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Role of the Gut–Liver Axis in Liver 
Inflammation, Fibrosis, and Cancer:  
A Special Focus on the Gut Microbiota 
Relationship
Naoko Ohtani,1 and Norifumi Kawada2

The gut and the liver are anatomically and physiologically connected, and this “gut–liver axis” exerts various inf lu-
ences on liver pathology. The gut microbiota consists of various microorganisms that normally coexist in the human 
gut and have a role of maintaining the homeostasis of the host. However, once homeostasis is disturbed, metabolites 
and components derived from the gut microbiota translocate to the liver and induce pathologic effects in the liver. 
In this review, we introduce and discuss the mechanisms of liver inf lammation, fibrosis, and cancer that are inf lu-
enced by gut microbial components and metabolites; we include recent advances in molecular-based therapeutics and 
novel mechanistic findings associated with the gut–liver axis and gut microbiota. (Hepatology Communications 
2019;3:456-470).

The intestinal tract and the liver are anatomi-
cally and physiologically connected. This rela-
tionship between the two has been called the 

“gut–liver axis,” and the effects of intestinal metabo-
lites on the liver are considered very important for the 
onset and progression of liver diseases.(1-4) The gut 
microbiota, in particular, has recently emerged as an 
important gut–liver axis-mediated factor. Attenuation 
of the gut barrier function by excessive intake of tis-
sue damaging foods, such as alcohol and/or a high-fat 
diet (HFD), renders large amounts of gut microbial 
components (so-called microbe-associated molecu-
lar patterns [MAMPs]) and bacterial metabolites or 
even the gut microbiota itself susceptible to transfer 

to the liver. This can promote serious liver diseases, 
such as hepatic inflammation, fibrosis, and cancer.(3,4) 
Therefore, these gut microbial components and 
metabolites affect not only the intestine where the gut 
microbes reside but also organs distant from the intes-
tine through their systemic circulation(5,6) (Fig. 1).

There are between 500 and 1,000 gut microbes in 
the human intestine on average, with the total micro-
bial composition being 100 trillion or more. Gut 
microbiota coexist with the host by metabolizing sub-
stances that cannot be metabolized by the host. With 
the development of analytic technologies, such as 
next-generation sequencing and metabolome analysis, 
it has become possible to classify bacteria according to 

Abbreviations: α-SMA, α-smooth muscle actin; ACC, acetyl-coenzyme A carboxylase; ASK, apoptosis signal-regulated kinase; BA, bile 
acid; CCL, chemokine (C-C motif) ligand; CCR, chemokine (C-C motif) receptor; CD, clusters of differentiation; COL, collagen; COX-2, 
cyclooxygenase 2; CX3CR1, chemokine (C-X3-C motif) receptor 1; CXCL, chemokine (C-X-C motif) ligand; CYGB, cytoglobin; CYP7A1, 
cholesterol 7a-hydroxylase; DAMP, damage-associated molecular pattern; DCA, deoxycholic acid; ECM, extracellular matrix; FGF, fibroblast 
growth factor; FXR, farnesoid X receptor; HCC, hepatocellular carcinoma; HE, hepatic encephalopathy; HFD, high-fat diet; HSC, hepatic stellate 
cell; IL, interleukin; JNK, c-jun N-terminal kinase; LPS, lipopolysaccharide; LSEC, liver sinusoidal endothelial cell; LTA, lipoteichoic acid; Ly6C, 
lymphocyte antigen 6 complex, locus C; MAMP, microbe-associated molecular pattern; MFB, myofibroblast; MMP, matrix metalloproteinase; 
NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; NKT, natural killer T; NO, nitric oxide; NTCP, Na+/taurocholate 
cotransporting polypeptide; PAMP, pathogen-associated molecular pattern; PD-1, programmed cell death protein 1; PDGF, platelet-derived 
growth factor; PD-L1, programmed cell death ligand 1; PGE2, prostaglandin E2; PPAR, peroxisome proliferator-activated receptor; ROS, reactive 
oxygen species; SASP, senescence-associated secretory phenotype; TGF, transforming growth factor; TGR5, Takeda G-protein-coupled receptor 5; 
TLR, toll-like receptor; TMA, trimethylamine; TMAO, trimethylamine oxide; TNF, tumor necrosis factor; TRAIL, tumor necrosis factor–related 
apoptosis-inducing ligand; VDR, vitamin D receptor.

Received October 17, 2018; accepted February 11, 2019.

mailto:
mailto:


Hepatology CommuniCations, Vol. 3, no. 4, 2019 OHTANI AND KAWADA

457

the DNA sequences of the 16S ribosomal RNA gene 
and other microbial genes.(7,8) Indeed, gut microbial 
metabolites have various effects on human physiology 
and pathology. For example, short-chain fatty acids, 
such as butyric and acetic acids (the end products 
of dietary fiber fermentation by gut microbiota) can 
suppress inflammation through induction of regula-
tory T cells by an epigenetic mechanism.(9) Moreover, 
short-chain fatty acids bind to G protein-coupled 
receptors and are involved in controlling obesity.(10) 
On the other hand, lipopolysaccharide (LPS), an outer 
membrane component of gram-negative bacteria, and 
lipoteichoic acid (LTA), a cell wall component of gram- 
positive bacteria, interact with toll-like receptor (TLR) 
4 and TLR2, respectively, and induce inflammation by 
innate immune responses, facilitating liver fibrosis and 
cancer depending on the physiological context.(11-13) 
Moreover, bile acids (BAs) modulate metabolic 
pathways in hepatocytes or intestinal epithelial cells 
through nuclear receptor transcription factors by act-
ing as their ligands to maintain the homeostasis of 
the liver.(14) However, the excess amount of secondary 
BAs, such as deoxycholic acid (DCA) and lithocholic 
acid (LCA) produced by gut microbiota, provokes liver 
damage and induces stress response signaling, thereby 
possibly promoting liver cancer.(15)

