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Renibacterium salmoninarum is a Gram-positive, intracellular pathogen that causes
Bacterial Kidney Disease (BKD) in several fish species in freshwater and seawater.
Lumpfish (Cyclopterus lumpus) is utilized as a cleaner fish to biocontrol sea lice
infestation in Atlantic salmon (Salmo salar) farms. Atlantic salmon is susceptible to
R. salmoninarum, and it can transfer the infection to other fish species. Although BKD
outbreaks have not been reported in lumpfish, its susceptibility and immune response to
R. salmoninarum is unknown. In this study, we evaluated the susceptibility and immune
response of lumpfish to R. salmoninarum infection. Groups of lumpfish were
intraperitoneally (i.p.) injected with either R. salmoninarum (1×107, 1×108, or 1×109 cells
dose-1) or PBS (control). R. salmoninarum infection kinetics andmortality were followed for
98 days post-infection (dpi). Transcript expression levels of 33 immune-relevant genes
were measured in head kidney (n = 6) of fish infected with 1×109 cells/dose and compared
to the control at 28 and 98 dpi. Infected lumpfish displayed characteristic clinical signs of
BKD. Lumpfish infected with high, medium, and low doses had a survival rate of 65%,
93%, and 95%, respectively. Mortality in the high-dose infected group stabilized after 50
dpi, but R. salmoninarum persisted in the fish tissues until 98 dpi. Cytokines (il1b, il8a,
il8b), pattern recognition receptors (tlr5a), interferon-induced effectors (rsad2, mxa, mxb,
mxc), and iron regulation (hamp) and acute phase reactant (saa5) related genes were up-
regulated at 28 dpi. In contrast, cell-mediated adaptive immunity-related genes (cd4a,
cd4b, ly6g6f, cd8a, cd74) were down-regulated at 28 dpi, revealing the immune
suppressive nature of R. salmoninarum. However, significant upregulation of cd74 at 98
org November 2021 | Volume 12 | Article 7332661
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dpi suggests induction of cell-mediated immune response. This study showed that
R. salmoninarum infected lumpfish in a similar fashion to salmonid fish species and
caused a chronic infection, enhancing cell-mediated adaptive immune response.
Keywords: Bacterial Kidney Disease (BKD), Gram-positive pathogen, Renibacterium salmoninarum, lumpfish,
cell-mediated immunity
INTRODUCTION

Bacterial Kidney Disease (BKD) caused by Renibacterium
salmoninarum is a chronic disease of wild and cultured fish,
including Atlantic salmon (Salmo salar), chinook salmon
(Oncorhynchus tshawytscha), rainbow trout (Oncorhynchus
mykiss), Arctic char (Salvelinus alpinus L.), Pacific herring
(Clupea pallasii pallasii), sablefish (Anoplopoma fimbria),
flathead minnow (Pimephales promelas), North Pacific hake
(Merluccius productus), ayu (Plecoglossus altivelis), eel
(Anguilla anguilla) and bivalve molluscs, in both fresh and
marine waters (1–7). R. salmoninarum has primarily adapted
to infect and persist in salmonids (8). However, R. salmoninarum
experimentally infected and caused mortality in non-salmonids
including, sablefish and Pacific herring, shiner perch
(Cymatogaster aggregate), common shiner (Notropis cornutus),
and flathead minnow, and it caused mortalities events in
minnow (Phoxinus phoxinus) and three-spined stickleback
(Gasterosteus aculeatus) (2, 9–12).

R. salmoninarum is a Gram-positive, slow-growing,
fastidious, and facultative intracellular pathogen (7, 13), which
persistence within wild and farmed fish populations is high (2).
R. salmoninarum is the only marine bacterial pathogen that has
been documented of both horizontal (i.e. from fish to fish) and
vertical (i.e. from parent to progeny) transmission (2). R.
salmoninarum has caused substantial losses in the salmonid
aquaculture industry, affecting up to 80% and 40% of the
Pacific and Atlantic salmon stocks, respectively (8). The poor
efficacy of antibiotics and vaccines in BKD prophylaxis has
stymied the control of this pathogen (14, 15).

Lumpfish (Cyclopterus lumpus), a globiform teleost native to the
North Atlantic, is used as an eco-friendly cleaner fish to biocontrol
sea lice (e.g., Lepeophtheirus salmonis) infestations in the Atlantic
salmon aquaculture (16). Lumpfish reduces the utilization of
chemotherapeutants against sea lice in Atlantic salmon farms,
consequently its annual demands have significantly increased in
the North Atlantic (17). Lumpfish health is critical for its optimal
performance and elimination of potential risk of disease
transmission between lumpfish and salmon (18, 19). Pasteurella
sp., Piscirickettsia salmonis, Vibrio anguillarum, Vibrio ordalii,
Aeromonas salmonicida, Pseudomonas anguilliseptica, Moritella
viscosa, and Tenacibaculum maritimum have been reported to be
primary bacterial pathogens in lumpfish (17). Although R.
salmoninarum outbreaks have not been reported in lumpfish, due
to the broad host range of R. salmoninarum (i.e., salmonids, non-
salmonids, bivalves and molluscs) and its horizontal transmission
ability (20, 21), it is important to determine the susceptibility of
lumpfish to R. salmoninarum and its potential risk for BKD.
org 2
The risk of R. salmoninarum infection in lumpfish is significant
because sea lice, like other blood-sucking ectoparasites, act as
R. salmoninarum vector and could transfer R. salmoninarum
from salmon to lumpfish and vice versa (22–24). R.
salmoninarum transmission may occur as a result of the dynamic
interplay between a susceptible host and virulent R. salmoninarum
in an environmental context that facilitates such disease conditions
(i.e., environmental stressors in the marine environment, high
stocking densities in cultured conditions or parasitic infestations)
(25, 26). For instance, horizontal transmission of R. salmoninarum
betweenfish species like sockeye salmon (Oncorhynchus nerka) and
chinook salmon (O. tshawytscha) has been reported (20, 21), and
high biomasswithin sea cages and the freemovement of seawater in
and out of cages could increase the opportunity for disease
transmission (27). Cleaner fish like lumpfish poses moderate risk
of disease transmission to salmon (28). Transmission of amoebic
parasite (Paramoeba perurans) from lumpfish to Atlantic salmon
was demonstrated under controlled conditions (29). Though, the
anticipated risk of infected lumpfish transmit bacterial disease to
salmon is low, Atlantic salmon showed susceptibility to a lumpfish
isolate ofM.viscosa (28, 30).Thus, it could bepossible that lumpfish
act as an asymptomatic carrier and transmit disease threat to
salmon (19). Several studies on the fish immune response to R.
salmoninarum infection have been conducted in salmonids (31–
34). However, the lumpfish susceptibility and immune response to
R. salmoninarum infection is unknown. In addition, lumpfish is
becoming an accessible model to study marine infectious diseases
and teleost immunity (35).

