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INTRODUCTION

Mucopolysaccharidosis (MPS) IIIB is an autosomal recessive lysosomal storage disease 

(LSD) caused by defects of α-N-Acetylglucosaminidase (NaGlu), an enzyme, involved in 

degrading one of a group of biologically important glycosaminoglycans (GAG) in 

lysosomes.1 The primary pathology of MPS IIIB is lysosomal accumulation of heparan 

sulfate (HS), in somatic cells and the central nervous system (CNS), especially cells 

throughout the CNS, with complex secondary pathology manifestations in MPS IIIB mouse 

brain.2–8 MPS IIIB infants appear normal at birth but develop progressive severe 

neurological manifestations, causing high mortality and premature death. The somatic 

manifestation in MPS IIIB is mild relative to other MPS, such as MPS I, II and VII. No 

treatment is currently available for MPS IIIB. The disease is not amenable to either 

recombinant enzyme replacement therapy (ERT) or hematopoietic stem cell transplantation 

(HSCT), which have been used to treat mostly somatic disorders in patients with MPS I, II 

and IV.1,9,10 This is because the neurological pathology in MPS IIIB is global and the blood 

brain barrier (BBB) precludes effective central nervous system (CNS) access.

Effective treatments for the majority CNS diseases are rare, since the CNS is a unique 

system, located in a well protected environment, and isolated by a highly defined 

anatomical/functional barrier. The BBB is a cellular interface between the blood circulation 

and the CNS, formed mainly by capillary endothelial cells with tight junctions, and 

enhanced by surrounding cells.11,12 The BBB is completely formed at birth in humans. In 

general, the BBB protects the CNS by selectively regulating the transport of molecules/
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agents from the blood circulation into the CNS or vice versa. Likewise, it also prevents 

potential therapeutic materials from entering the CNS. The presence of the BBB is the most 

critical challenge to developing therapies for CNS diseases, especially global CNS disorders, 

since targeting the entire CNS can be most effectively achieved only by systemic delivery 

through vasculature.13

Over the years, many strategies have been developed to deliver therapeutic agents into the 

CNS, though detailed mechanisms of BBB function remain largely unknown.11,14 These 

strategies include osmotic disruption of the BBB, receptor-mediated delivery by drug 

manipulation, and direct delivery bypassing the BBB.13,15–17 Mannitol, a well-characterized 

osmotic agent, has long been administered by intravascular infusion in routine medical 

practice for various purposes, the most important of which has been the temporary opening 

of the BBB.13 Previous animal experiments have shown that disrupting the BBB with 

mannitol by an intra (carotid) arterial (IA) injection made the BBB permeable to a wide 

range of substances, including antibodies, enzymes and viral vectors.13,18–23 Clinical studies 

in patients with brain tumors showed improved survival through mannitol facilitated CNS 

delivery of chemotherapeutic drugs by IA injection via the carotid artery.15 Intravenous (IV) 

delivery offers potential benefits for treating global CNS diseases, since it would result in 

non-differential distribution throughout the CNS. Previous studies showed that the peak 

opening of BBB in rats was 5 minutes after an IA infusion of mannitol and the opening 

lasted 20–30 minutes.24 However, the optimal conditions for IV injection of mannitol to 

disrupt the BBB, in order to enhance CNS entry of IV-delivered substances, were unclear.

Gene therapy has great potential for treating LSDs, due to possible long-term transduction of 

affected cells, and the bystander effect of secreted lysosomal enzymes, including 

NaGlu.25–27 The adeno-associated viral (AAV) vector system has been widely studied as a 

gene delivery tool for treating various diseases, with demonstrated therapeutic effect. The 

recombinant AAV (rAAV) vectors have a broad spectrum of tissue tropism, which can be 

varied through the use of different serotypes. To date, no known pathogenesis has been 

linked to AAV in humans.28 Previous studies demonstrated that rAAV vectors target both 

neuronal and non-neuronal cells in the CNS of animals.21,29,30 A number of studies using 

rAAV vectors have shown therapeutic impacts for the CNS diseases of MPS IIIB, and other 

LSDs, in animal models.31–37 Recent AAV gene therapy clinical trials have shown benefits 

in patients with Parkinson’s disease and late infantile neuronal ceroid lipofuscinosis.38,39 

However, in the majority of rAAV CNS gene therapy studies, vectors were delivered by 

direct intracranial injection, which has limited therapeutic potential for treating global CNS 

diseases.31 Intravenous rAAV injection into neonatal MPS I and MPS VII mice led to long-

term correction of lysosomal accumulation in both somatic tissue and the CNS, which 

persisted into adulthood.40–43 However, the BBB may still be permeable in neonatal mice 

but closed at birth in humans. Previously, we demonstrated that pretreatment with an IV 

infusion of mannitol facilitated the CNS entry of IV-delivered rAAV serotype 2 (rAAV2) 

reporter vector, and resulted in a diffuse global distribution of transduced neuronal and non-

neuronal cells throughout the CNS in adult mice, though the conditions for CNS delivery of 

rAAV by IV infusion were not fully optimized.21 In addition, IV vector delivery may be 
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ideal for treating MPS IIIB, since the disease also affects virtually all somatic organs, 

though the neuropathology is the cause of fatality in patients.

In this study, we have optimized mannitol-facilitated CNS entry of IV-delivered rAAV 

vector to assess the therapeutic potential for treating the neurological disease in MPS IIIB 

mice. We performed IV injection of rAAV2 vector with a refined time course relative to the 

administration of mannitol, thus delineating the maximum potential for rAAV-CNS entry. 

Using these conditions, an IV infusion of a therapeutic rAAV2 vector significantly slowed 

disease progression and extended the survival of MPS IIIB mice.