In this review, we introduce recent studies from 
the viewpoint of liver diseases through the gut–liver 
axis with a special focus on the effects of bacterial cell 
components and their metabolites not only in hepato-
cytes but also in stromal cells, such as hepatic stellate 
cells (HSCs) and Kupffer cells.

HSCs and Their Roles in 
Fibrosis and Liver Cancer

HSCs are one of the hepatic sinusoid-constitu-
ent cells along with liver sinusoidal endothelial cells 
(LSECs), Kupffer cells, pit cells, dendritic cells, and 
natural killer T (NKT) cells and were originally dis-
covered by Karl von Kupffer in 1876.(16,17) They are 
located in the space of Disse, a space between hepato-
cyte lineage cells and LSECs. Wake(18) illustrated 
their striking three-dimensional structure using Golgi 
staining, showing that HSCs wrap LSECs on one 
side and contact hepatocytes on the other side with 
their well-developed cytoplasmic processes. According 
to this anatomic disposition, HSCs are liver-specific 
“pericytes,” although an evident basement membrane 
is lacking in the case of hepatic sinusoids.
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Physiologically, the principal function of HSCs 
is their storage of lipid droplets consisting of retinyl 
esters, triglycerides, cholesterol esters, cholesterol, 
and phospholipids. Accordingly, HSCs were previ-
ously called “lipocytes,” “fat-storing cells,” or “vitamin 
A-storing cells.”(19) HSCs also take part in regulating 
sinusoidal microcirculation through their contractility 
in response to vasoactive substances, including endo-
thelin-1, angiotensin II, and nitric oxide (NO),(20,21) 
and in storing gaseous mediators, such as O2, NO, 
and carbon monoxide, by expressing cytoglobin 
(CYGB).(22)

Following chronic liver injury or culture in vitro , 
HSCs undergo an “activation” process and transdif-
ferentiate into myofibroblast-like cells that express 
α-smooth muscle actin (α-SMA) and generate extra-
cellular matrix (ECM) materials, including colla-
gen (COL) I, collagen III, laminin, and fibronectin, 

contributing to the progression of fibrosis. Activation 
of HSCs is initiated by their exposure to extracellular 
stimuli derived from 1) damaged hepatocytes, which 
produce reactive oxygen species (ROS), lipid peroxides, 
and damage-associated molecular patterns (DAMPs); 
2) Kupffer cells and profibrotic macrophages, which 
produce ROS, NO, and cytokines (such as platelet- 
derived growth factor [PDGF], transforming growth 
factor [TGF]-β1, monocyte chemoattractant protein 
1, and chemokines, such as chemokine (C-C motif ) 
ligand 2 [CCL2] and CCL18); and 3) platelets, which 
secrete PDGF subunit B, serotonin, 5-hydroxytrypt-
amine B2, and chemokine (C-X-C motif ) ligand 4 
(CXCL4). Activated HSCs are characterized by high 
expression of α-SMA and the PDGF receptor and 
down-regulation of peroxisome proliferator- activated 
receptor gamma (PPARγ) and LIM homeobox 2 
(Lhx2).(16,23,24)Activation of HSCs is perpetuated 

Fig. 1. The gut–liver axis. The intestinal tract and the liver are anatomically and physiologically connected. This relationship between 
the intestine and liver has been called the “gut–liver axis.” Impaired tight junction results in the breakage of the gut barrier function and 
renders large amounts of MAMPs and bacterial metabolites or even the gut microbiota itself susceptible to transfer to the liver. BAs are 
actively absorbed by the BA transporter in terminal ileum and enter the colon epithelium through passive diffusion. Secondary BAs, 
such as DCA, are known to be toxic and elicit DNA damage and thereby producing SASP factors in the HSCs. The gut microbiota is 
also involved in choline metabolism by converting it into choline metabolites, such as TMA. It is transferred to liver and converted into 
TMAO, which causes liver inf lammation and damage. Abbreviation: SCFA, short-chain fatty acid.
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by proliferation, fibrogenic pathways, growth factors, 
such as 1) TGF-β; 2) vascular endothelial growth 
factor; 3) PDGF; 4) connective tissue growth factor; 
5) cytokines and/or adipocytokines (leptin, adiponec-
tin, interleukin [IL]-15 or IL-17, IL-20, IL-22); 
6) innate immune signaling (TLRs, LPS, DAMPs, and 
pathogen-associated molecular patterns [PAMPs]); 
7) nuclear receptors (liver X receptor, farnesoid X 
receptor [FXR], vitamin D receptor [VDR], PPARs, 
Rev-erb, and nuclear receptor subfamily 4 group A 
member 1 [NR4A1]); 8) epigenetic factors (microR-
NAs, DNA methylation, histone modifications); and 
9) oxidative/endoplasmic reticulum stress(25,26) (Fig. 2).