Here, we evaluated the lumpfish susceptibility to a type strain of
R. salmoninarum (ATCC33209) and immune response at early and
chronic infection stages.Wedetermined that lumpfish is susceptible
to R. salmoninarum, causing mortality and a chronic infection in
the surviving individuals, similar to salmonid fish. The immune
response profile of lumpfish head kidney at early and chronic
infection stages showed that R. salmoninarum dysregulates the
expression of transcripts with functional annotations related to
pattern recognition, inflammation, cytokines, iron regulation, and
cell-mediated adaptive immunity.
MATERIALS AND METHODS

Renibacterium salmoninarum Culture
Conditions and Inoculum Preparation
R. salmoninarum type strain [ATCC (American Type Culture
Collection) 33209] was cultured in complex KDM2 broth [1.0%
(w/v) peptone (Difco), 0.05% (w/v) yeast (Difco), 0.05% (w/v) L-
cysteine HCl (Sigma-Aldrich, St. Louis, MO, USA), 10% (v/v)
November 2021 | Volume 12 | Article 733266
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fetal bovine serum (Gibco, Thermofisher, CA, USA), 1.5% (v/v)
nurse medium contained filter-sterilized supernatant from R.
salmoninarum cultures] (36) at 15°C with aeration in an orbital
shaker (180 rpm). When required, KDM2 broth was
supplemented with 1.8% (w/v) agar (Difco), and cycloheximide
(0.005% (w/v); Sigma-Aldrich), D-cycloserine (0.00125% (w/v);
Sigma-Aldrich), polymyxin-B sulfate [0.0025% (w/v);
Sigma-Aldrich], and oxolinic acid [0.00025% (w/v); Sigma-
Aldrich] to make R. salmoninarum selective KDM2 plates
(SKDM2) (37). Bacterial growth was monitored by
spectrophotometry (Genova Nano, Jenway, UK), flow
cytometry (BD FACS Aria II flow cytometer and BD FACS
Diva v7.0 software, BD Biosciences, San Jose, CA, USA) and/or
by colony forming units (CFU) plate counting (38). The purity
and integrity of bacterial cells were evaluated and confirmed by
Gram-staining (39) (Figure 1A) and PCR (40, 41).

The bacterial infection inoculum was prepared as described
previously (42), with modification for R. salmoninarum. Briefly,
bacterial cells were cultured in 1 L of KDM2 at 15°C for 10 days
and harvested at mid-logarithmic phase [Optical Density (O.D.)
600 nm = 0.8 ~1x108 CFUmL-1] (Figure 1B) by centrifugation at
6,000 rpm for 10 min at 4°C, and washed once with sterile
phosphate-buffered saline (PBS, pH 7.0; 136 mM NaCl, 2.7 mM
KCl, 10.1 mM Na2HPO4, 1.5 mM KH2PO4) (43). The bacterial
pellet was resuspended in 100 ml of PBS and subjected to
bacterial enumeration using a bacteria counting kit
Frontiers in Immunology | www.frontiersin.org 3
(Invitrogen) and flow cytometry according to manufacturers’
instructions. The number of bacterial cells in the inoculum was
calculated by dividing the number of signals in the bacterial
frame by the number of signals in the microsphere frame
(Figure 1C). The bacterial cells suspension was normalized to
3x1010 cells ml-1 and serially diluted in PBS to the final infection
doses of 1×109 cells dose-1 (high dose), 1×108 cells dose-1

(medium dose), and 1×107 cells dose-1 (low dose).

Lumpfish
All animal protocols required for this research were reviewed and
approved by the Institutional Animal Care Committee and the
Biosafety Committee at Memorial University of Newfoundland
(MUN) (https://www.mun.ca/research/about/acs/acc/) based on
the guidelines of the Canadian Council on Animal Care (https://
ccac.ca/). Experiments were conducted under protocols #18-01-
JS, #18-03-JS, and biohazard license L-01.

