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Abstract: High-throughput imaging technologies have been developing rapidly for agricultural
plant phenotyping purposes. With most of the current crop plant image processing algorithms,
the plant canopy pixels are segmented from the images, and the averaged spectrum across the whole
canopy is calculated in order to predict the plant’s physiological features. However, the nutrients
and stress levels vary significantly across the canopy. For example, it is common to have several
times of difference among Soil Plant Analysis Development (SPAD) chlorophyll meter readings
of chlorophyll content at different positions on the same leaf. The current plant image processing
algorithms cannot provide satisfactory plant measurement quality, as the averaged color cannot
characterize the different leaf parts. Meanwhile, the nutrients and stress distribution patterns contain
unique features which might provide valuable signals for phenotyping. There is great potential
to develop a finer level of image processing algorithm which analyzes the nutrients and stress
distributions across the leaf for improved quality of phenotyping measurements. In this paper, a new
leaf image processing algorithm based on Random Forest and leaf region rescaling was developed
in order to analyze the distribution patterns on the corn leaf. The normalized difference vegetation
index (NDVI) was used as an example to demonstrate the improvements of the new algorithm in
differentiating between different nitrogen stress levels. With the Random Forest method integrated
into the algorithm, the distribution patterns along the corn leaf’s mid-rib direction were successfully
modeled and utilized for improved phenotyping quality. The algorithm was tested in a field corn
plant phenotyping assay with different genotypes and nitrogen treatments. Compared with the
traditional image processing algorithms which average the NDVI (for example) throughout the whole
leaf, the new algorithm more clearly differentiates the leaves from different nitrogen treatments and
genotypes. We expect that, besides NDVI, the new distribution analysis algorithm could improve the
quality of other plant feature measurements in similar ways.

Keywords: corn leaf; hyperspectral imaging; plant phenotyping; leaf stress distribution; machine
learning algorithms

1. Introduction

High-throughput imaging sensor technologies have been well established for measuring crop
growth status in fields or indoors. Plant imaging models have been developed to predict plants’
physiological features, such as the plant’s biomass [1], field yield [2], chlorophyll content [3], nitrogen
content [3], relative water content [4,5], and disease symptoms [6,7]. In conventional plant phenotyping
analyses, most studies rely on the averaged spectrum across all the segmented plant pixels of the whole
plant [2,4,8-12]. Researchers firstly segment the target plant tissue from the image. Then, the averaged
spectrum across all the plant pixels is utilized for prediction purposes. However, this conventional
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phenotyping analysis method is not satisfactory, due to the severe variance of nutrients and stresses
across the canopy. For example, it is common to have up to five times of difference among SPAD
readings of chlorophyll content at different locations on the same corn leaf [13,14], so that the averaged
value cannot characterize the different leaf parts.

At the same time, simply averaging the spectrum information of images and ignoring the
distribution features in plants does not fully utilize the collected image data. In fact, the nutrients
and stresses have been proven to be nonuniformly distributed in the plant’s body, both vertically [15]
and horizontally [10]. For example, the N, P, L, Ca, and Mg of the grain and the residue in the same
corn plant were found to be very different [16]. Over 70% of nitrogen was measured in the grain,
while only 30% was stored in the residue. Similarly, there existed huge differences in the chemical
constitutions between the leaf’s mid-rib and the leaf’s edge. Due to its physiological function in
transporting water, the leaf’s mid-rib usually has a higher water content than the other leaf parts [17].
This is also reflected by the phenomenon in which the leaf’s tips and edges turn brown first when the
plant is drought-stressed.

The nutrient and stress patterns of the leaf have been proven to contain unique features for
plant phenotyping studies. One of the most common applications of leaf distribution features is
the determination of the SPAD reading position on the leaf. Due to the unique chlorophyll pattern,
researchers need to find the best representative sampling point for the SPAD measurement. It was
suggested that a position one third of the distance from the rice leaf’s base to the leaf’s tip was
the best position to represent the chlorophyll content of the entire lead blade with low variance of
measurements [14]. Moreover, different nutrient deficiencies show obvious visible distribution patterns,
even from RGB images. A report from DuPont Pioneer (IA, USA) showed that, in the RGB images of
corn leaves, specific patterns could be easily observed and used for differentiating nutrient deficiencies
such as nitrogen, phosphate, magnesium, and potash [18]. Therefore, it is critically important to
develop a finer level of image processing algorithm for nutrient and stress distribution analysis across
the leaf, which could provide better measurements.