The survival of activated HSCs depends on the 
paracrine and autocrine stimuli listed above. In the 
resolution stage of liver fibrosis, they are able to 
undergo (1) apoptosis by Fas (clusters of differenti-
ation [CD]95), tumor necrosis factor (TNF) recep-
tor 1, p75(neurotrophin receptor; p75NTR), and 
tumor necrosis factor–related apoptosis-inducing 
ligand (TRAIL) receptors by combining with their 
ligands(27); (2) senescence(28); and (3) reversion to 
“inactivated” HSCs.(29) We showed that senescent 
HSCs were present in the obesity-associated liver 
tumor microenvironment.(30) Senescent HSCs are 
α-SMA positive, but they do not seem to prolifer-
ate or produce collagens (Fig. 2). Although reverted 
HSCs fail to resume the complete phenotype of 
quiescent HSCs, they exhibit lower expression of 
fibrosis-related genes, such as actin alpha 2, smooth 
muscle (acta2 ) and transforming growth factor, beta 
receptor 1 (tgfbr1 ). Regarding “inactivated” HSCs, we 
recently observed that human recombinant fibroblast 
growth factor 2 (FGF2) was able to revert α-SMA+ 

COL+ PPARγ– CYGB– -activated human HSCs 
to the α-SMA– COL– PPARγ+ CYGB+ inactivated 
state.(31) This suggests the occurrence of inactivation 
in humans as well as rodent HSCs.

HSCs also play important roles in the development 
of the tumor microenvironment. This microenviron-
ment consists of inflammatory and immunologic reac-
tions as well as neovascularization and fibrosis; this 
is considered to support the formation of an optimal 
growth milieu for cancer cells. For example, Nielsen 
et al.(32) described a mechanism involving a tumor–
stromal interaction in the metastatic progression of 
pancreatic ductal adenocarcinoma in the liver; metas-
tasis-associated macrophage-derived granulin acti-
vated HSCs to produce periostin, which enhanced the 

deposition of ECM at the site of metastasis. Mogler 
et al.(33) demonstrated that activated HSCs highly 
expressed the orphan receptor endosialin (CD248), 
which in turn attenuated the growth of hepatocellular 
carcinoma (HCC) and down-regulated cell prolifera-
tion-associated molecules, such as insulin-like growth 
factor 2, retroviral binding protein 4, Dickkopf-1, and 
CCL5 in HSCs. Duran et al.(34) reported that p62, 
which is increased in hepatocytes but decreased in 
HSCs in HCC samples, played critical roles in the 
activation status of HSCs, resulting in the promotion 
of HCC development by reducing VDR–retinoid X 
receptor interactions, and in the impaired repression 
of fibrosis and inflammation by the VDR. We also 
demonstrated the susceptibility of cygb -knockout 
mice to develop liver cancer when treated with dieth-
ylnitrosamine or a choline-deficient L-amino acid- 
defined diet, implicating the regulatory role of CYGB 
in HSCs for the development of the tumor microen-
vironment.(35,36) In addition, senescent HSCs show-
ing the senescence-associated secretory phenotype 
(SASP) produce a variety of secreted proteins, such as 
cytokines, chemokines, and proteases,(37,38) that pro-
mote liver tumor progression and are present in an 
obesity-associated liver tumor microenvironment(13,30) 
(Fig. 2). Thus, the interaction between HCC and stro-
ma-associated HSCs has attracted attention in the 
development of molecular-targeted therapy for liver 
cancer.

Liver Macrophages and 
Their Roles in Inflammation 
and Fibrosis in the Liver

Liver macrophages consist of Kupffer cells (resi-
dent liver macrophages) and monocyte-derived mac-
rophages and function as scavengers and perform 
phagocytosis to remove DAMPs, PAMPs, bacteria, 
and fungi from portal blood flow.(39-41) While LPS 
are derived from gut microbiota associated with the 
increased permeability of the intestine and in the 
liver, PAMPs are derived from damaged hepatocytes. 
These antimicrobial and phagocytotic functions of 
liver macrophages are largely impaired in patients 
with advanced liver disease. Human Kupffer cells 
are identified by their expression of CD14+, CD68+, 
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TLR4+, and chemokine (C-X3-C motif ) receptor 1 
(CX3CR1)–, while mouse Kupffer cells are identified 
by their expression of CD11b+/low, F4/80+, CD68+, 
TLR4+, TLR9+, and CX3CR1–. Monocyte-derived 
macrophages are positive for chemokine (C-C motif ) 
receptor (CCR)2+ (mice and human), CX3CR1+, and 
lymphocyte antigen 6 complex locus C (LY6C+/–) 
(mice).(42)

On inflammation, liver macrophages become 
activated and initiate the biological response. LPS 
binds to TLR4 with coreceptors CD14 and lympho-
cyte antigen 96 (MD-2), leading to the activation 
of the myeloid differentiation primary response 88 
(MyD88)-dependent pathway to induce nuclear factor 
kappa B and p38/c-jun N-terminal kinase ( JNK) acti-
vation. Activated liver macrophages produce PDGF, 