RESULTS

Mannitol-facilitated rAAV2-CNS entry: optimized vector CNS entry and diffuse global 
distribution of transgene expression

Based on the hypothesis that, mannitol facilitated rAAV vector entry into the CNS via the 

BBB would depend on a combination of dynamic factors including the time of maximum 

opening of the BBB, the concentration of vector in the bloodstream, and the movement of 

fluid between the CNS and bloodstream, we directly assessed the optimum timing between 

mannitol infusion and vector injection. A self-complementary rAAV vector, scAAV2-CMV-

GFP, was used in these biodistribution experiments, for its much higher transduction 

efficiency than conventional single-stranded vetor.44 An IV infusion of mannitol was 

administered into 6–8-week-old wildtype (wt) mice to temporarily disrupt the BBB and the 

vector (4×1011 VGP) was injected IV at various time points after mannitol pretreatment 

(n≥4/group). At 4 weeks post-injection (pi), the animals were sacrificed and tissues 

harvested for assessment of GFP expression by immunofluorescence (IF) staining.

In general, an IV administration of mannitol allowed the CNS entry of peripherally-

delivered rAAV2 vector, with a diffuse global distribution of transgene expression 

throughout the CNS, including the brain and spinal cord (Fig.1A). The rAAV2 vector 

appeared to target both neuronal and non-neuronal cells, though transduced neurons 

predominated. Of the GFP-expressing brain cells counted, approximately 90% were neurons 

and the rest were glial cells. The transduction of neurons was non-preferential, and included 

both large and small neurons distributed ubiquitously throughout the CNS, without a 

discernable pattern.

The GFP expressing glial cells were GFAP-negative (data not shown) and morphologically 

homogenous with a highly branched radial process network, the characteristic features of 

mature oligodendrocytes (Fig. 1A), though immuno-detection for oligodendrocyte-specific 

markers was not conducted. The GFP expression was also seen in other non-neuronal cells, 

such as meninges cells and cells of choroid plexus (data not shown). No detectable GFP 

expression was observed in the CNS of the control mice receiving an IV injection of AAV 

vector without mannitol pretreatment (Fig. 1A), or an IV infusion of PBS following 

mannitol injection.

Importantly, our time-course results also showed that the efficiency of rAAV2-CNS entry 

was exquisitely sensitive to the timing of the IV vector injection after mannitol pretreatment 
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(Table 1). We observed that the maximal transduction in the CNS occurred when the IV 

vector injection was performed at 8 minutes after mannitol pretreatment, with detectable 

GFP expression in approximately 1.2×106 cells per mouse brain, which was approximately 

10-fold more efficient than IV delivery of the vector at 5 or 10 minutes after the 

administration of mannitol. These data support the prediction that the timing of IV rAAV 

vector after mannitol pretreatment is indeed critical for the efficiency of mannitol-facilitated 

rAAV-CNS entry, and IV vector delivery at the optimal timing allows the maximal number 

of rAAV vector entering the CNS, indicating greater therapeutic potential for CNS gene 

therapy.

Somatic transduction unaffected by mannitol

Immunofluorescence staining on multiple somatic tissue sections was conducted to assess 

the transduction efficiency and the tropism of rAAV2 in the peripheral system in the 

presence or absence of mannitol pre-treatment. We observed that an IV rAAV2 vector 

injection resulted in GFP expression in multiple peripheral tissues/organs, with or without 

mannitol pretreatment, and the timing of the vector injection did not yield significant 

observable differences in peripheral tissues in terms of the number of the cells transduced or 

the intensity of transgene expression (Fig. 1B). The GFP expression was detected in 40–50% 

of hepatocytes in liver, and the transduction appeared stronger in cells surrounding the portal 

vein than the central vein. Approximately 10–20% of cardiac myocytes were GFP-positive 

in heart (Fig. 1B). In kidney, GFP appeared to be expressed in cuboidal epithelial cells in the 

medulla, but not in cells of the cortex. In intestine, rAAV2 vector seemed to transduce 

mainly the neurons of the myenteric plexus and submucosal plexus (Fig. 1B), while no 

detectable GFP expression was observed in smooth muscle. It was difficult to determine 

whether cells of the mucosa of intestine were transduced, due to a strong autofluorescence 

background. The expression of GFP was also observed in lungs in both alveolar type I and II 

cells (<1%)(data not shown). Also, GFP expression in skeletal muscles was not clear due to 

the strong background of autofluorescence (data not shown). These data suggest that the 

mannitol pre-treatment does not alter vector distribution or tropism in somatic tissues.

An IV rAAV2 vector injection following mannitol pretreatment is therapeutically beneficial 
for treating the CNS disease in MPS IIIB mice

An infusion of rAAV2-CMV-hNaGlu vector (4×1011 VGP) was given to 4–6-week-old 

MPS IIIB mice via tail vein at either 8 (n=24) or 10 (n=20) minutes after mannitol 

pretreatment, to assess the therapeutic benefits of mannitol-facilitated CNS entry of IV-

delivered rAAV vector, and the impact of the timing of IV vector injection on the 

therapeutic efficacy of the procedure. We had noted a 10-fold difference in vector delivery 

to the CNS at the 8 and 10 minute time points post-mannitol infusion in our time course 

experiment. We did not include vector-treated animals without mannitol pretreatment 

because we had observed that no vector entered the CNS under these conditions.

Behavioral correction—To evaluate the functional impact of the treatment, we 

performed behavioral testing on rAAV2-CMV-hNaGlu-treated (n=12–14/group) and control 

mice, which received vehicle only after mannitol pre-treatment (n=20/group), when they 

were 5.0–5.5 months old. We observed that an IV injection of rAAV vector at 8 minutes 
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after mannitol pretreatment led to significantly improved behavioral performance of MPS 

IIIB mice in a Morris water maze and on an accelerating rotarod (Fig. 2a–c). These rAAV-

treated MPS IIIB mice displayed a significant decrease in latency to find a hidden platform 

and an increase in swimming ability in the water maze, compared to non-treated MPS IIIB 

mice (Fig. 2a, b). These treated mice also showed significantly longer latency to fall from an 

accelerating rotarod than non-treated MPS IIIB mice. However, we did not see changes in 

behavioral performance in MPS IIIB mice receiving an IV infusion of rAAV vector at 10 

minutes after mannitol pretreatment. These data indicate that the increase in rAAV-CNS 

entry using optimal delivery conditions offers greater therapeutic benefit for treating the 

neurological disease of MPS IIIB mice.