Some researchers have realized that the distribution of spectra on the leaf contains useful
information for improving the phenotyping quality [13,14,19]. The simplest proposed idea was to
measure multiple significant points along the leaf’s blade for a more comprehensive evaluation of the
plant. Vig [20] suggested measuring five points while using a SPAD meter: the leaf apex, the first
quarter of the leaf blade, the center of the leaf blade, and the left and the right of the leaf base.
This multipoint measurement method was proven to suffer less variance and be more accurate in
describing the whole plant. Similarly, Hu [13] explored the changes in SPAD readings along both leaf
directions: (1) from the leaf base to the leaf tip; and (2) from the main vein to the leaf margin. For both
directions, the SPAD readings for the nitrogen-stressed plants were observed to have larger variations
compared to the healthy plants, which could be used for diagnosing nutrient deficiency. In current leaf
distribution studies, the whole leaf is simply divided into different parts. By comparing the averaged
measurements between different leaf parts, it is easy to find high variability from the leaf collar to the
leaf tip [20,21]. However, these distribution studies are still at early stages. Researchers are trying to
develop simple empirical solutions, which can not efficiently utilize all the distribution features along
the leaf. The more detailed distribution information across the leaf is still missing, which may contain
valuable signals for phenotyping analyses.

Instead of the traditional empirical methods, a supervised machine learning (ML) approach would
be a more promising alternative to analyze and interpret the distribution of spectra on the leaf [22].
Due to the mechanisms of ML models, they can learn from data and, based on the learning, they can
make the best predictions [23]. In fact, significant work has been done in similar plant phenotyping
analyses, such as predicting nutrient contents [24,25], estimating the plant field [26], accessing biotic or
abiotic stresses [27], and classifying desired traits [28,29]. However, analyses of the distribution features
of leaves using supervised ML models has rarely been conducted. In this paper, the main objective is to
introduce a new algorithm to analyze the nutrient and stress distributions on the leaf’s surface, at the
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pixel level, with machine learning approaches. We took the normalized difference vegetation index
(NDVI), one of the most popular vegetative indices [30,31], as an example: Hyperspectral images of
top-collared corn leaves were collected. The images were processed to generate high resolution NDVI
heatmaps of each individual leaf. NDVI distribution patterns along the leaf’s mid-rib direction were
successfully modeled with selected machine learning algorithms. The NDVI distribution pattern was
then combined with the spectral information for a more precise assessment of the nitrogen stress level.
The result showed that, compared with the traditional algorithms which use an averaged spectrum,
the new distribution analysis algorithm was able to improve the phenotyping quality significantly.

2. Materials and Methods

2.1. Experimental Design

A field experiment was designed and carried out with 64 corn plants (B73xMo17) and 32 corn
plants (P1105AM) in the Agronomy Center for Research and Education field #9D of Purdue University
(40°28'14.3"N, 86°59'40.2”"W, 4540 US-52, West Lafayette, IN 47906) on 17 July 2018. Plants were grown
in four plots. Each plot was about 5.5 m in length and 1.5 m in width. The plots of the B73xMo17
genotype were equally divided into two groups: a high nitrogen treatment group (H), treated with
250 kg/ha; and a low nitrogen treatment group (L), treated with 0 kg/ha. The P1105AM genotype
plants were all high nitrogen treated with 250 kg/ha There were four plots of replicates for each group,
and eight plants were evenly selected from each plot as samples. In total, each group had 32 replicates.
In this study, the B73xMo17 plants were labeled as the control group used for the model construction.
The P1105AM plants had a high nutrient use efficiency property [32], and they were labeled as the
validation group for the performance evaluation.

2.2. Handheld Hyperspectral Device and Plant Sampling

The leaf-scale hyperspectral images of the corn plants in this experiment were collected with
a portable hyperspectral corn leaf imager, LeafSpec, developed by the Purdue Phenotyping Lab
group [33]. As shown in Figure 1, the LeafSpec device takes a hyperspectral image of the entire leaf
by smoothly sliding the leaf through it. The imaging process takes about 5 s for each specimen [1].
LeafSpec has a spectral range of 450 to 900 nm, and its sampling spectral resolution is 0.74 nm. Itis a
push broom imager with a spatial resolution of 878 pixels on each line (Table 1). The device collects
both spectra and morphological data for each leaf. The on-board microcontroller processes the images
from the camera and sends the resulting data to a smartphone app in real time. The smartphone
app then automatically uploads the geo-referenced phenotyping results (GPS location and timestamp
information) to Purdue’s GeoHub GIS system immediately after each measurement for map-viewing
purposes. In this experiment, LeafSpec was used to scan the top matured leaf of each sample plant at
the V8 stage, when the plant had eight leaves with visible leaf collars, from the leaf collar to the leaf tip.