Fig. 2. Pathways of HSC activation and their fate in the resolution stage. In intact liver, HSCs localize in the Disse space and 
contain lipid droplets consisting of mainly vitamin A. They show a nonproliferative phenotype and express quiescent markers, such 
as LRAT and Lhx2. HSCs take part in the regulation of sinusoidal microcirculation through their contractility. When liver injury 
occurs by, e.g., HBV/HCV infection, alcohol abuse, or obesity (NASH), HSCs are exposed to oxidative stress signals (reactive oxygen 
intermediates), DAMPs, PAMPs, LPS, and paracrine stimuli, including cytokines, chemokines, and growth factors (PDGF, VEGF, 
TGFβ1, FGF2, CTGF, ANG II) secreted from neighboring cells, such as hepatic Kupffer cells/bone marrow-derived macrophages, 
sinusoidal endothelial cells, hepatocytes, and platelets, and undergo the process of “activation.” Activated HSCs exhibit a number of 
specific phenotypes, including proliferation, contractility (mediated by ET-1, ANG-II, NO/CO, and ECM production), altered matrix 
degradation, chemotaxis, immune modulation, inf lammatory signaling, and contribution to the cancer microenvironment. In the 
resolution stage of the underling liver disease, activated HSCs undergo apoptosis through Fas (CD95), TNFR1, p75NTR, and TRAIL; 
senescence showing p16, p21, γH2AX, and SASP; and inactivation exhibiting low TGFβ and collagen production and high expression 
of PPARγ and CYGB. Restorative macrophages take part in fibrolysis basically by producing MMP-9, MMP-12, and MMP-13. 
Abbreviations: ANG-II, angiotensin II; CTGF, connective tissue growth factor; ET-1, endothelin 1; γH2AX, gamma-histone family 
member X; HBV, hepatitis B virus; HCV, hepatitis C virus; Lhx2, LIM homeobox 2; LRAT, lecithin:retinol acyltransferase; MT-
1-MMP, membrane-type matrix metalloproteinase 1; N-CAM, neural cell adhesion molecule; p75NTR, p75neurotrophin receptor; 
TIMP-1, tissue inhibitor of metalloproteinase 1; TNFR1, tumor necrosis factor receptor 1; VEGF, vascular endothelial growth factor.
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TGF-β1, TNF-α, IL-1, IL-6, IL-10, IL-18, CXCL1, 
CXCL2, CXCL8, macrophage chemotactic protein-1 
(also known as CCL2), regulated upon activation, 
normal T cell expressed, and secreted (RANTES, 
also known as CCL5), macrophage inflammatory 
protein (MIP)-1α (CCL3), MIP-1β (CCL4), ROS, 
and prostaglandins, among others, which influence 
HSC activation and lead to the infiltration of bone- 
marrow-derived monocytes and neutrophils into the 
damaged liver.(43,44)

In vivo  macrophage depletion or blockade experi-
ments revealed a major role for macrophages in liver 
fibrogenesis. Ide et al.(45) showed that depletion of 
Kupffer cells using GdCl3 suppresses α-SMA- positive 
myofibroblasts (MFBs) and ameliorates hepatic fibro-
sis by thioacetamide administration. A model of 
 conditionally depleted macrophages (CD11b+F4/80+) 
in CD-11b-diphtheria toxin receptor transgenic mice 
showed marked reduction of ECM deposition and the 
number of α-SMA-positive MFBs under CCl4 intox-
ication for 12 weeks.(46) Karlmark et al.(47) demon-
strated that Gr1+ (Ly6Chi) inflammatory monocytes 
are recruited into the liver in a CCR2-dependent 
manner during CCl4-induced chronic liver injury in 
mice and give rise to inducible NO synthase- positive 
CD11b+F4/80+ intrahepatic macrophages that pro-
mote the activation of HSCs. Thus, infiltrating  
Ly6Chi macrophages play central roles in the profibro-
genic response compared to mature resident Kupffer 
cells.

Macrophages are also crucial in the resolution pro-
cess of liver fibrosis. They are a source of fibrolytic 
matrix metalloproteinase (MMP)-9, MMP-12, and 
MMP-13 and also express TRAIL, which promotes 
apoptosis of activated HSCs/MFBs.(48) Ramachandran 
et al.(49) illustrated that the Ly6ClowCD11bhiF4/80int 
subset of macrophages is the most abundant in the 
liver in the resolution stage and represents the prin-
ciple MMP-expressing subset. Ly6Clow macrophages 
are derived from a phenotypic transition of the profi-
brogenic Ly6Chi macrophages.

There have been several reports to translate these 
functions of macrophages into antifibrotic ther-
apy. Bone marrow-derived cell therapies, basically 
with monocytes, together with granulocyte colony- 
stimulating factor (G-CSF) accelerate the resolution 
stage of liver fibrosis by CCl4 in mice, while admin-
istration of G-CSF with or without CD133-positive 
hematopoietic stem cells failed to improve the hepatic 

function in patients with compensated cirrhosis.(50,51) 
Ceniciviroc, a dual antagonist for CCR2 and CCR5, 
is currently being evaluated in a clinical trial phase 
IIb (CENTAUR study) for its efficacy against nonal-
coholic steatohepatitis (NASH) with fibrosis.(52-54) In 
a proof-of-concept study, selonsertib, an inhibitor for 
apoptosis signal-regulated kinase 1 (ASK1) (discussed 
later),(55,56) improved fibrosis in patients with NASH 
after only 24 weeks of therapy.(57) Thus, research on 
macrophage function will give rise to the develop-
ment of novel antifibrotic therapy available in human 
chronic liver disease and cirrhosis.