Specific pathogen-free lumpfish (67.0 ± 3 g; mean ± SD) were
produced and cultivated at the Joe Brown Aquatic Research
Building (JBARB; Ocean Sciences Centre, St. John’s, NL,
Canada). Infection studies were conducted in the aquatic level
3 (AQ3) biocontainment unit at the Cold-Ocean Deep-Sea
Research Facility (CDRF; Ocean Sciences Centre, St. John’s,
NL, Canada). Fish were distributed into five 500 L tanks (60
fish per tank) at a biomass of 25 kg m-3 and acclimated for 2
weeks at 10˚C before R. salmoninarum infection. Prior to and
A B E
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FIGURE 1 | Renibacterium salmoninarum infection in lumpfish. (A) Characterization of R. salmoninarum by Gram staining; (B) R. salmoninarum growth curve in
KDM2 broth; (C) Flow cytometric enumeration of R. salmoninarum. FSC: Forward Scatter; FITC: Green Fluorescence. In this plot of forward scatter versus
fluorescence, green signals in the upper left-hand frame represent bacteria stained with the SYTO BC bacterial stain; red signals in the lower right-hand frame
represent microsphere particles, which serve as the standard used to indicate sample volume. P1: Number of signals in the microsphere frame; P2: Number of
signals in the bacterial frame. (D) R. salmoninarum colonies growing on a SKDM2 spread plate inoculated for quantitative culture of the bacterium from fish head
kidney; (E) Experimental design for this study. 300 lumpfish (average weight: 67.0 ± 3 g) were divided in to 5 tanks (60 fish per tank) at the biocontainment
facility. Fish from the control tank were intraperitoneally injected with 100 ml of PBS. Fish from the high (2 tanks for high dose; R1 and R2), medium, and low
dose tanks were intraperitoneally injected with 100 ml of 109, 108, and 107 cells per fish of R. salmoninarum, respectively. The mock-infected tank (PBS control)
and 3 experimental tanks [low, medium, and high (R2 tank) doses of R. salmoninarum] were monitored for mortality. Fish for sampling of spleen, liver and head
kidney were collected from the mock-infected tank and high dose R1 tank. Sampling time points were 0, 14, 28, 42, 56, 84, and 98 days post infection, and 6
fish were sampled at each time point.
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throughout the experimental study, fish were kept at optimal
conditions (500 L tanks with flow-through (75 L min-1) filtered
and UV-treated (8-10˚C) seawater, 95-110% air saturation,
ambient photoperiod (12 h light:12 h dark). The fish were fed
daily at a rate of 0.5% of their body weight per day with the
commercial aquafeed Skretting - Europa 15 (55% crude protein,
15% crude lipid, and 1.5% crude fiber, 3% calcium, 2%
phosphorus, 1% sodium, 5000 IU/kg vitamin A, 3000 IU kg-1

vitamin D, and 200 IU kg-1 vitamin E).

Renibacterium salmoninarum Infection
in Lumpfish
Lumpfish were intraperitoneally (i.p.) injected with 100 ml of 107,
108, or 109 cells of R. salmoninarum dose-1, similar to infection
studies in salmonids and other fish species (44–47). A duplicate
group of lumpfish i.p. injected with the 109 cells dose-1, was
utilized for tissue sampling. Lumpfish i.p. injected with PBS were
used as a control group (Figure 1E). Fish were monitored daily
for mortality and clinical signs until 98 days post-injection (dpi)
(Figure 1E). The survival rate was calculated according to
Survival rate (%) = (Survivors at the end of the experiment/
Initial individuals) × 100 (48).

Samples of spleen, liver, and head kidney were taken at 14, 28, 42,
56, 84, and 98 dpi from six lumpfish infected with 109 cells of R.
salmoninarum dose-1 andPBS injected lumpfish groups (Figure 1E).
Before sampling, lumpfish were netted and euthanized with an
overdose of MS222 (400 mg L−1; Syndel Laboratories, Vancouver,
BC, Canada). Each tissue was aseptically collected and consistently
subsampled for bacteriology, histology and immune-relevant
transcript expression analyses. For bacteriology analysis, 30-100 mg
of tissue was individually placed into a sterile homogenizer bag
(Nasco whirl-pak®, USA), kept on ice and processed soon after
harvesting (< 1h). For histology, tissue sectionswere fully submerged
into 15 ml falcon tubes containing 10% neutral-buffered formalin.
For transcript expressionanalyses, 50-100mgof tissuewasplaced ina
1.5 mL RNase-free tube, flash-frozen using liquid nitrogen, and
stored at -80 ˚C until RNA preparation.

Determination of Bacterial Load in
Lumpfish Tissues
To study R. salmoninarum kinetics in lumpfish tissues, bacterial
loads per g of tissue of infected lumpfish (n = 6, from high dose
infected group) were determined at 14, 28, 42, 56, 84, and 98 dpi
according to previously described procedures for R. salmoninarum
isolation from salmonid kidney (49) with modifications. Briefly,
tissues were kept cold on ice after extraction and during all the
procedures. Tissue samples were aseptically weighed in the sterile
homogenizer bag, suspended in PBS peptone [PBS (pH 7.4); 0.1%
peptone] in the ratio of 1 mL PBS peptone per 0.1 g of tissue, and
mechanically homogenized. Tissue homogenates were then
transferred into sterile 1.5 mL centrifuge tubes and centrifuged at
2500 x g for 20 minutes at 4°C. The absence of bacteria in the
supernatant was confirmed by sub-culturing 10 mL on SKDM2
plates. The pellet was resuspended in PBS peptone at a ratio of 1:1
(w/v) (i.e., 0.1 g of tissuewas resuspended in 100ml of PBS peptone)
and mixed using Vortex mixer (Corning, Life Sciences, USA). The
suspension was serially diluted in PBS peptone (1:10), and either 10
Frontiers in Immunology | www.frontiersin.org 4
ml of the tissue homogenate or 10 mL of the serial 10-fold dilution
was spread onto SKDM2 agar plates (Figure 1D). The plates were
sealedwith paraffin film to prevent desiccation and incubated at 15°
C for up to 4-8weeks. In each sampling point, theR. salmoninarum
recovered on SKDM2 agar plates from lumpfish tissues were pure,
and the observedR. salmoninarum colonies showed a homogenous
morphology (Figure 1D). Also, the inocula obtained from these
colonies were confirmed as R. salmoninarum by Gram-staining
(i.e., presence of pure, Gram-positive diplobacilli) and PCR (i.e.,
positive amplification with the R. salmoninarum specific primers
(40, 41).R. salmoninarum loads (CFU g of tissue-1) were quantified
by dividing the number of colonies by the weight of tissue plated
(i.e., for a starting tissueweight of 0.1 g, 10ml of the homogenatewas
spreadontoSKDM2, thenthe tissueplatedwasequivalent to0.01g).