Table 1. Parameters for hyperspectral imaging test.

Parameters LeafSpec
Camera model BFLY-U3-0552M-CS
Spectrograph Customized
Frame rate (FPS) 20
Exposure time (ms) 50
Spectral resolution 676
Spatial resolution (pixels) 878
Spectral range (nm) 450-900

Scan speed (mm/s) 5.08
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Figure 1. Handheld hyperspectral imaging scanner (LeafSpec). The hardware of LeafSpec consists of four
main components: a camera sensor, a scanning mechanism, a lightbox, and an ARM®based microcontroller.

2.3. Image Processing and Segmentation

After data collection, the raw hyperspectral images were first calibrated with a flat strip made
with white Teflon material as the reference. The angle of the white reference was perpendicular to
the view of the camera and lighting source. The image calibration was performed with the following
equation Equation (1):

Rraw = Rark
Runite + Raark

where R is the calibrated image, Ry, is the raw hyperspectral leaf image, Ry, is the dark reference
image, and Ry is the hyperspectral image of the white reference. Then, the leaf tissue was segmented
from the calibrated images using a segmentation procedure with a convolution methodology [12].
A vector of sequential integers from —20 to 20 was multiplied by the reflectance intensity vector from
the red-edged region (680-720 nm). By choosing threshold 7 as the boundary between the plant tissue
and the background, the plant tissue was successfully segmented, as shown in Figure 2. The spectral
features of the leaf tissue (grey region in Figure 2) were used in this study. Due to the high resolution
of the leaf images, the detailed spectra distribution features of the leaf were obtained.

Rcali = (1)

Figure 2. The segmentation result from the raw hyperspectral image. The grey region (plant tissue)
was successfully separated from the black region (background).

2.4. NDVI Calculation

Once the hyperspectral leaf images were processed and segmented for all the 64 (B73xMo17) and
32 (P1105AM) corn leaf samples, the Normalized Difference Vegetative Index (NDVI) Equation (2) was
calculated for each pixel. This index was reported to be related to the nitrogen status and chlorophyll
content of the plant [34,35]. Since NDVI values range from 0 to 1, the jet color bar was set from 0 (blue)
to 1 (red) for the NDVI heatmap image.

Rg00mm — Res0nm
NDV] = ——mM———— 2
Rs00nm + Res501m @)
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where Rggonm and Resonm are the reflectance values of wavelengths 800 nm and 650 nm,
respectively [36,37].

One traditional way of evaluating the plant’s nitrogen level is through calculating the average
NDVI of each corn leaf Equation (3). The average NDVI was compared with the new stress distribution
analysis algorithm’s result.

1 n
A DVI == DVI,
veraged NDV. . ;N Vipixel 3)

where n is the total number of pixels from the segmented leaf image, and NDVIpy is the
pixel-level value.

2.5. Distribution Feature Estimation and Quantification

2.5.1. Preprocessing of NDVI Images

To efficiently utilize the stress distribution information from the obtained NDVI images, we mainly
focused on the mid-rib direction of the leaf (the horizontal direction (X) in Figure 3), which had the
major variance in the stress distribution [20,38]. After averaging the NDVI values along each scanning
line (the vertical direction (Y) in Figure 3), a further rescaling process was applied in order to rescale
all the leaf images to the same length. Since the original leaf samples had different lengths, it was
important to rescale them before comparing their distribution patterns. After rescaling, we equally
divided the leaf image into 50 sections along the mid-rib direction (X) and calculated the average
NDVI for each section. The changes in the NDVI across the 50 sections are shown in Figure 4. Figure 4
shows the different distribution patterns from the different stressed groups: the NDVI value gradually
increased along the mid-rib direction and suddenly dropped near the leaf tip. Differences in the NDVI’s
changing ratio at different sections were observed between the different stressed groups.

0

100

(a) (b)

Figure 3. The Normalized Difference Vegetative Index (NDVI) image of the top-collared leaves of
corn plants under different nitrogen deficiencies at the V8 stage. (a) High nitrogen treatment; (b) Low
nitrogen treatment. The NDVI image followed the expected impacts from nitrogen stresses.
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Figure 4. The average NDVI value of each scanning line along the leaf under two nitrogen treatments
at the V8 stage. The X coordinate is the rescaled leaf from the leaf collar (0) to the leaf tip (50).
(a) All 64 corn leaf samples for genotype B73xMo17; (b) The average of each nitrogen-stressed group.
Red indicates the high nitrogen group, and blue indicates the low nitrogen group.