Gut Microbiota and Liver 
Cirrhosis (Including 
Cirrhosis-Associated HCC)

Chronic hepatitis, caused by continuous damage to 
the liver, leads to liver cirrhosis and often liver can-
cer. The translocation of intestinal bacteria and their 
components is known to be increased in patients 
with chronic liver diseases because of the associated 
dysfunction of the intestinal barrier.(58) Indeed, LPS 
levels in the portal vein were reported to increase 
according to the Child-Turcotte-Pugh cirrhosis stage 
and also in alcoholic liver disease.(27,58) In mouse 
models, hepatic translocation of LPS has been shown 
to be important for the development of liver cirrhosis 
and liver cancer.(11,12) Seki et al.(11) reported that con-
tinuous signals from TLR4 induced by LPS promoted 
liver cirrhosis. TLR4-mediated innate immunity acti-
vates the TGF-β signal in HSCs by inhibiting the 
expression of the TGF-β pseudoreceptor Bmp and 
activin membrane-bound inhibitor (BAMBI), thereby 
promoting liver fibrosis (Fig. 3). Moreover, a gut 
microbiota profiling analysis in patients with liver cir-
rhosis was recently reported.(59) In this report, gram- 
negative bacteria, such as Prevotella  and Veillonella , 
were increased in patients with cirrhosis.(59,60) 
Therefore, it is possible that the mechanism associ-
ated with the LPS–TLR4 axis(11) is involved in liver 
cirrhosis. Furthermore, the same group showed that 
continuous exposure to a low concentration of LPS 
promoted hepatocarcinogenesis in a CCl4-induced 
liver cirrhosis mouse model.(12) They found that the 
LPS–TLR4 pathway promotes HCC by increasing 
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proliferative and anti-apoptotic signals by hepato-
cyte growth factor and epiregulin in resident hepato-
cytes.(12) Based on these findings, inflammation by 
the LPS–TLR4 pathway could be involved in the 
induction of hepatocarcinogenesis associated with 
liver cirrhosis (Fig. 1). It was also shown that CD14, a 
cofactor of the innate immune receptor TLR4, which 
recognizes LPS as a ligand, is up-regulated in fatty 
liver along with activated LPS–TLR4 signaling, also 
suggesting that long-term exposure to low concentra-
tions of LPS may cause fatty liver-associated chronic 
hepatitis (Fig. 1).(61) According to these key roles of 
the TLR4 pathway in liver fibrogenesis and NASH 
pathogenesis, TLR4 antagonists, such as TAK-
242 and E5564, have been discussed as therapeutic 
drugs.(2,62)

Alcohol is known to be injurious to the intesti-
nal epithelium, and secondary BAs, such as DCA, 
is known to have membrane destabilizing effects on 
the intestinal epithelium.(63,64) DCA may influence 
early stage liver cirrhosis when 7α-dehydroxylating 
(DCA producing) bacteria, such as Lachonospiraceae 
and Ruminococcaceae, are fairly abundant(60); these 
bacteria have been shown to be greatly decreased 
in the decompensated stage of cirrhosis.(60,65) The 

excessive intake of an HFD increases blood DCA 
level,(13,30) and an HFD promotes the destruction 
of tight junctions of gut epithelial cells.(66) These 
effects promote a leaky gut, thereby rendering gut 
microbial components and metabolites more likely 
to be absorbed.(67) Clinically, the significant increase 
in blood DCA level in patients with NASH has also 
been shown.(68)

Gut Microbial Metabolites 
and Hepatic Encephalopathy

Hepatic encephalopathy (HE) is a serious compli-
cation of liver cirrhosis associated with neuropsychiat-
ric impairment.(69) HE is characterized by a high level 
of blood ammonia, which is known to be produced 
abundantly by gut microbiota expressing deaminating 
enzymes and/or urease operons and also by the host’s 
organs, such as the liver and kidney.(70) HE is caused 
by liver dysfunction, such as liver fibrosis, leading to 
impaired detoxication of ammonia and creation of 
portosystemic shunts, thereby facilitating the direct 
efflux of ammonia into the brain. In the aspect of gut 

Fig. 3. The role of the gut microbiota in liver cancer. In the leaky gut situation, a large amount of gut microbial components and 
metabolites are transferred to the liver and are likely to promote liver cancer progression. HCCs in the cirrhotic liver were associated with 
continuous exposure of LPS from gram-negative bacteria of the gut microbiota. The development of NASH/NAFLD is also associated 
with LPS exposure. In addition, LTA from gram-positive bacteria of the gut microbiota is likely to be involved in noncirrhotic NASH-
associated HCC. The HSCs in this type of HCC tumor region undergo cellular senescence and SASP. These HSCs do not appear to 
be proliferating or producing collagens.
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microbiota, gut microbial dysbiosis and small intesti-
nal bacterial overgrowth are often observed in patients 
with cirrhosis, where the dominant species have been 
shown to be in the families Streptococcaceae and 
Veillonellaceae.(59,60,71,72) These species correlated sig-
nificantly with blood ammonia levels and decreased 
cognitive function. Several reports have shown that 
patients with cirrhosis using proton-pump inhibitors 
(PPIs) are more likely to develop HE,(73,74) presum-
ably because PPIs cause destruction of the stomach 
acid barrier, leading to gut dysbiosis, which promotes 
HE. Moreover, by their comparative metagenomic 
analysis, Qin et al.(59,63) reported that ammonia pro-
duction and gamma-aminobutyric acid biosynthesis 
by gut microbiota were enriched in patients with liver 
cirrhosis. Other HE-associated neurotransmitters, 
such as indoles, glutamine, and serotonin, known to 
be produced by the gut microbiota, are thought to be 
associated with HE onset. Recently, to target these 
HE-associated gut bacteria, unabsorbed antibiotics, 
such as rifaximin and norfloxacin, have been used for 
patients with HE. Rifaximin reportedly changes the 
gut microbial profile to a gut barrier-protective profile 
wherein Lactobacillus  is the most abundant genus.(75) 
Moreover, probiotic therapies, such as VSL#3 (a mix-
ture of eight different strains of bacteria including four 
strains of Lactobacilli, three strains of Bifidobacteria, 
and one strain of Streptococcus thermophilus ), are report-
edly effective for patients with HE.(76)