Histopathological Examination
Tissue samples of spleen, liver, head kidney collected at 14, 28, 42
and 98 dpi from PBS-control and high dose R. salmoninarum
infected lumpfish groups were analyzed for histopathology.
Tissues were fixed in 10% PBS-buffered formalin for three days
at room temperature. The formalin was then removed and the
fixed tissues were preserved in PBS at 4°C until processing for
paraffin embedded tissue block according to established
procedures (50). Tissue sections of 5 mm thickness were
stained with hematoxylin and eosin (Leica Biosystems) using
established protocols (51, 52) and observed for histopathological
changes under the light microscope (Olympus CX40, USA).

RNA Preparation
To study the lumpfish immune response to R. salmoninarum
chronic infection, head kidney samples (n = 6 per group)
extracted at 28 and 98 dpi from control (PBS-injected group) and
infected lumpfish (109 cell dose-1) groupswere selected for real-time
quantitative polymerase chain reaction (qPCR) analyses.
Approximately 80-100 mg of tissue was added to a 1.5 mL
RNase-free centrifuge tube containing 500 µL of TRIzol reagent
(Invitrogen) andhomogenizedusingamotorizedRNase-FreePellet
Pestle Grinder (Fisherbrand, Fisher Scientific, USA). Then,
additional 500 µL of TRIzol was added, mixed by pipetting, and
RNA extractions were completed following manufacturer’s
instructions. Extracted RNA samples were then purified using
RNeasy MinElute Cleanup Kit (QIAGEN, Mississauga, ON,
Canada) following manufacturer’s instructions. RNA samples
were treated with TURBO DNA-free™ Kit (Invitrogen) for
complete digestion of DNA and removal of remaining DNase and
divalent cations, such as magnesium and calcium. Purified RNA
samples were quantified and verified for purity using a Genova
Nano microvolume spectrophotometer (Jenway, UK), and RNA
integrity was tested by 1%agarose gel electrophoresis (43). All RNA
samples used in this study showed acceptable purity ratios (A260/
230 > 1.8 andA260/280 > 2.0) and integrity (28S and 18S ribosomal
RNA bands at a 2:1 ratio) (Supplementary Figure S1).

cDNA Synthesis and qPCR Parameters
First-strand cDNA templates for qPCR were synthesized in 20 mL
reactions from 1 mg purified RNA using SuperScript IV VILO
MasterMix (Invitrogen) following themanufacturer’s instructions.
November 2021 | Volume 12 | Article 733266
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PCR amplifications were performed in 13 ml reactions using
1X Power SYBR Green PCR Master Mix (Applied Biosystems),
50 nM of both the forward and reverse primers and the indicated
cDNA quantity (see below). Amplifications were performed
using the QuantStudio 6 Flex Real-Time PCR system (384-well
format) (Applied Biosystems). The real-time analysis program
consisted of 1 cycle of 50°C for 2 min, 1 cycle of 95°C for 10 min,
40 cycles of 95°C for 15 sec, and 60°C for 1 min, with
fluorescence detection at the end of each 60°C step and was
followed by dissociation curve analysis.

Primer Design and Quality Assurance Testing
For each gene that was subjected to qPCR analyses, a group of
transcripts (with associated TRINITY IDs) were obtained from the
NCBI Sequence Read Archive (SRA) under accession number
SRP238224 (Supplementary File S1). To confirm the identity of
a given transcript, determine its orientation and identify the coding
sequence (CDS), a BLASTx search of the non-redundant (nr)
protein sequences database using a translated nucleotide query
was performed between June and July 2019. A database of all
confirmed transcript sequences for a given gene was created using
Vector NTI (Vector NTI Advance 11.5.4, Life Technologies). Next,
for a given gene, multiple sequence alignments were performed for
its corresponding transcripts using AlignX (Vector NTI Advance
11.5.4). These alignments were used to determine if the transcripts
were identical, contained single nucleotide polymorphisms (SNPs)/
sequencing errors or represented different gene paralogues/
isoforms. In the case of gene paralogues/isoforms, these
alignments were also helpful to determine their percentage
identity and to identify regions where paralogue/isoform-specific
qPCR primers could be designed.

Primers were designed using Primer3 (53–55). However, in the
case of the gene paralogues/isoforms, some were custom-designed
inparalogue/isoform-specific areas toensure specificity.All primers
are located in theCDS and in an area, which overlappedwith that of
the best BLASTx-identified sequence. In the case of gene
paralogues/isoforms, primers were designed in an area with ≥ 3
bp difference between them to ensure specificity. The amplicon size
range was between 90-160 bp. The sequences, amplicon sizes and
efficiencies for all primer pairs used in the qPCR analyses are
presented in Table 1.

Each primer pair was quality tested to ensure that a single
product was amplified (dissociation curve analysis) and that
there was no primer-dimer present in the no-template control.
Amplicons were electrophoretically separated on 2% agarose gels
and compared with a 1 kb plus ladder (Invitrogen) to verify that
the correct size fragment was being amplified (43). Amplification
efficiencies (56) were calculated for both control and immune-
stimulated cDNA pools from head kidney samples. Standard
curves were generated for both cDNA pools using a 5-point 1:3
dilution series starting with cDNA representing 10 ng of input
total RNA. The reported efficiencies are an average of the two
values (Table 1).