Significantly extended survival—Longevity observations were carried out to assess 

whether an IV rAAV delivery following mannitol pretreatment had an impact on the 

survival of MPS IIIB mice. As shown in Fig. 2d, an IV infusion of rAAV vector at either 8 

or 10 minutes after mannitol administration significantly increased the lifespan of MPS IIIB 

mice. The rAAV-treated MPS IIIB mice lived 12.6–20.9 months (16.5±2.2 months, P<0.01, 

n=20) and 9.5–15.9 months (11.5±2.1, P<0.05, n=14) for the 8 and 10 minute treated 

groups, respectively, compared to the vehicle-treated MPS IIIB mice, which lived 7.9–11.9 

months (10.1±1.2 months, n=20). The difference in lifespan between the 8-minute-treated 

group and the 10-minute-treated group was also statistically significant (P<0.05). These 

results suggest that, while both vector delivery conditions were therapeutically beneficial, 

the optimization of the time interval between IV infusion of mannitol and IV injection of 

rAAV vector significantly improved the survival of MPS IIIB mice. It is worth noting that 

late stage symptoms, such as urine retention, rectal prolase and protruding penis, emerged 

1–2 months before the endpoint in all MPS IIIB mice, treated and non-treated, indicating 

that the treatment significantly slowed, but did not stop the disease progression.

Global distribution of rNaGlu and decrease in lysosomal storage in the brain
—At 3 months pi, and at the end of the longevity observation when animals had developed 

irreversible symptoms of neurological dysfunction, tissue samples were assayed to assess 

the expression and distribution of recombinant hNaGlu and the correction of lysosomal 

storage in the rAAV treated MPS IIIB mouse brains.

By IF staining using a polyclonal antibody against hNaGlu, the transgene expression was 

detected in cells throughout the brain of MPS IIIB mice given an IV vector injection at 8 

minutes after mannitol pretreatment (Fig. 3A), although the number of cells with detectable 

rNaGlu in the brain parenchyma is low (approximately 1%). The distribution of rNaGlu-

positive brain cells appeared mostly to be non-preferential, except for cells of the choroid 

plexus, meninges, and brain parenchyma adjacent to the ventricles, where a group of 

rNaGlu-positive cells could be seen (Fig. 3A). Previously, we observed the presence of 

autofluorescent materials in cells of the MPS IIIB mouse brain (unpublished data), which 

may be due to the secondary storage pathology of the disease.3,45 In this study, the rNaGlu 

was observed in cells both with and without autofluorescent materials, and appeared not to 

be co-localized with the autofluorescent materials. In addition, the intracellular distribution 

of rNaGlu appeared to be to follow two different patterns, either diffuse in the cytoplasm or 
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as granules. The rNaGlu was also found in the processes of brain cells. We also observed 

that the intensity of rNaGlu signals varied in rNaGlu-positive cells. We did not see 

detectable rNaGlu by IF staining in the brains of MPS IIIB mice treated with an IV rAAV 

injection at 10 minutes after mannitol administration, or in non-treated mice.

The NaGlu enzymatic activity in MPS IIIB brain tissues was measured to assess the 

efficiency and persistence of rNaGlu expression in the CNS after rAAV gene delivery. As 

expected, relatively low levels of enzyme activity were detected in the brains of MPS IIIB 

mice given an IV vector injection at 8 minutes after mannitol pretreatment (Fig. 3B). We did 

not observe detectable NaGlu activity in the brains of MPS IIIB mice receiving an IV 

infusion of rAAV at 10 minutes after the administration of mannitol. In addition, we did not 

observe detectable difference in expression and distribution of rNaGlu in the brain at 3 

months pi and the endpoint, suggesting the long-term and stable CNS transduction.

Examining for histopathology in CNS sections, we observed decreases in the size and 

number of vacuolated lysosomes throughout the brains of both groups of MPS IIIB mice IV-

treated with rAAV2 following mannitol pretreatment, compared to the non-treated MPS IIIB 

mice, although a complete clearance of vacuoles was not seen (Fig. 3C). Also, we detected 

significantly less GAG content in the brains of MPS IIIB mice given an IV vector infusion 

at 8 minutes after mannitol pretreatment, at 3 months pi (Fig. 3D) but not at the endpoint of 

the longevity observations, when irreversible symptoms of neurological dysfunction had 

developed. There was no significant reduction in GAG contents in the brain of 10-minute-

treated group.

These data suggest that mannitol-facilitated CNS entry of IV-delivered rAAV vector, led to 

the long-term restoration of functional NaGlu in the CNS, and subsequent correction of 

lysosomal storage, improvements in behavioral performance and survival of MPS IIIB mice. 

Further, the low levels of detectable NaGlu activity were sufficient to provide a significant, 

dose-dependent therapeutic effect.

The expression of rNaGlu and correction of lysosomal storage in the somatic 
system—Multiple somatic tissues were tested for rNaGlu expression by NaGlu activity 

assay and immunofluorescence staining, to evaluate the effects of IV rAAV delivery on 

somatic tissues/organs in MPS IIIB mice treated with rAAV-CMV-NaGlu infusion. At the 

endpoint of longevity observation, NaGlu enzyme activity was detected in all tissues 

assayed, including liver (10–100% of wt level), kidney (1–3%), spleen (1–13%), heart (2–

30%), lung (2–15%), intestine (1–5%) and skeletal muscle (10–30%) (Fig. 4a). Consistent 

with our GFP studies, neither the presence or absence of mannitol pretreatment, nor the 

timing of the IV rAAV injection after mannitol infusion appeared to have a significant 

impact on rNaGlu expression in these somatic tissues. We did not observe a significant 

difference in NaGlu activity in somatic tissues at 3 months pi and the endpoint. No 

detectable NaGlu activity was seen in the somatic tissues of non-treated MPS IIIB control 

mice.