Gut Microbiota and NASH
Recently, the development of therapies and meth-

ods for controlling hepatitis B virus  and hepatitis C 
virus infections has led to a reduction in the mortality 
rate of viral HCC worldwide.(77,78) On the other hand, 
the incidence of NASH, the aggressive inflammatory 
form of nonalcoholic fatty liver disease (NAFLD) 
without viral etiology, and NASH-associated cirrho-
sis and HCC is rapidly increasing.(78-81) Moreover, 
molecular-based therapies for NASH have been 
developed, and these therapies could also help us 
understand the progression mechanisms of NASH 
and NASH-associated HCC. FXR agonists, apop-
tosis acetyl-coenzyme A carboxylase (ACC) inhib-
itors, ASK-1 inhibitors, and other therapeutic drugs 
are being developed to treat NASH,(82-86) and the 

gut–liver axis and gut microbiota are, at least in part, 
involved in these pathways (Fig. 4).

Ba anD its meDiateD 
signaling

BAs are mainly synthesized in hepatocytes from 
cholesterol by cholesterol 7a-hydroxylase (CYP7A1), 
a rate-limiting enzyme of BA biosynthesis. De novo  
synthesized BAs are called primary BAs. In humans, 
the primary BAs are mainly cholic acid (CA) and 
chenodeoxycholic acid (CDCA).(87,88) These BAs 
are subsequently conjugated with glycine or taurine 
to render them less toxic in the liver. BAs are trans-
ported from the hepatocytes into the bile canaliculi 
and released into the duodenum. In the intestine, 
deconjugation and 7-α-dehydroxylation of the pri-
mary BAs are facilitated by gut microbiota to produce 
secondary BAs. DCA and LCA, formed from CA and  
CDCA, respectively, are major secondary BAs in 
humans. DCA has been reported to activate ß-catenin  
signaling to promote cell proliferation(89) and to 
enhance the production of ROS,(15) both of which 
could provoke oncogenic signaling. In the ileum, active 
uptake of conjugated BAs occurs by the apical sodi-
um-dependent BA transporter. In the colon, however, 
unconjugated BAs enter the colon epithelium through 
passive diffusion. In total, about 95% of the BAs are 
reabsorbed into intestinal epithelial cells. The remain-
ing 5% is excreted through feces, and this loss is com-
pensated by de novo  BA synthesis in the liver. BAs 
can be recycled 4-12 times per day between hepato-
cytes in the liver and enterocytes in the intestine; this 
is called the enterohepatic circulation.(90-94) BAs can 
act as ligands for nuclear receptors, such as FXR, and 
Takeda G-protein-coupled receptor 5 (TGR5).(87)

FXR agonists reduce the expression of CYP7A1 
and Na+/taurocholate cotransporting polypeptide 
(NTCP), one of the key transporters in hepatocytes 
that uptake BAs from the sinusoids, but up-regulate 
the expression of bile salt export pump, the major 
transporter for the excretion of BAs from hepato-
cytes into bile canaliculi(95,96) (Fig. 4). FXR activa-
tion reduces the excess BA pool in the hepatocyte, 
thereby preventing cholestasis and/or accumulation 
of toxic secondary BAs, such as DCA and LTA.(97) 
FXR also stimulates the production of FGF15 (mice) 
or 19 (human) which, after binding to FGF receptor 
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4 in liver cells, represses BA synthesis and promotes 
hepatic glycogen storage and fatty acid oxidation.(14) 
BAs also activate TGR5 in muscle and adipose tis-
sues, increasing thermogenesis and energy expendi-
ture. Moreover, activation of TGR5 in the intestine 
promotes glucagon-like peptide 1 release from L 
cells, promoting insulin release from pancreatic β 
cells.(14) Signaling from another nuclear receptor, 
constitutive androstane receptor (CAR), was shown 
to activate ß-catenin signaling, thereby promoting 
NASH-associated liver cancer.(98) Furthermore, 
these nuclear receptors are strongly linked to the 
circadian rhythms in the liver. Therefore, disor-
ders of circadian rhythm facilitate the progression 
of NAFLD to fibrotic NASH, presumably through 
CAR.(98)

tRimetHylamine  
oXiDe-meDiateD HepatiC 
steatosis anD aCC

There are several reports mentioning that gut 
microbial-dependent metabolites from choline are 
strongly associated with NAFLD/NASH. Choline 
facilitates lipid transport in hepatocytes and pre-
vents the abnormal accumulation of lipids in the 
liver, while choline deficiency usually leads to hepatic 
steatosis.(99,100) The gut microbiota is also involved 
in choline metabolism by converting it into cho-
line metabolites (dimethylamine, trimethylamine 
[TMA], dimethylglycine, betaine), which is trans-
ferred to liver and converted into trimethylamine 
oxide (TMAO), which causes liver inflammation and 