Endogenous Control (Normalizer) Selection
Expression levels of the genes of interest (GOIs)were normalized to
expression levels of two endogenous gene controls. To select these
Frontiers in Immunology | www.frontiersin.org 5
endogenous controls, 5 genes [60S ribosomal protein L32 (rpl32),
elongation factor 1-alpha (ef1a), eukaryotic translation initiation
factor 3 subunit D (etif3d), polyadenylate-binding protein 1a
(pabpc1a) and polyadenylate-binding protein 1b (pabpc1b)] were
analyzed. Briefly, the fluorescence threshold cycle (CT) values of all
24 samples in the study were measured (in duplicate) for each of
these transcripts using cDNA representing 4 ng of input total RNA
and then analyzed using geNorm (57). geNormM values for all of
the candidate normalizers were < 0.3, suggesting stable expression;
however, pabpc1b (geNorm M = 0.165) and etif3d (geNorm M =
0.168)were selected as the twoendogenouscontrols as theywere the
most stably expressed.

Experimental qPCR Analyses
For experimental qPCR, head kidney samples from the control
and from the high dose R. salmoninarum infected fish at both 28
and 98 dpi were chosen to represent early (28 dpi) and chronic
(98 dpi) infection stages of R. salmoninarum based on the
survival and head kidney colonization data (i.e., fish showed
mortality along with highest bacterial load at 28 dpi whereas fish
mortality was stabilized even with the considerable amount of
bacterial load at 98 dpi).

qPCR assays were designed for 33 transcripts with immune-
relevant functional annotations (Table 1). These transcripts
include pattern recognition receptors, cytokines, antimicrobial
peptides, acute phase reactants, interferon regulators, interferon-
induced effectors, humoral and cell-mediated adaptive immune
response-related transcripts. An analysis of these transcripts-
related innate and adaptive immunity would provide insight into
host-pathogen interactions between lumpfish and R.
salmoninarum at early and chronic infection stages.

The experimental qPCR analyses were conducted according
to MIQE guidelines (58). cDNA representing 4 ng of input RNA
was used as a template in the PCR reactions. All samples were
analyzed on a single plate (3 GOIs and the two endogenous
controls per plate; 33 GOIs over 11 plates). On each plate, for
every sample, the GOIs and endogenous controls were tested in
triplicate, and a no-template control was included. The relative
quantity (RQ) of each transcript was determined using the
QuantStudio Real-Time PCR Software (version 1.3) (Applied
Biosystems) relative quantification study application, with
normalization to both pabpc1b and etif3d transcript levels, and
with amplification, efficiencies incorporated. For each GOI, the
sample with the lowest normalized expression (mRNA) level was
set as the calibrator sample (i.e., assigned an RQ value = 1)
(Supplementary Table S1). Also, transcript expression levels
were determined using the comparative 2-DDCt method (59–61)
(Supplementary Table S2). The levels of transcript expression
data from the 2-DDCt and the RQ data analysis methods were
used in the main (Figures 4–6), and the supplementary
(Supplementary Figures S3–S5) graphs, respectively.

Statistical Analysis
All data are expressed as mean ± standard error (SE). Assumptions
of normality and homoscedasticity were tested for the detected
variances. Kaplan-Meier estimator was used to obtain survival
fractions after the R. salmoninarum infection. The log‐rank test
November 2021 | Volume 12 | Article 733266
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TABLE 1 | qPCR primers used in this study.

Gene name (symbol) Trinity ID (SRP238224) Primer sequence (5′ to 3′) R2 Amplification
efficiency (%)

Amplicon
size (bp)

Genes of interest
C-C motif chemokine-like 19 (ccl19) DN10492_c0_g1_i4 F: GCTCAGGTACCAACGGACTG 0.999 88.4 94

R: CGTGTCCTCCGATCTGTCTC
cyclooxygenase-2 (cox2) DN750_c1_g1_i1 F: GAATTCCTCACCTGGGTCAA 0.994 90.6 122

R: ATGGCATCTCTGAGGAAGGA
hepcidin anti-microbial peptide (hamp) DN2993_c0_g1_i4 F: GCTCGCCTTTATTTGCATTC 0.998 95.1 100

R: ATATGCCGCAACTGGAGTGT
HLA class II histocompatibility antigen gamma chain (cd74) DN13708_c0_g1_i6 F: ACGCCAAGACACCTCTGACT 0.999 89.8 108

R: GGAAGGTCTCGTTGAACTGC
immunoglobulin delta heavy chain (ighd) DN1665_c0_g2_i7 F: GGAGACAGTGTTGTGCTGGA 0.999 88.4 121

R: GGGCTTCAGGAAATTCAACA
immunoglobulin heavy chain variable region a (igha) DN1665_c0_g3_i2 F: AGGACTGGAGTGGATTGGAA 0.999 90.5 129

R: TGCATGGTCTGTCCGTTTAG
immunoglobulin heavy chain b (ighb) DN1665_c0_g4_i1 F: GAATGGAACAAGGGGACAAA 0.999 89.6 108

R: CGGTCGTTGAGTCTCTCCTC
immunoglobulin mu heavy chain a (ighma) DN121_c0_g3_i3 F: CAGCTTCTGGATTAGACTTTGA 0.998 90.2 107

R: GATGTTGTTACTGTTGTGTTGG
immunoglobulin mu heavy chain b (ighmb) DN121_c0_g2_i2 F: CAGTCTCTAGGATATCATTCAG 0.992 92.1 101

R: GTGGGTACCATCGTCACTATT
immunoglobulin mu heavy chain c (ighmc) DN121_c0_g3_i4 F: CAACATCCGGAATCACATTCAG 0.998 87.7 112