Immunoflurescence was performed to determine the distribution of rNaGlu expression using 

a polyclonal antibody for hNaGlu. The rNaGlu was detected in 15–20% of cells in the livers 
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of rAAV-treated MPS IIIB mice, and the rNaglu-positive cells appeared to be predominantly 

hepatocytes (Fig. 4b). The intensity of fluorescent staining varied among different cells and 

in interstitial spaces, possibly as the result of variable levels of rNaGlu expression and 

secretion from transduced cells, and uptake of rNaGlu by non-transduced cells, though we 

could not distinguish the transduced cells from the cells that may have taken up the secreted 

enzyme. Again, mannitol pretreatment and the timing of the IV rAAV injection after 

mannitol infusion did not lead to visible effects on the distribution and the intensity of 

rNaGlu staining in liver. The rNaGlu was not detected in the livers of wt or non-treated MPS 

IIIB control mice (Fig. 4b). In somatic tissues other than liver, we did not observe 

convincing rNaGlu expression by IF staining in rAAV-treated mice, even though NaGlu 

enzyme activity was detected. This may be due to a relatively low sensitivity with this 

antibody compared to the enzyme activity assays. These data are consistent with the 

property of the liver to take up the vast majority of IV injected rAAV2 vector, with or 

without mannitol pre-treatment.21

Multiple somatic tissues were analyzed using the GAG content assay, histopathology, and/or 

transmission electron microscopy (TEM), to assess the rAAV2-mediated correction of 

lysosomal storage in MPS IIIB mice by an IV vector injection. We observed a complete 

(100%) correction of GAG storage in liver (P<0.01), and reduction of GAG accumulation in 

spleen, heart, lung, and skeletal muscle (P<0.05) in rAAV-treated MPS IIIB mice (Fig. 4c). 

We did not see significant reductions in GAG content in intestine or kidney (P>0.05). 

Further, we observed the clearance of abnormal lysosomal storage in the livers of treated 

MPS IIIB mice by TEM (Fig. 4d) and histopathology (data not shown), confirming the 

complete correction of lysosomal accumulation in this organ. No obvious histopathological 

correction of lysosomal storage was observed in other somatic tissues. Again, mannitol 

pretreatment and the timing of the IV rAAV injection after mannitol administration had no 

discernable impact on the correction of lysosomal storage in somatic tissues (Fig. 4c). The 

sham-treatment with mannitol and PBS did not lead to a decrease in GAG content in any 

somatic tissue of MPS IIIB mice. In addition, the urine GAG content of IV-treated MPS IIIB 

mice was significantly decreased (Fig. 4e). These results were consistent with the efficiency 

of rNaGlu expression in somatic system.

Differential distribution of vector genome in tissues/organs—Quantitative real-

time PCR was performed to assess the tissue targeting efficiency of rAAV2-CMV-hNaglu 

vector. Table 2 shows a differential distribution of the vector genome in different tissues/

organs of MPS IIIB mice treated with an IV vector injection at 8 minutes after mannitol 

pretreatment. The vector genome was mostly seen in liver (2.76±1.42 copies/cell), followed 

by brain (0.013±0.004 copies/cell), and very low copies of vector genome were detected in 

other tissues/organs (Table 2). This differential vector distribution in rAAV2-treated MPS 

IIIB mice correlated with the distribution of rNaGlu, and with our time course experiment 

using GFP-expressing vector. Further, our data also showed consistent vector genome 

distribution in treated mice at 3 months pi and the endpoint, supporting a stable long-term 

transduction. Vector genome analysis was not performed with tissues from mice in 

biodistribution studies using rAAV-GFP vector and MPS IIIB mice IV injected with 

rAAV2-hNaglu at 10 minutes after mannitol infusion.
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DISCUSSION

In this study, we were able to show association between the optimal timing of an IV rAAV 

vector injection for maximal mannitol-facilitated rAAV-CNS entry, and increased 

therapeutic efficacy in mice. The optimal timing for IV injection of AAV vector was 8 

minutes after an IV infusion of mannitol, which was 10-fold more efficient in CNS 

transduction than IV vector injection at 5 or 10 minutes after mannitol pretreatment. 

Mannitol is a known osmotic BBB disruption agent,13 and IV infusion of mannitol has been 

used safely for decades in routine medical practice.46 Many previous studies have shown the 

increase in access of peripherally delivered substances to the CNS in experimental animals 

and human patients, following an IA infusion of mannitol.13,15,47 However, using mannitol 

pretreatment does not necessarily enable efficient CNS entry of peripherally delivered 

materials, since the mannitol-facilitated BBB disruption is transient with a very narrow open 

window.13,24,48 The timing of therapeutic delivery after mannitol administration is 

considered critical for an efficient CNS entry of peripherally delivered therapeutic 

substances, by allowing a high concentration of therapeutic materials in the blood circulation 

at the time of peak BBB opening. Previous studies using IA infusion of mannitol through the 

carotid artery in rat showed that the peak opening of BBB was approximately 5 minutes 

after mannitol administration, and the opening lasted for 20–30 min.24,48 However, no 

detailed study had been reported on the timing for optimal BBB opening after a systemic IV 

infusion of mannitol, though IV therapeutic administration is considered the only route to 

reach the entire CNS. We therefore believe that our data is an important addition to CNS 

therapeutic delivery, which may also be applied to not only the delivery of rAAV viral 

vectors, but also other therapeutic reagents for a broad range of neurological diseases.

We also demonstrated here a ubiquitously diffuse global AAV transduction throughout the 

CNS, including the brain and spinal cord. The resulting non-preferential distribution of 

AAV transgene expression throughout the CNS reflected the typical distribution pattern of 

vascular delivery, which has been considered the only route to achieve a global CNS 

therapeutic delivery. With approximately 106 CNS cells transduced, it may be sufficient for 

treating many global neurological disorders, such as lysosomal storage diseases, in which 

the deficient lysosomal enzymes are secreted and can be taken up by neighboring cells (by-

stander effect). In addition, our data demonstrated that AAV2 vector targeted predominantly 

neurons, as well as some non-neuronal cells. The transduction of neurons appears to be non-

preferential. In contrast, the transduction of glial cells seems to be cell-specific, targeting 

only oligodendrocyte-like cells, though it is unclear whether this is a receptor- or promoter-

specific phenomenon. We anticipate that using the optimal condition for peripheral rAAV2 

delivery to the CNS may offer great potential in developing therapies for global/broad CNS 

diseases involving brain and spinal cord with manifestation in neurons and/or glial cells, 

such as lysosomal storage diseases and amyotrophic lateral sclerosis (ALS).