2.5.2. Application of Machine Learning Algorithms

After preprocessing, the NDVI distribution pattern across the X direction was utilized for the
improved assessment of the nitrogen stress level by training machine learning algorithms. The overall
schematic of the distribution feature analysis procedure is shown in Figure 5.

64@254 x878 64@1 x 878
64@1 x 50
64@1x 1
) 64@1x 1
pr— . Desired output
(b). Rescale
(a). Segment and average along (c). Apply machine learning
vertical direction models

Figure 5. Overall schematic of the distribution feature analysis, from the raw NDVI image to the final
prediction. It contains three major steps: (a) Segment the leaf and average along the vertical direction;
(b) Rescale; (c) Model with the machine learning (ML) methods. Here, 64 @ 254 x 878 means that the
original size of the NDVI image is 254 x 878, with 64 replicates for the model training.

The NDVI images were rescaled to 1 X 50 vectors containing the distribution information along
the leaf’s midrib direction. With 64 training samples from genotype B73xMo17, the final input data
constituted a 64x50 matrix (Figure 5b). The desired output matrix was the nitrogen treatment (stressed
vs. no stress). In this study, we had two nitrogen treatments: the high nitrogen treatment group (H),
treated with 250 kg/ha, and the low nitrogen treatment group (L), treated with 0 kg/ha. The nitrogen
treatments were labeled 1 and 0, representing high and low nitrogen treatment, respectively.

Finally, we obtained a 64x50 input matrix and a 64x1 output vector (Figure 5c), and we selected
the four most commonly used supervised machine learning algorithms from the Scikit-learn library [39]
and denoted them as the regression models (Table 2). The prediction results of the regression models
were then used to evaluate the nitrogen stress level. In order to avoid overfitting issues, we conducted
a 10-fold cross-validation to evaluate each model’s performance. The data were randomly divided into
10 subsets. The nine subsets were used to train the regression models and the left subset was used as
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the validation set. The whole validation process was repeated 10 times. The final estimation error was
averaged over all 10 trails for each model.

Table 2. Overview of machine learning algorithms used for this study.

Regression Algorithm Description Reference

Adaptive Boosting (AdaBoost) is a generalized boost method
AdaBoost which is an ensemble technique that attempts to create a strong [40]
classifier from several weak classifiers.

Logistic Regression is a predictive analysis method usually used

Logistic Regression when the dependent variable is dichotomous (binary).

[41]

Partial Least Squares Regression (PLSR) is a method that performs
PLSR least squares regression on new components after reducing [42]
original predictors to a smaller set of uncorrelated components.

Random Forest is an ensemble technique performing both
Random Forest regression and classification tasks with the use of multiple [43]
decision trees with Bootstrap Aggregation.

2.5.3. Hyperparameter Optimization

Hyperparameter optimization is the process that is used to maximize a supervised ML model’s
performance without overfitting, and it is vital in order to enhance the model’s performance [23].
For optimizing the selected four ML models (AdaBoost, Logistic Regression, Partial Least Squares
Regression (PLSR), and Random Forest), the grid search was selected and performed for the best tuning
parameter values. Starting from the default setting in the Scikit-learn library, a set of candidates for the
tuning parameter values are specified and then evaluated for each of the methods. In consideration
of the efficiency and accuracy of the model searching, we only chose one hyperparameter of each
ML method for the grid search. Taking Random Forest as an example, the maximum depth was
chosen as the tuning parameter from values in a range of 1 to 10. During the whole parameter tuning
process, each of the trained models was 10-fold cross-validated to prevent overfitting. Finally, the best
hyperparameter for each model was determined based on the lowest cross-validated root mean square
error (RMSE). RMSE is interpreted as the absolute measure of fit, which is commonly used in optimizing
machine learning models. It is a good measure of how accurately the model predicts the response,
and it is the most important criterion for fit if the main purpose of the model is prediction [44].