Fig. 4. BA-mediated signaling pathways and related therapeutic drugs for NASH. In the leaky gut situation, a large amount of BAs as 
well as MAMPs, such as LPS and LTA, transfer to the liver through the portal vein. FXR agonists reduce the expression of CYP7A1, 
a rate limiting enzyme for BA synthesis, and NTCP, one of the key transporters in hepatocytes that uptake BAs from the sinusoids 
but up-regulate the expression of BSEP, the major transporter for the excretion of BAs from hepatocytes into bile canaliculi. FXR 
activation reduces the excess BA pool in the hepatocyte, thereby preventing cholestasis and/or accumulation of toxic secondary BAs, 
such as DCA (drawn in the hepatocyte on the left). The secondary BA, DCA, the level of which is known to be increased in individuals 
with NASH, provokes DNA damage as well as stress response signals, such as JNK and p38-mediated signaling pathways. Lipotoxicity 
derived from lipid storage in hepatocytes in NASH also activate these signals. ASK-1 inhibitors suppress these stress response signals 
and improve NASH-associated inf lammation (drawn in the hepatocyte on the right). Abbreviation: BSEP, bile salt export pump.
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damage(101,102) (Fig. 1). TMA production results in 
choline deficiency, thereby facilitating hepatic steato-
sis.(101,102) ACC inhibitors reduce lipogenesis in the 
liver by inhibiting the production of maronyl coen-
zyme A, thereby reducing hepatic steatosis,(103) and 
are thus expected to be promising therapeutic drugs 
for NASH/NAFLD. In mouse models of hepatic 
steatosis induced by a choline-deficient diet, ACC  
up-regulation is usually observed, suggesting the 
efficacy of ACC inhibitors in TMAO-mediated 
hepatic steatosis.(104,105) Moreover, gut microbial fatty 
acids, such as 10-hydroxy-12(Z)-octadecenoic acid 
(18:1) and its derivative Keto A, mainly produced 
by Lactobacillus  species,(106,107) have been reported to 
reduce ACC expression(108) and could therefore be 
potential probiotic candidates.

stRess Responses anD tHe 
asK-1 patHWay

DCA is known to increase intracellular ROS 
and is involved in liver damage and induces stress 
responses.(15) Inhibitors of ASK-1, a serine/threonine 
kinase, improve NASH pathology by inhibiting stress 
response pathways, such as phosphorylation of p38 
mitogen-activated kinase and JNK, which leads to 
hepatic inflammation, apoptosis, and fibrosis(57,109) 
(Fig. 4).

DCA and NASH-
Associated Liver Cancer

Similar to viral hepatitis-associated liver cancer, 
NASH-associated liver cancer in many cases also 
results from a state of chronic inflammation, hepatic 
fibrosis, and cirrhosis. However, there are some cases 
of liver cancer (approximately 10%-20%) that develop 
with little fibrotic background.(110-113) These NASH-
associated liver cancers with less fibrosis could have their 
own carcinogenic mechanism. Recently, we and others 
reported that DCA could be associated with noncir-
rhotic NASH-associated HCC as described below.

In brief, obesity-associated liver cancer was pro-
moted by increased DCA in serum.(30) We confirmed 
that almost all mice fed an HFD and treated with 
7,12-dimethylbenzathracene in the neonatal stage 
developed HCC. The enterohepatic circulation of 

DCA provoked cellular senescence and an SASP 
that could create a tumor-promoting microenviron-
ment,(13,30) which in turn facilitated HCC progres-
sion. In this system, the promoted excretion of BAs by 
ursodeoxycholic acid reduced HCC development.(30)

Moreover, we found that long-term HFD feeding 
altered the gut microbial profile to increase gram- 
positive bacteria, such as Clostridium  species. The 
resulting hepatic translocation of LTA, a gram-positive 
microbial component, and the enhanced LTA–TLR2 
axis facilitated HCC development. LTA enhanced 
the SASP of HSCs in collaboration with DCA to 
up-regulate the expression of not only SASP factors 
but also cyclooxygenase-2 (COX-2) and TLR2 (Fig. 
3). Interestingly, COX-2-mediated prostaglandin E2 
(PGE2) production suppresses antitumor immunity 
through PGE2 receptor 4 (EP4), thereby contributing 
to HCC progression. Pretreatment of the EP4 antag-
onist was shown to be effective to reduce HCC devel-
opment. COX-2 overexpression and excessive PGE2 
production were detected in HSCs of human noncir-
rhotic NASH, indicating that a similar mechanism 
could function in humans.(13) A recent report showed 
that DCA also promotes HCC progression by activat-
ing the mammalian target of rapamycin pathway.(114) 
It was found that a new class of a steatohepatitis- 
inducing HFD, STHD-01, could promote HCC 
without chemical carcinogen administration.(114