The peripherally delivered AAV2 vector also exhibited broad tropism in peripheral tissues. 

As expected, the transduction in liver was much more efficient than in other tissues, 

presumably due to the nature of the abundant blood supply, and high accessibility and 

susceptibility of this organ to AAV. This may negatively affect the CNS transduction 

efficiency of peripherally delivered AAV by depleting the vector from the blood. However, 
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we believe that this peripheral targeting may play an important role in gene therapy for 

many diseases, such as the majority of lysosomal storage diseases, which manifest in both 

the CNS and somatic tissues. Moreover, these data also suggest the importance of mastering 

the timing of conducting IV vector injection after mannitol pretreatment, to ensure a peak 

vector concentration in the blood flow by the time when the BBB opening reaches its peak.

We also demonstrated that the optimal IV-mannitol rAAV2 delivery (8-min) regimen is 

therapeutically beneficial with clinical significance for treating the CNS disease of MPS 

IIIB in mice. This is the first study achieving a successful long-term therapeutic neurologic 

correction of MPS IIIB by a single IV vector delivery in adult mice. Using the optimized 

procedure, we were able to significantly extend the survival and improve the behavioral 

performance of MPS IIIB mice. We also demonstrated a global distribution of rNaGlu 

throughout the brain, though at very low level. It is apparent that this low-level of rNaGlu, 

attributed to the transduction of a relatively small number of CNS cells with low copy 

numbers of the vector, was sufficient to correct the neuropathology to a significant extent 

and delay the CNS disease progression, although the treatment did not yield a cure for the 

disease. While lysosomal storage lesions and GAG content were significantly reduced in the 

CNS, especially at early time points, all of the affected mice had high levels of GAG in the 

brain at the endpoint, though this was significantly delayed. We have not been able to 

determine the factors involved in this. It is likely that these CNS therapeutic impacts were 

achieved largely through the by-stander effect of the enzyme, since the diffuse global 

distribution of rNaGlu-expressing cells is likely to offer the secreted enzyme broad access to 

non-transduced cells. Previous successful IV gene delivery studies for CNS correction in 

LSDs have mostly been performed in neonatal animal models, before the closure of their 

BBB,40,42,49,50 which is not applicable in humans, in whom the BBB is physically closed at 

birth. We believe that our newly optimized IV rAAV vector delivery regimen may 

contribute greatly to therapeutic options for MPS IIIB and many other CNS diseases by 

offering a safe procedure with significant therapeutic potential.

An IV rAAV2 vector injection at 10 minutes after mannitol pretreatment also lead to an 

increase in survival (though smaller), but failed to show an impact on the behavior of MPS 

IIIB mice at the age of testing. The neurological manifestation is considered the primary 

cause of high mortality and premature death in MPS patients and animals. We believe that 

the significantly extended survival here was the result of limited neurological correction by 

an undetectably low level of rNaGlu, since the CNS transduction efficiency of the 10-min 

regimen is 10-fold lower than the optimized procedure.

As expected, we also demonstrated here a long-term complete correction of lysosomal 

storage in liver, and partial correction in multiple other somatic tissues, after IV infusion of 

the rAAV2-NaGlu vector, as observed in our previous studies combining an IV (10-min 

regimen) and an intracisternal injection of rAAV2 vector. The timing of IV vector injection 

after mannitol infusion had no significant impact on the therapeutic efficiency in peripheral 

tissues. The rNaGlu expression in only 15–20% of liver cells was sufficient to clear the 

lysosomal storage of GAGs in the organ, indicating the significant contribution of the by-

stander effect of the secreted rNaGlu. Although the neuropathology is the cause of high 

mortality of the disease, the somatic correction may also be beneficial for treating MPS IIIB, 
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since broad somatic manifestations inevitably occur in all patients and animals with MPS 

IIIB. Many factors may contribute to the differential lysosomal storage correction pattern in 

somatic tissues, with liver being the only organ showing efficient correction in ERT clinical 

studies on different MPS patients and LSD animal models given IV infusion of recombinant 

enzymes.51–55 However, the strong tissue tropism of rAAV2 may be a more important factor 

in the differential therapeutic efficacy of our IV-rAAV2 gene delivery.

Importantly, even though the timing of vector delivery and mannitol injection did not affect 

the distribution of vector or lysosomal storage correction in peripheral tissues, it did have a 

significant impact on longevity in MPS IIIB mice. This supports our conclusion that the 

greatest contributor to therapeutic efficacy is vector transduction in the CNS, which is the 

only outcome affected by mannitol. The time point for maximal therapeutic benefit also 

coincided with the maximal CNS delivery in our GFP vector time course experiment.

The neurologic benefit of the optimized IV rAAV delivery strategy in treating MPS IIIB 

was surprisingly similar to what we achieved in our previous studies with high levels of 

rNaGlu expression in broad brain areas, after a combination of an IV (10 min post mannitol) 

and an intracisternal vector delivery (same rAAV2 vector), though neither treatment yielded 

a complete cure. It is therefore important to consider additional factors that may be critical 

for therapeutic efficacy. First, it has been observed that rNaGlu expressed from the hNaGlu 

cDNA construct is poorly manose-6-phosphorylated,56,57 possibly due to lack of regulatory 

signals required for post-transcriptional modification. Although the rNaGlu can correct the 

enzymatic and lysosomal storage phenotype in human MPS IIIB skin fibroblasts,32,56,57 

improper processing of the protein may impede its efficiency through other aspects of its 

enzymatic function, such as secretion, uptake, intracellular transport, and catalytic capacity. 

The detailed mechanisms involved in NaGlu catalytic processing in brain may be different 

from that in liver, a metabolic organ, which may explain the more efficient hepatic 

correction of lysosomal storage.

Additionally, the neuropathology of MPS IIIB involves complex components secondary to 

the initial pathology of lysosomal accumulation of HS, most of which are still being 

characterized. Many secondary neuropathological sequelae emerge at an early stage of the 

disease and may contribute significantly to the CNS disease progression.1,3–8,45 This 

includes a strong inflammatory and autoimmune component, which will probably need to be 

treated in conjunction with gene therapy. Although our gene delivery demonstrated a 

significant neurological effect, further improvements to the therapeutic efficacy will require 

a better understanding of NaGlu enzymatic function and MPS IIIB neuropathology.