2.5.4. Metrices for Model Evaluation

To evaluate the algorithms’ performance, we conducted the two-sample t-test on the predictions
between the low and high nitrogen groups. We hypothesized that by incorporating the NDVI's spatial
distribution information, the new models’ results could more clearly separate the nitrogen treatments,
compared with the traditional averaged NDVL

In addition to the nitrogen stress assessment, the new model’s prediction results were also used
to separate the images from two different corn genotypes: (1) B73xMo17 (control); (2) P1105AM
(high nutrient use efficiency). P1105AM is a commercial corn product from Pioneer, and it has been
proven to have a high nutrient use efficiency in many studies because it can contribute to deep root
system development and increased nutrient absorption by the plant [32]. Similarly, the two-samplet-test
result was used to compare the new model’s predictions with the conventional averaged NDVI value.

2.6. Software and Computation

In this study, the supervised machine learning analysis and figure plotting were performed in
the Python version 3.7.2 software environment [45]. Machine learning algorithms were carried out
with the package from the Scikit-learn machine learning library [39]. The dataset was analyzed and
manipulated using Pandas [46] and Numpy [47]. The figures were drawn with Matplotlib [48]. All the
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computations were run on an HP 17 G3 Mobile Workstation (Hewlett-Packard, Palo Alto, CA, USA)
equipped with 64-gigabytes (GB) of random-access memory (RAM) and a 2.70 GHz Intel® Core™
i7-6820HQ processor and a GPU of Nvidia Quadro P3000.

3. Results

3.1. The Averaged NDVI Comparison

The traditional averaged NDVI values from the leaf images were compared between the different
nitrogen treatments and genotypes. Based on the two-samplet-test, the high nitrogen group showed
a significantly higher NDVI than the low nitrogen group (Table 3). However, the distributions of
the averaged NDVIs were largely overlapped. Figure 6a shows the estimated probability density
distributions of the averaged NDVI for the two nitrogen treatments by using the kernel density estimate
(KDE) [29].

Table 3. The results of the averaged NDVI values and the prediction results from different machine
learning algorithms for B73xMo17.

Regression Nitrogen Samoles # Mean of the Standard -Log
Algorithms Treatment P Prediction Results Deviation (p-Value)
i .84 .
Ave]r)aged High N 32 0.845 0.006 5.845
NDVI Low N 3 0.837 0.006
High 2 0.744 0.267
AdaBoost igh N 3 7.995
Low N 32 0.281 0.284
Logistic High N 32 0.506 0.008
Regression 7.066
& Low N 32 0.493 0.009
i 2 7 22
PLSR High N 3 0.738 0.225 9.375
Low N 32 0.242 0.298
High 2 0.727 0.263
Random Forest ighN 3 9.519
Low N 32 0.246 0.242
Note: Larger -log10 (p-value) means the two-sample f-test is more significant.
140.0 8.0
High N High N
120.0 4 Low N 7.0 Low N
= Z 6.0
& 100.0 4 o
c c
] T 5.0
T 800 ©
z 210
'_E 60.0 % _—
K] K]
E 40.0 E 2.0
20.0 4 1.04
0.0 0.0
0.82 0.83 0.84 0.85 0.86 0.2 0.4 0.6 0.8 1.0
The averaged NDVI of the top collared leave The prediction result of the top collared leave

(a) (b)
Figure 6. The probability density distribution (PDE) of top-collared leaves for different nitrogen
treatments: High N (red); Low N (blue). (a) The PDE of the averaged NDVI. (b) The PDE of the
prediction results from the Random Forest algorithm.

Similarly, the P1105AM genotype showed a significantly higher averaged NDVI than the control
genotype (Table 4). However, the distribution of the averaged NDVI values between the two genotypes
was severely overlapped too (Figure 7a). This would lead to severe type 1 and type 2 errors in
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classifying the plants, either for nutrient or breeding studies. Therefore, this confirmed that the
conventional averaged NDVI method is not satisfactory in this kind of plant analysis study. A finer
level of image processing algorithm for nutrient and stress analysis is preferred for improved quality
of measurement.

Table 4. The comparison results of the conventional averaged NDVI and the prediction results from
Random Forest.

Corn Nitrogen Standard
Methods Genotypes Treatment Sample # Mean Deviation p-Value
Averaged NDVI B73xMo17 High N 32 0.845 0.006 0.035
P1105AM High N 32 0.848 0.008
Prediction result B73xMo17 High N 32 0.727 0.263 0.004
from Random Forest — p17055) High N 32 0.886 0.137
Note: Smaller p-value means the two-sample ¢-test is more significant.
Hee B73xMo17 701 B73xMol7
p— P1105AM -l P1105AM

2 Zz
g 100.0 4 § 5.0
T 80.0 T a0
z z
Z 60.0 S 3.01
3 3
O 40.0q O 2.0
= a

20.0 1 1.0 1

0.0 0.0 . - ‘
0.82 0.83 0.84 0.85 0.86 0.87 0.88 —-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 142 5] 1.50
The averaged NDVI of the top collared leave The prediction result of the top collared leave
(a) (b)

Figure 7. The probability density distribution (PDE) of top-collared leaves for different genotypes:
B73xMo17 (red); P1105AM (green). (a) The PDE of the averaged NDVI. (b) The PDE of the prediction
results from the Random Forest algorithm.

