v parameter
domain according to the simulation results. The µ-v parameter domain is composed of five different
branch patterns, which are: Y = 1 everywhere pattern (spatial spillover type, area A), no branching
events (no branch type, area B) pattern, only branches (only parent branch type, Y represents the Y
variable in the equation, area C) pattern, side branches (side branches type, area D) pattern, and tip
bifurcation (tip splitting type, area E) pattern. The multicellular morphologies corresponding to areas
B–E are shown in graphs (b–e) respectively.

7. The 3D Morphological Change under an External Concentration Gradient of Activator

At the beginning of this simulation, all positions in the whole volume were set to Y = 0, meaning
that all the positions did not contain any differentiated cells, which is different from the above
simulation settings in this study. Here, we first ran the simulations without any concentration gradient
of morphogens by setting the initial average A to equal a typical low value of 0.001, and a typical high
value of 2.9. As a result, there were no branching patterns that emerged in the 3D domain as shown
in Figure 8a,b. In contrast, once an external concentration gradient of A was imposed at the initial
time, the simulation results were totally changed, and the stable tip-bifurcation type of 3D branching
patterns emerged. According to the simulation results, we found that the concentration gradient of
activator generated 3D tip-splitting branch structures with no need of the initially placed differentiated
cells in the center of the domain. This could be a useful discovery because it would greatly simplify
future experiments, with no need to prepare and place the differentiated cells just in the small center
region within the 3D matrix domain at the initial time. This generated branching pattern, under the
external concentration gradient, remains robust even if the initial setting of A, H, S are slightly changed
after many simulations.
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8. Selected Morphogens and Their Roles in Lung Development

This model postulates four variables: activator A, inhibitor H, substrate S, and commitment Y.
These variables should correspond to real biophysical conditions. The activator carries out autocatalysis
and induces commitment (Y = Ya). The inhibitor inhibits the production of activator and avoids
an explosion of the autocatalytic activator. Both activator and inhibitor require the substrate for
their production, and the substrate may come from other cell types nearby [46]. The potential
candidates for the morphogens can be proposed by using the functional definitions of each morphogen,
as stated above.

FGF10 is expressed in the mesenchyme of the lung, directing the directional growth or migration
of individual buds, and promotes lung endoderm proliferation and migration in vitro [11,47,48]. In our
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model, the substrate S is expressed in the mesenchyme that is geometrically complementary to the
Y-stalks. Y cells consume S (the −εYS term in S-equation), while the region without Y cells consumes
less S, which is consistent with a previous study [25]. Thus, the gradient of S forms and is the main
driver of the activator migration. The newly formed activator peak will move in the direction of the
gradient of S concentration. The moving peaks of activator A produce new Y cells, and the H diffusing
to the side of Y-stalk serves as lateral inhibition. Consequently, the Y-stalk is further elongated. This is
exactly the role attributed to FGF10 [47,48].

BMP4 has several features that qualify it as a potential activator morphogen in this model. It is
expressed in the terminal epithelial buds and rises at the tips of new branches [47,49,50]. BMP4 has an
auto-stimulatory positive feedback in lung development [51], and this feature is consistent with the
positive feedback on A production in the A-equation of this mathematical model. In in vitro organ
culture, exogenous BMP4 enhanced epithelial cell proliferation and significantly increased the number
of terminal branches [52]. This feature is consistent with the dynamics that the activator promotes the
commitment of cells in this mathematical model.

MGP is a well-known inhibitor of BMPs [38,53,54]. MGP is an antagonist of BMP4 that is highly
expressed in lungs and is regulated by activin receptor-like kinase 1 (ALK1) [55]. BMP4 also induces
the expression of MGP [38]. Therefore, the relation between BMP4 and MGP is consistent with the
interaction between activator and inhibitor described in our model. BMP4 expression was markedly
upregulated in the epithelium by FGF10 [47,56], which is in accordance with substance S inducing
the expression of activator (refer to the term +cA2S/H in the A-equation), as described in this model.
Therefore, BMP4 and MGP were able to act as an activator–inhibitor pair, with FGF10 as the substrate.

9. The Limitations of this Model

The model in this study has several limitations: The model describes a highly stylized situation
for how the morphogen pair processes, interacts with a substrate chemical and cell differentiation
marker, and can produce a 3D structure similar to that of lung branching. However, the simulation
model still presents differences with respect to the physiological development of the lung. For example,
this model has been simplified to have only one type of cell, i.e., the epithelium, while complex
reciprocal interactions between epithelial, endothelial, and interstitial cells are involved in physiological
lung formation in vivo [57]. A further limitation of this model is that it deals strictly with reacting
and diffusing (RD) chemical morphogens, ignoring the critical role of mechanical factors in lung
development [57–59]. The absence of mechanical forces probably makes this model incomplete
and unable to embrace all the effects present in the physiological environment. However, it has
been suggested that the mechanically induced morphogenesis and chemotactic effect-induced
morphogenesis can be regarded abstractly as the mechanisms of local activation and lateral inhibition
(LALI) [60], which would make these effects also amenable to this model.

Although this model can predict the outward appearance of 3D branching patterns, it does
not incorporate mechanisms that could lead to the formation of hollow tubes. The biological
literature suggests that the mechanisms behind tubulogenesis may depend on fluid pressure and
fluid–mechanical interactions. Lubarsky & Krasnow [61] claimed that liquid secretion is an essential
step in tube formation and expansion. So, our current biochemical model will ultimately have to be
extended to include mechanical factors, although the mechanical factors may partially act through
biochemical morphogens. The variable Y is a biomarker that could correspond to proteins on the cell
surface. In this model, we did not consider the diffusion and chemotactic effect of this biomarker which
may result in cellular migration, but the ratio of diffusion to chemotactic migrations of cells/biomarkers
could be an important factor leading to the formation of hollow cavities in the branches [27,38].

10. Summary

Based on the Turing RD mechanism, a 3D simulation of the mathematical model describing
bifurcation phenomena in biology, including concentrations of activator, inhibitor, substrate, and cell
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differentiation marker were studied. This 3D simulation model can predict the evolution of
side-branching and tip bifurcation of a 3D multicellular structure and also could facilitate the
biofabrication of 3D branching structures under a tailored concentration gradient of a single
morphogen. In this Turing instability-driven 4D biofabrication method, the control of the geometric
parameters of these 3D structures could be achieved by adjusting the consumption (or depletion) rates
ε of the substrate S. This study lays a potential foundation for guiding the biofabrication of branched
structures of lung airways via 3D cellular self-organization from the perspective RD framework,
which is expected to reduce the complexity of future experimental research and number of trials.
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