R: GATTTTGAGGTCCCACTACCAT
interleukin 1 beta (il1b) DN22448_c0_g2_i1 F: ATTGTGTTCGAGCTCGGTTC 0.996 97.4 98

R: CGAACTATGGTCCGCTTCTC
interleukin 8a (il8a) DN21169_c0_g1_i2 F: AAGTCATAGCCGGACTGTCG 0.999 96.3 109

R: CCCTGCTGATGGAGTTGTCT
interleukin 8b (il8b) DN4613_c0_g1_i4 F: GTCTGAGAAGCCTGGGAGTG 0.996 87.3 138

R: TCAGAGTGGCAATGATCTCG
interleukin 10 (il10) DN41536_c0_g1_i1 F: AACCAGTGCTGTCGTTTCGT 0.986 97.8 106

R: TGTCCAAGTCATCGTTTGCT
serum amyloid A 5 (saa5) DN111073_c0_g2_i2 F: AGAGTGGGTGCAGGAAAGAA 0.992 90.3 116

R: GAAGTCCTGGTGGCCTGTAA
T-cell surface glycoprotein CD4a (cd4a) DN9678_c0_g2_i9 F: CGTTAAGGTGCTGCAGATCA 0.995 84.9 122

R: GCGGAAACCATTTCAGTTGT
T-cell surface glycoprotein CD4b (cd4b) DN24146_c0_g1_i7 F: TGTGGGGTTAGCTCCTTCAC 0.996 94.2 138

R: TGTTTGCGATCTCACCTTTG
lymphocyte antigen 6 complex locus protein G6f (ly6g6f) DN12606_c0_g1_i8 F: TCCATGTGGACGTGACTGTT 0.994 88.2 100

R: AACGGTGTCTGAGCCTGAGT
T-cell surface glycoprotein CD8 alpha chain (cd8a) DN11791_c0_g1_i1 F: GCTTTGCTCTCTGGGCATAC 0.996 89.6 104

R: TCCGGGTTCTTAAGTGGTTG
toll-like receptor 5a (tlr5a) DN29432_c0_g1_i1 F: TGGACGAGTTTCAGCAGTTG 0.988 95.6 129

R: AGACCCCTCACATGTCCAAG
toll-like receptor 5b (tlr5b) DN55824_c0_g1_i5 F: CCATCATGCACTTTGTACGG 0.999 88.6 127

R: TGCTGTTGATCTCCCTGATG
tumor necrosis factor alpha (tnfa) DN26791_c0_g1_i1 F: TTAGAAGGGAGCTGCGAAGA 0.982 90.1 119

R: ATGACGATCCGGTTGTTCTC
ATP-dependent RNA helicase lgp2 (lgp2) DN49186_c0_g1_i1 F: GCAACCTGGTGGTACGCTAT 0.998 84.9 104

R: CTCGGCGACCACTGAATACT
C-C motif chemokine-like 20 (ccl20) DN9266_c0_g1_i3 F: ATGGGCTACACCATCCAGAC 0.997 90.6 102

R: CCACTTGGATGAAGGGTCAG
interferon gamma (ifng) DN81754_c0_g1_i1 F: CTCTGGCTGGTTGTCTGTCA 0.996 90.7 105

R: TCGCTCTCTCGATGGAATCT
interferon regulatory factor 7 (irf7) DN6933_c0_g1_i2 F: GGCTCATAGAGCAGGTGGAG 1.000 81.1 115

R: CTGTCTTCGTCGTTGCAGTC
interferon-induced GTP-binding protein a (mxa) DN526_c0_g1_i6 F: TGCACAGACTCAAGCAGAGC 0.999 89.6 144

R: CCACACTTGAGCTCCTCTCC
interferon-induced GTP-binding protein b (mxb) DN526_c0_g1_i3 F: TTGCGGCTTGGAAAAATATC 0.997 94.2 95

R: TCCACGGTACCTTCGTTCAT
interferon-induced GTP-binding protein c (mxc) DN237_c1_g1_i1 F: GGAAGTGGCAGACATTGTGA 0.999 93.5 131

R: CTGCTGCAATCTCCTTCTCC
radical S-adenosyl methionine domain containing protein
2/viperin (rsad2)

DN16769_c0_g1_i1 F: AGGAGAGGGTGAAGGGAGAG 0.992 98.5 133
R: ATCCAGAGGCAGGACAAATG

signal transducer and activator of transcription 1 (stat1) DN3250_c2_g1_i2 F: CTCAAGATGCTGGACTGCAA 0.999 87.9 104

(Continued)
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was used to compare the survival curve trends (p<0.0001), and a
one-way ANOVA followed by Tukey’s multiple comparison post
hoc test was used to determine significant differences between the
survival of control and infected groups. Also, one-way ANOVA
followedby theHolm-Sidakposthoc testwas conducted to compare
differences between tissues and within fish individuals at a single
time point, whereas a non-parametric Kruskal-Wallis test was
performed to compare the tissue bacterial loads between various
time points per organ.