3.2. Results of Machine Learning Algorithms

The results of the four supervised learning models are summarized in Table 3. They showed that
AdaBoost, Logistic Regression, PLSR, and Random Forest all had smaller two-sample t-test P-values
than the averaged NDVI. Among them, Random Forest had the lowest P-value for classifying corn
leaves from different nitrogen treatments. Besides this, the standard deviation of the prediction results
was used to check the consistency of the model. Random Forest had the lowest and most consistent
standard deviation values for both the high and low nitrogen groups. Taking both findings into
consideration, the Random Forest algorithm delivered the best performance with the most significant
difference and the greatest consistency.

To illustrate the performance of the predictions from the new Random Forest model, the
distributions of the prediction results from the two nitrogen treatments are shown in Figure 6b.
Compared with the distributions of the traditional averaged NDVI (Figure 6a), the new model’s
predictions were able to more clearly separate the two treatments, as shown in Figure 6b. The -log
(P-value) of the two-sample t-test for the new model’s predictions also increased to 9.519 from 5.845
when the traditional averaged NDVI was used.

3.3. Model Evaluation for Different Corn Genotypes

Similarly, the prediction results of the new Random Forest model were also used to differentiate
between the two corn genotypes: (1) B73xMo17 (control); (2) P1105AM (high nutrient use efficiency).
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The statistical results are summarized in Table 4. The results showed that the genotype difference
was more significant with the new model’s prediction result (p-value = 0.004), while it was less
significant with the conventional averaged NDVI (p = 0.035). Since the genotype difference is usually
less significant in plant breeding studies [49], it indicated that the new model was better at detecting
weaker signals compared to the traditional averaged NDVL

4. Discussion and Conclusions

In most of the existing hyperspectral image process algorithms, the spectra across all the plant
pixels are averaged in order to predict the plant’s physiological features. Due to the high variance
in the nutrient and stress levels between different locations on the same leaf, the averaged spectrum
might not provide a satisfactory degree of plant measurement quality.

In this paper, a new hyperspectral image processing algorithm based on Random Forest and
leaf-region rescaling was introduced in order to analyze the nutrient and stress distribution patterns
along the top-collared corn leaf. NDVI was selected as an example feature, since it is widely
used to predict the nutrient status (water, nitrogen content, etc.) of plants, mainly from leaf
mesurements [33,34,38]. A handheld hyperspectral scanner called LeafSpec was used to scan and
collect the hyperspectral images of the top-collared leaves of 96 corn plants with different nitrogen
treatments and genotypes. The NDVI distribution patterns within a single leaf were modeled to predict
the plant’s nutrient status. Four machine learning regression models were selected and compared
for this purpose. All four models were able to more clearly separate the nitrogen treatments than
the traditional averaged NDVI across all the leaf pixels. Among the four models, the Random Forest
method showed the best performance. Similarly, the new model for NDVI distribution analysis also
outperformed the traditional averaged NDVI in differentiating the leaves from different genotypes
as well. The results indicate that although NDVI is a good indicator of the nutrient status of plants,
the evalution of nutrient status can be further improved with our distribution analysis algorithum.

Compared with the conventional method, which only considers the averaged value, the analysis
of distribution features utilized all the variance information in the captured image. Taking both
intensity value and distribution information into consideration, the proposed Random Forest algorithm
successfully improves phenotyping quality, with a better sensitivity in detecting the plant’s nutrient
conditions. Given the successful results, the new distribution analysis algorithm could potentially be
applied to other plant feature measurements as well.

In the future, we would like to collect more diverse leaf samples in order to validate the current
trained model, as well as to make the prospective model more robust. Moreover, an exhaustive
grid search will be done with more hyperparameters involved. Thus, the potential of the current
Random Forest model and other ML models could be fully explored. Meanwhile, subspace clustering
approaches, such as deep clustering [50] and structured auto-encoder methods [51], will also be
explored. Finally, the deep learning-based approach will be tested, as it could learn to automatically
extract the features from the raw images, which might enable it to fully make use of the data.
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