Moreover, it was reported that short-chain fatty 
acids, such as butyrate fermented by gut bacteria from 
dietary soluble fibers, which are considered broadly 
health promoting, strongly promoted HCC while 
improving metabolic dysfunction. An inulin-enriched 
HFD intake induced both dysbiosis and HCC in 
wild-type mice and was accompanied by cholestasis 
and increased BA levels, including DCA. Interestingly, 
administrating soluble fibers, such as inulin, but not 
insoluble fibers, such as cellulose, induced HCC. 
This report shows a dark side of fermentation by gut 
microbiota and a deleterious role of cholestasis for 
HCC development.(115)

Gut Microbiota and 
Antitumor Immunity

In addition to our findings that an enhanced 
LTA–TLR2 axis up-regulates PGE2 production and 
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suppresses antitumor immunity,(13) Ma et al.(116) 
found that altering the commensal gut bacteria by 
antibiotics in mice induced a liver-specific antitumor 
effect, with an increase of hepatic chemokine (C-X-C 
motif ) receptor 6 (CXCR6)-positive NKT cells and 
heightened interferon-γ production following anti-
gen stimulation. The accumulation of NKT cells was 
regulated by CXCL16 expression of LSECs, which 
was controlled by gut microbiome-mediated BAs by 
the gut–liver axis. Antibiotic administration decreased 
the amount of secondary BAs; however, many pri-
mary BAs were increased. NKT cells were strongly 
activated, particularly by one of the primary BAs, 
 tauro-β-muricholic acid.(116)

Furthermore, gut microbiota species facilitating the 
effect of immune checkpoint therapy have recently 
been identified. Antitumor immunity becomes inef-
fective as cancer progresses because immune check-
points are activated by cancer cells. Although the 
immune checkpoint mechanism is a necessary system 
for suppressing excessive inflammation, it is disadvan-
tageous in cancer tissues as it allows the progression of 
cancer. Therefore, in recent years, immune checkpoint 
inhibitors have been developed as promising molecu-
lar targeting agents for the treatment of many types 
of cancer. For example, antibodies against immuno-
suppressive molecules, such as programmed cell death 
protein 1 (PD-1) and its ligand PD-L1, and cytotoxic 
T-lymphocyte associated protein 4 (CTLA-4), are 
used clinically as immune checkpoint inhibitors.

Unfortunately, immune checkpoint inhibitors are 
not effective in all cancer patients. It has recently 
been reported that certain species of the gut micro-
biota enhance antitumor immunity and assist in the 
activity of immune checkpoint inhibitors.(117,118) In 
a mouse model, Bifidobacteria activated dendritic 
cells to enhance the antitumor effect of an anti-
PD-L1 antibody.(117) Another report showed that 
Bacteroides fragilis  increased the effectiveness of an 
anti-CTLA-4 antibody in a colon cancer model.(118) 
More recently, the blockage of the PD-1/PD-L1 
axis was facilitated by gut microbiota in humans. In 
patients with malignant melanoma who showed an 
effect of immune checkpoint inhibitors, members of 
the Ruminococcaceae family(119) and Bifidobacterium 
longum (120) increased significantly in the gut. More-
over, in epithelial cancers, such as colorectal and 
non-small cell lung cancer, Akkermansia  species were 

increased.(121) Gut microbiota derived from patients 
in whom immune checkpoint inhibitors were effec-
tive was transplanted into germ-free mice.(121) These 
mice also showed a significant antitumor effect of 
immune checkpoint inhibitors. These findings sug-
gest that alterations of the gut microbiota profile can 
be expected to synergistically increase the therapeutic 
effect of immune checkpoint inhibitors, which may be 
applicable to liver cancer, judging from the preclini-
cal and clinical study of immune checkpoint therapy 
for liver cancer.(122) However, the precise molecular 
mechanism (in which gut-microbial metabolites are 
involved) that facilitates antitumor immunity is still 
unclear.

Concluding Remarks
The important role of gut microbiota in modulat-

ing liver diseases, including cancer, has been emerg-
ing. Thus, the mechanisms by which liver cancer 
development are promoted or suppressed through 
the gut–liver axis have become attractive research 
topics. Gut microbial components, such as LPS and 
LTA, are associated with hepatic fibrosis and HCC 
progression. Furthermore, gut microbial metabolites, 
including secondary BAs and fatty acids, as well as 
unknown microbial metabolites and toxins could 
influence liver pathology. We have recently elucidated 
the mechanism of HCC progression by DCA and 
LTA, at least in part.(13) DCA causes DNA damage 
in HSCs, thereby inducing cellular senescence. This 
is accompanied by the expression of a series of cyto-
kines and COX-2, creating liver tumor-promoting 
microenvironments. Recently, NKT cells were shown 
to be strongly activated, particularly by the primary 
BA tauro-β-muricholic acid.(116) Moreover, FXR ago-
nists have now been approved as therapeutic agents 
for NASH, and it is expected that signals from this 
nuclear transcription factor suppress lipogenic and 
fibrotic signals in the liver.(14,97) Elucidation of the 
detailed molecular mechanisms linked to gut micro-
bial metabolites by the gut–liver axis may lead to the 
development of promising preventive and therapeu-
tic drugs using advanced techniques for liver diseases. 
Moreover, liver cancer-specific gut microbiota and the 
associated therapeutics using gut microbial species 
might be uncovered in the near future.
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