Transcript expression data were analyzed using a two-way
ANOVA test, followed by the Sidak multiple comparisons post
hoc test to identify significant differences between treatments
(control and infected groups) at a single time point and for each
treatment at different time points (i.e., 28 and 98 dpi). In all cases,
p < 0.05 was considered statistically significant. All statistical
analyses were performed using GraphPad Prism 8.0 (GraphPad
Software, La Jolla California USA, www.graphpad.com).
RESULTS

Lumpfish Survival, R. salmoninarum
Infection Kinetics and Histopathology
BKD is a slowly progressing systemic infection depending on the
virulence of the R. salmoninarum strain that correlates with their
number of major soluble antigen (msa) gene copies (2, 62). In this
study, we used R. salmoninarum type strain ATCC 33209, which
has only two msa copies (63), and it is known to exhibit lower
pathogenicity, cause low mortality and a chronic infection in
salmonids (36, 45, 64). Lumpfish infected with R. salmoninarum
ATCC 33209 displayed characteristic clinical signs of a chronic
BKD infection (Figure 2A). Mortality began at 20 dpi, gradually
increased and stabilized after 50 dpi in the high dose infected group
(1x109 cells dose-1) (Figure 2B). In themedium (1x108 cells dose-1)
Frontiers in Immunology | www.frontiersin.org 7
and low (1x107 cells dose-1) dose groups, mortality began at 40 dpi
and stabilized after 50 dpi aswell (Figure 2B). External and internal
BKD clinical signs and symptoms were observed in both dead and
sampled fish. The clinical signs of R. salmoninarum infected
lumpfish included hyper-pigmentation, lethargy, abdominal
ascites, and hemorrhages in ventral sites. Examination of internal
organs revealed splenomegaly, hydronephrosis, pale liver,
pseudomembrane formation on internal organs, and ascites
(Figure 1F). The survival rate for the high, medium, and low
doses of R. salmoninarum groups was 65%, 93%, and 95%,
respectively (Figure 2B). Cumulative number of fish mortalities
(and mortality rate) observed during the experiment were 21 dead
fish out of 60 total fish (35%), 4 dead out of 60 total fish (7%) and 3
dead out of 60 total fish (5%) for high, medium and low R.
salmoninarum doses, respectively. The mortality data often
considered the fish deaths from the tanks assigned for mortality
observation (i.e., sampled fish were not considered in the analyses)
(Figure 1E). Significantly lower survival (p<0.001) was observed in
the high-dose R. salmoninarum infected group, whereas there were
no significant differences in survival between PBS control, low and
medium-dose fish groups.

R. salmoninarum colonized all of the organs sampled in the
high-dose infected lumpfish (Figure 2C; Supplementary Figure
S2). Significantly higher bacterial loads were observed at 28, 42,
and 56 dpi compared to 98 dpi (Figure 2C). A substantial
decrease in the bacterial load was observed at 84 and 98 dpi.
Tissue colonization results correlated with the mortality data
(Figures 2B, C).

In contrast to the control fish, spleen, liver, and head kidney
of high dose infected fish at 14, 28, and 42 dpi showed apparent
histopathological damages (Figures 3B–D, G–I, L–N). Tissue
damage was observed in all three organs at 14, 28, and 42 dpi
(Figures 3C, G, M, N). Hemorrhages were observed in the spleen
and liver at 14 and 42 dpi (Figures 3B, D, G, I). The liver
TABLE 1 | Continued

Gene name (symbol) Trinity ID (SRP238224) Primer sequence (5′ to 3′) R2 Amplification
efficiency (%)

Amplicon
size (bp)

R: ATGCTCTCGATCCACTTGCT
toll-like receptor 3 (tlr3) DN30532_c0_g1_i1 F: AGAGGGCAGGGAATTTGAGT 0.999 92.9 101

R: TGCACGAGTCATTCTCCAAG
toll-like receptor 7 (tlr7) DN760_c1_g2_i1 F: GGCAAACTGGAAGAATTGGA 0.998 90.5 100

R: GAAGGGATTTGAGGGAGGAG
Candidate normalizers
60S ribosomal protein L32 (rpl32) DN3569_c0_g1_i2 F: GTAAGCCCAGGGGTATCGAC 0.999 92.9 107

R: GGGCAGCATGTACTTGGTCT
elongation factor 1 alpha (ef1a) DN12280_c0_g1_i3 F: CAAGGGATGGAAGATTGAGC 0.996 94.3 151

R: TGTTCCGATACCTCCGATTT
eukaryotic translation initiation factor 3 subunit D (etif3d)* DN7623_c0_g1_i5 F: AGCCAGATCAACCTGAGCAT 1.000 90.3 134

R: AGGCTGTACACCCGAATCAC
polyadenylate-binding protein 1 a (pabpc1a) DN6565_c0_g2_i3,

DN6565_c0_g2_i4
F: CAAGAACTTTGGGGAGGACA 0.998 86.4 125
R: TGACAAAGCCAAATCCCTTC

polyadenylate-binding protein 1 b (pabpc1b)* DN6565_c0_g2_i5 F: GACTCAGGAGGCAGCTGAAC 0.998 92.0 102
R: TCGCGCTCTTTACGAGATTT
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 2021 |
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Trinity IDs were associated with the groups of transcripts that were obtained from the NCBI Sequence Read Archive (SRA) under accession number SRP238224.
All Tm (melting temperatures) were set at 60°C by default during primer design using primer 3.
Amplification efficiencies were calculated using a 5-point 1:3 dilution series starting with cDNA representing 10 ng of input total RNA. See Materials and Methods for details.
*Expression levels of the transcripts of interest were normalized to expression levels of both etif3d and pabpc1b.
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sections showed increased vacuolations in hepatocytes at 28 and
42 dpi (Figures 3H, I). Melanomacrophage centers were
observed in the spleen and liver at 42 dpi (Figures 3D, I).
Head kidney sections showed congested glomerulus with diffuse
thickening of the basement membrane at 14 and 42 dpi
(Figures 3L, N). Tissue sections of control fish and high dose
infected fish at 98 dpi seemed similar without any significant
histopathological damages (Figures 3A, E, F, J, K, O).

Lumpfish Immune-Related Gene
Expression in Response to R.
salmoninarum Infection
The immune response of lumpfish to R. salmoninarum infection
was evaluated in head kidney at 28 dpi and 98 dpi in 109 cells
dose-1 infected fish and compared to non-infected fish (PBS-
control) at the same time points. Of the 33 genes (Table 1) that
were evaluated, 12 genes were upregulated, and 4 genes were
downregulated at both 28 and 98 dpi, whereas 17 genes were
dissimilarly regulated.