We are confident that we have developed a safe and clinically significant rAAV CNS gene 

therapy procedure for MPS IIIB. It is worth noting that IV infusion of mannitol has been 

routine medical practice for decades with a long history of safe use in treating various 

neurological and non-neurological conditions,46 and the dose of mannitol used in this study 

was scaled directly from that for human application. Side effects occur in humans only when 

multiple doses of mannitol are repeatedly administered within a relatively short time.46 

Potentially more significant challenge facing this procedure is the high rate of pre-existing 
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immunity to AAV2 in the human population. We are currently testing alternative non-

human AAV serotypes for delivery across the BBB to deal with this issue.

In summary, we have optimized our IV/mannitol facilitated rAAV delivery procedure to 

achieve 10-fold higher vector transduction in the CNS than our previous studies. Using this 

optimized procedure, a single IV rAAV2 injection following an IV infusion of mannitol was 

therapeutically beneficial, with significant long-term impacts in treating the neurological 

disorders of MPS IIIB. This approach is safe and readily adaptable to any clinical setting, 

and may benefit the development of CNS therapeutic delivery not only for MPS IIIB but 

also other global CNS diseases in general.

MATERIALS AND METHODS

Recombinant AAV (rAAV) viral vector

A self-complementary AAV (scAAV) serotype 2 viral vector, scAAV2-CMV-GFP,21 was 

used in biodistribution experiments. A conventional single-stranded rAAV2 vector,32,34 

rAAV2-CMV-hNaGlu, was used in therapeutic experiments. The AAV vectors contained 

minimal elements for transgene expression, including AAV2 terminal repeats, a human 

cytomegalovirus (CMV) immediate early promoter, SV40 splice donor/acceptor signal, a 

green fluorescent protein (GFP) gene or a human NaGlu coding sequence cDNA, and SV40 

polyadenylation (Poly A) signal. The rAAV viral vectors were produced in 293 cells using 

three-plasmid co-transfection, and purified following previously published procedures.58

Animals

A MPS IIIB knock-out mouse model2 was maintained on an inbred background (C57BL/6) 

of backcrosses of heterozygotes and housed in the Laboratory Animal Facility of 

Department of Laboratory Animal Medicine (DLAM) at the University of North Carolina at 

Chapel Hill and at Nationwide Children’s Hospital. All care and procedures were in 

accordance with the Guide for the Care and Use of Laboratory Animals [DHHS Publication 

No. (NIH) 85–23]. The genotypes of progeny mice were identified by PCR. MPS IIIB mice 

and their wt littermates were used for the experiments in this study.

Biodistribution assessment

In biodistribution experiments, 6–8-week-old wt mice were given an IV infusion of 

scAAV2-CMV-GFP vector. Intravenous (IV) rAAV vector injections in mice were 

performed, based on the procedure previously developed in our laboratory.21 The mice were 

anesthetized by an intraperitoneal (IP) injection of Avertin (0.3–0.4μg/g body weight), 

followed by an IV infusion of mannitol (1–2mg/g bw) (25%, for IV use only, Abbott 

Laboratories, NDC0074-4031-01), to disrupt the BBB. A dose of scAAV2-CMV-GFP viral 

vector [4×1011 viral genome-containing particles (VGP) in 150–200 μl PBS] was then 

delivered into each mouse by tail vein injection over a period of 1 min, at 5, 6, 7, 8, 9, 10, 15 

or 20 min after the administration of mannitol. Control mice were treated with an IV 

injection of the vector only without mannitol pretreatment, or with an IV infusion of PBS 

after mannitol pretreatment.
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Tissue samples were collected for analysis 4–5 weeks after the IV vector injection. The mice 

were anesthetized with 2.5% Avertin and then perfused transcardially with cold PBS (0.1M, 

pH7.4), followed by 4% paraformaldehyde in phosphate buffer (0.1M, pH7.4). The entire 

brain and spinal cord, as well as multiple somatic tissues (including liver, kidney, spleen, 

heart, lung, intestine and skeletal muscles), were collected and fixed in 4% 

paraformaldehyde overnight at 4°C before being further processed.

Immunofluorescence for GFP

Tissue sections (50μm) of mouse brains (180–200 transverse sections/brain), spinal cord 

(longitudinal sections), and somatic tissues were obtained using a vibratome. The IF staining 

was performed to detect the AAV mediated GFP expression, using a polyclonal antibody 

against GFP (Invitrogen, A-6455) and a secondary antibody conjugated with Alaxa Fluo 568 

(Molecular Probes, A11011), based on manufacture’s instruction. Double 

immunofluorescence staining was conducted following the same procedures using the 

polyclonal antibody against GFP and a monoclonal antibody against glial fibrillary acidic 

protein (GFAP, Chemicon, MAB360), to identify the transduced glial cells. The sections 

were then visualized under a fluorescence microscope. The number of GFP-positive cells in 

mouse brain was determined by counting all GFP-positive neurons and glial cells on 1 of 

every 5 sections. Cell counting did not include cells of meninges, choroids plexus and 

ependymal cells, since these structures were poorly preserved during tissue processing. The 

total number of GFP-expressing cells per brain was calculated based on the cell counting 

results and the size of the brain.

Therapeutic rAAV vector delivery

In therapeutic experiments, 4–6-week-old MPS IIIB mice were anesthetized, as described 

above, and IV injected with rAAV2-CMV-hNaGlu vector (4×1011 VGP in 100–150 μl PBS) 

at 8 or 10 min after mannitol pretreatment. Controls were wt and MPS IIIB sham-treated 

with an IV infusion of PBS after mannitol pretreatment.

Longevity assessment

Following the rAAV vector injection(s), mice were continuously observed for the 

development of endpoint symptoms, or occasionally until death from natural causes 

occurred. All MPS IIIB mice, rAAV-treated or non-treated (sham-treated), were euthanized 

when the symptoms of late stage clinical manifestation, such as urine retention, rectal 

prolapse, protruding penis became irreversible. The wt control mice were observed until 

they were 24 months or older. Behavioral tests (see below) were conducted to study the 

therapeutic benefits of the treatments on the neurological disorder in MPS IIIB mice when 

they were approximately 5.0–5.5 months old. At the end of the experiments, multiple 

somatic tissues and the entire brains of the mice were collected on dry ice or embedded in 

OCT compound and stored at −70°C, before being processed for analyses.

Behavioral studies

Behavioral tests were conducted in the animal behavioral testing laboratory of the Vivarium 

at TRINCH. Testing groups included rAAV treated MPS IIIB mice (n=12–14/group), wt 
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(n=20) and sham-treated MPS IIIB mice (n=20). Testing began when mice were 

approximately 5.0–5.5 months in age.

Hidden task in the Morris water maze—The water maze consisted of a large circular 

pool (diameter = 122 cm) filled with water (45 cm deep, 24–26° C) containing 1% white 

TEMPERA paint, located in a room with numerous visual cues.59 Mice were tested for their 

ability to find a hidden escape platform (20×20cm) 0.5cm under the water surface. Each 

animal was given four trials per day, across three days. For each trial, the mouse was placed 

in the pool at one of four randomly ordered locations, and then given 60 seconds to swim to 

the hidden escape platform. If the mouse found the platform, the trial ended, and the animal 

was allowed to remain 10 seconds on the platform before the next trial began. If the platform 

was not found, the mouse was placed on the platform for 10 seconds, and then given the 

next trial. Measures were taken of latency to find the platform (sec), swimming distance 

(cm) and swimming velocity (cm/min) via an automated tracking system (San Diego 

Instruments).

Rotarod—Mice were tested on an accelerating rotarod (Med Associate, Inc.) to assess 

motor coordination.60 Revolutions per minute (rpm) was set at an initial value of 3, with a 

progressive increase to a maximum of 30 rpm across five minutes (the maximum trial 

length). For the first test session, animals were given three trials, with 45 seconds between 

each trial. Two additional trials were given 48 hours later. Measures were taken for latency 

to fall from the top of the rotating barrel.

Tissue analysis

NaGlu activity assay—The NaGlu enzyme activity assay was carried out following a 

previously published procedure with modification.2,61 The assay measures 4-

methylumbelliferone (4MU), a fluorescent product formed by hydrolysis of the substrate 4-

methylumbellireyl-N-acetyl-α-D-glucosaminide. The NaGlu activity is expressed as unit/mg 

protein. 1 unit is equal to 1nmol 4MU released/h at 37°C.

GAG content measurement—Extraction of GAG from tissues was conducted following 

previously published procedures62 with modification.34,62 Dimethylmethylene blue (DMB) 

assay was used to measure GAG content.63 The GAG samples (from 0.5–1.0 mg tissue) 

were mixed with H2O to 40μl before adding 35nM DMB (Polysciences Cat# 03610-1) in 

0.2mM sodium formate buffer (SFB, pH 3.5). The product was measured using a 

spectrophotometer (OD535). The GAG content was expressed as μg/mg tissue. Urine GAG 

content was also measured. Heparan sulfate (Sigma, H9637) was used as standard control.

Histopathology—Histopathology was performed following standard methods. Tissue 

samples were embedded in OCT compound, and fast frozen on dry ice for cryostat 

sectioning. Thin sections (8 μm) were fixed with 4% paraformaldehyde in phosphate buffer 

(0.1 M, pH 7.2) at 4°C for 15 min and stained with 1% toluidine blue at 37°C for 30 min. 

The sections were mounted, and visualized under light microscope.
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Immunofluorescence for hNaGlu—A polyclonal antibody against hNaGlu (a kind gift 

from Dr. EF Neufeld, UCLA) was used to probe the rAAV-mediated hNaGlu expression in 

tissues using IF staining. The IF staining was performed on thin cryostat sections (8μm) 

from liver and brain samples of experimental subjects, using the primary antibody against 

hNaGlu and a secondary antibody conjugated with AlexaFluo568 (Molecular Probes, 

A11011), following the procedures recommended by the manufacturers. The sections were 

then visualized under a fluorescence microscope.

Quantitative real time PCR—Genomic DNA was isolated from tissue samples of treated 

and non-treated MPS IIIB mice. Brain genomic DNA was isolated from midbrain. A pair of 

primers for CMV promoter was used as marker to detect rAAV vector genome. The 

genomic DNA samples were analyzed by quatitative real time PCR, using SYBR® Green 

PCR Master Mix (Applied Biosystems) and Applied Biosystems 7000 Real-Time PCR 

System, following the procedures recommended by the manufacturer. Genomic DNA from 

non-treated MPS IIIB mouse tissues was used as controls for background check on lack of 

contamination.
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Fig. 1. Mannitol-facilitated AAV-CNS entry, diffuse global CNS transduction and somatic 
transduction in mice
scAAV2-CMV-GFP viral vector (4×1011 viral particles) was injected into 6–8-week-old wt 

mice through tail vein, 8 minutes after an IV infusion of mannitol or without mannitol 

pretreatment. Vibratom tissue sections (50μm) were obtained at 4 weeks pi and probed for 

GFP expression by immunofluorescence using a polyclonal antibody against GFP and a 

secondary antibody conjugated with AlexaFluo568. A: Transgene expression in the CNS. 
a–h: samples of mice injected with AAV2 vector following mannitol pretreatment. a. 
olfactory; b. cerebral cortex; c. striatum; d. thalamus; e. hippocampus; f. brain stem; g. 
cerebellum. G: granule layer, M: molecular layer, blue arrows: Purkinje cells; h. spinal cord, 

G: grey matter, W: white matter; i. cerebral cortex of mice injected with AAV2 vector 

without mannitol pretreatment. GFP was stained in red. Blue arrows: neurons; Yellow 

arrows: glial cells; Yellow arrowhead: processes in white matter. Images: 10×. B: Somatic 
transduction. i. non-treated liver of non-treated mouse, ii. AAV2-treated live, red 

fluorescent cells are GFP-positive hepatocytes; iii. AAV2-treated heart (myocardium), 

yellow arrowhead: GFP-positive cardiac myocytes: iv. non-treated kidney (medulla), v. 
AAV2-treated kidney, yellow arrowhead: GFP-positive cuboidal epithelial cells; vi. AAV2-

treated intestine, yellow arrowhead: GFP-positive enteric plexus neurons. Blue arrow: 

muscularis externa. i–ii: 10×; iii–vi: 20×.
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Fig. 2. Significant behavioral improvement and extended survival in MPS IIIB mice treated with 
an IV infusion of rAAV2 vector
MPS IIIB mice (4–6-wk-old) were treated with an IV injection of rAAV2-CMV-hNaGlu, at 

8 or 10 minutes after an IV infusion of mannitol. The mice were tested for behavioral 

performance at 5–5.5 months of age, and were observed for longevity. a. Latency to find a 

hidden platform in water maze. b. Swimming ability. c. Latency to fall from an accelerating 

rotarod. +/+: wt (n=20); −/−: MPS IIIB (n=24); −/− +IV: MPS IIIB mice given an IV vector 

injection at 8 minutes after mannitol pretreatment (n=14); d. Survival. The lifespan of MPS 

IIIB mice were significantly prolonged when treated with an IV injection of rAAV2 vector 

at 8 minutes (P<0.01) and 10 minutes (P<0.05) after mannitol pretreatment (n=16–20/

group). IV-8’ and IV-10’: MPS IIIB mice given an IV vector injection at 8 or 10 minutes 

after mannitol pretreatment; *: P<0.05 (vs. −/− +IV); #: P<0.05 (vs. +/+); @: P>0.05 (vs. 

+/+).
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Fig. 3. Expression of recombinant NaGlu and decrease in lysosomal storage pathology in MPS 
IIIB mouse brain. A
Immunofluorescence staining for rNaGlu expression in the brain of MPS IIIB mouse (17-

month-old) treated with an IV injection of rAAV-hNaGlu vector at 8 minutes after mannitol 

pretreatment, using a polyclonal antibody against hNaGlu and a secondary antibody labeled 
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with AlexaFluo568 (a–e). a. brain stem, b. hypothalamus, c. thalamus, d. Dorsal 3rd ventricle 

and periventricular thalamic area, e. choroid plexus in lateral ventricle, f. thalamus of non-

treated MPS IIIB mouse. Red arrows: NaGlu-positive neurons/glia and process. Yellow 

arrowheads: NaGlu-positive ependymal cells (d) and choroid plexus cells (e). D3V: dorsal 

3rd ventricle. Nuclei are labeled blue. Green fluorescence was used to separate 

autofluorecence from specific fluorescence signals (red). Scale bars: 10μm. B. NaGlu 

activity in brain (endpoint, n>8/group). C. Histopathology staining with toluidine blue. +/+: 
wt; −/−: non-treated; −/−+AAV: AAV-treated. CB: cerebella; TH: Thalamus. M: molecular 

layer; G: granule layer, red arrows: Purkinje cells; red arrowhead: enlarged lysosomes. 

Scale bar: 20μm. D. GAG contents in the brain of rAAV-treated MPS IIIB mice (3 months 

pi, n>8/group): expressed as μg/mg tissue (wet). *: P<0.05 (vs. −/−), #: P<0.05 (vs. +/+).
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Fig.4. Expression of hNaGlu and correction of lysosomal storage in somatic tissues
Somatic tissues (endpoint, n>8/group) were assayed for NaGlu expression (a, b) and 

correction of lysosomal storage (c, d). a. NaGlu activity is expressed as unite (U)/mg 

protein. 1U = 1nmol 4MU released/h at 37°C. +/+: wt mice; −/−:/ non-treated MPS IIIB 

mice; −/− +AAV: AAV-treated MPS IIIB mice; −/− +AAV-8’ and −/− +AAV-10’: MPS 

IIIB mice IV injected with AAV vector at 8 or 10 min after mannitol infusion. L: liver, K: 
Kidney; S: spleen; H: heart; Lg: lung; I: intestine; M: skeletal muscle. b. 
Immunofluorescence staining for hNaGlu on cryostat liver sections of AAV-treated (−/− 

+AAV, 17-month-old) and non-treated (−/−) MPS IIIB mice. Scale bar: 50μm. c. GAG 

content in somatic tissues. d. Ultrastructural correction of lysosomal storage in liver of 

AAV-treated MPS IIIB mice. Arrow: a Kupffer cell. Arrow heads: enlarged lysosomes. e. 
Urine GAG content (3 months pi, n>4/group). GAG content was expressed as μg/mg tissue 

(wet) or μg/ml (urine). $: P<0.05 (vs. −/−). @: P<0.01 (vs. −/−); *: P<0.05 (vs. +/+); #: 

P<0.01 (vs. +/+); ˆ: P>0.05 (vs. −/−).
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Table 1

The efficiency of rAAV2-CNS entry and the timing of IV vector injection after mannitol pretreatment

Timing of IV vector injection after mannitol infusion (min) Number of GFP-positive cells/mouse brain

5 ~1.2×105

6 ~5×105

7 ~8×105

8 1.2−1.5×106

9 ~6×105

10 1.2−1.6×105

15 <1,000

20 <500

scAAV2-CMV-GFP vector (4×1011 VGP) was IV injected into 6–8-wk-old wt mice (n≥4/group), following an IV mannitol infusion. Tissue 
samples were collected 4wk pi, and immunofluorescence for GFP was performed on serial vibratome brain sections (50μm) of entire brain. All 
GFP-positive cells on 1 of every 5 sections were counted. The total number of GFP-expressing cells per brain was calculated based on the cell 
counting results and the size of the brain. The data of each time point was generated with the results of 4 mouse brains (n=4).
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Table 2

rAAV2 vector genome in tissues

Tissues rAAV Vector genome
(copies/cell)

Liver 2.76±1.42

Kidney 0.002±0.0003

Spleen 0.006±0.003

Heart 0.004±0.002

Lung 0.001±0.0004

Intestine 0.0009±0.0006

Skeletal muscle 0.0004±0.0002

Brain 0.013±0.004

Genomic DNA isolated from tissues of rAAV-treated MPS IIIB was assayed by quantitative real- to determine the number of vector genome per 
cell in each tissue. The data here are means±SD (n=4).
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