Thirteen genes related to pattern recognition (Figures 4A–E)
and cytokines (Figures 4F–M) were differentially regulated. toll-
like receptor 3 (tlr3) and toll-like receptor 7 (tlrl7) were significantly
downregulated in infectedfish compared to the controlfishat28dpi
Frontiers in Immunology | www.frontiersin.org 8
(Figures 4A, D). toll-like receptor 5a (tlr5a) expression was
significantly upregulated at 28 dpi compared to the respective
control group (Figure 4B). toll-like receptor 5b (tlr5b) and ATP-
dependent RNA helicase lgp2 (lgp2) showed no significant
differences in their expression levels between control and infected
fish at 28 dpi and 98 dpi, respectively (Figures 4C, E).

Canonical proinflammatory cytokines encoding genes, including
interleukin1beta (il1b), interleukin8a (il8a), interleukin8b (il8b), and
the anti-inflammatory cytokine interleukin 10 (il10), showed
significantly higher expression in infected fish at 28 dpi compared
to the non-infected controlfish (Figures 4F–I). The expression levels
of il1b, il8a, il8b, and il10 in infected fish were not significantly
different at 98 dpi compared to the control fish (Figures 4F–I).

R. salmoninarum infection significantly downregulated tumor
necrosis factor alpha (tnfa) and C-C motif chemokine-like 20
(ccl20) expression at 28 dpi (Figures 4K, M). In contrast,
interferon gamma (ifng), tnfa and ccl20 levels were
significantly upregulated at 98 dpi compared to the respective
non-infected fish group (Figures 4J, K, M).

Expression levelsof 9genes regulating the innate (Figures5A–E)
and inflammatory (Figures 5F–I) immune response were assessed.
Geneexpression levelsofhepcidinantimicrobial peptide (hamp) and
serum amyloid A 5 (saa5)were significantly upregulated in the head
A B

C

FIGURE 2 | Bacterial Kidney Disease clinical signs, survival rates, and tissue colonization of Renibacterium salmoninarum infected lumpfish (A) Bacterial Kidney
Disease signs and symptoms in lumpfish detected from 21 to 56 dpi. Pictures were randomly selected to visualize the external and internal signs compared to the
control. Specific signs are indicated with yellow arrowheads. The external signs observed were (i) Control lumpfish; ii. Skin darkening; iii. Abdominal distension due to
ascites; iv. Hemorrhages in ventral sites. The internal signs observed were v. Internal organs of control lumpfish; vi. Enlarged spleen and kidney; vii. Diffuse white
membranous layer (pseudo membrane) on internal organs and pale liver; and viii. Accumulation of turbid fluid inside the abdominal sacs and cavities; (B) Percent
survival of lumpfish exposed to experimental infection with high (1×109 cells/fish), medium (1×108 cells/fish) or low (1×107 cells/fish) doses of R. salmoninarum
compared to a PBS control; **** denotes the significant differences between infected and control groups (p < 0.001); (C) Renibacterium salmoninarum tissue
colonization in lumpfish. Bacterial loads in spleen, liver and head kidney of lumpfish (n = 6) infected with the high dose (1 x 109 cells/fish) of R. salmoninarum after 14,
28, 42, 56, 84, and 98 days post infection (dpi). Asterisks (*) represent significant differences (*p < 0.05, **p < 0.01) in the bacterial loads between time points (14,
28, 42, 56 and 84 dpi) per organ compared to the bacterial load at 98 dpi, as determined by the non-parametric Kruskal-Wallis test.
November 2021 | Volume 12 | Article 733266

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gnanagobal et al. Lumpfish Response to Renibacterium salmoninarum Infection
kidney of infected fish at 28 dpi compared to the respective non-
infected control (Figures 5A, B).

At 28 dpi, interferon regulatory factor 7 (irf7) was significantly
downregulated (Figure5C).Conversely, interferon-inducedeffectors
such as radical S-adenosyl methionine domain-containing protein 2/
viperin (rsad2) and three gene isoforms of interferon-induced GTP-
binding protein (mxa, mxb and mxc) were significantly upregulated
compared to the control fish at 28 dpi (Figures 5D, G–I).
cyclooxygenase-2 (cox2) expression was significantly upregulated in
infected fish at 98 dpi compared to the control (Figure 5F).

Theexpression levelsof11genesplayingputative roles inhumoral
(Figures 6A–F) and cellular-mediated adaptive immunity
(Figures 6G–K) were assessed. Humoral (immunoglobulin heavy
chain variable region a (igha), immunoglobulin delta heavy chain
(ighd), immunoglobulin mu heavy chain a (ighma), and
immunoglobulin mu heavy chain b (ighmb)), and cellular-mediated
(T-cell surface glycoprotein CD4a (cd4a), T-cell surface glycoprotein
CD4b (cd4b), lymphocyte antigen 6 complex locus proteinG6f (ly6g6f),
T-cell surface glycoprotein CD8 alpha chain (cd8a), andHLA class II
histocompatibility antigen gamma chain (cd74)) adaptive immunity-
related genes showed significant downregulation at 28 dpi in the
infected head kidney compared to the non-infected control
(Figures 6A, C–E, G–K).
Frontiers in Immunology | www.frontiersin.org 9
At 98 dpi, only one adaptive immune-related gene, cd74, was
significantly upregulated in infected fish compared to the control
(Figure6K).Expressionofmost of the genes related tohumoral and
cellular-mediated immunity in infectedfishat98dpiwas restored to
similar levels observed in the control fish (Figures 6B, D, E–K).

The qPCR results were similar between the 2-DDCt and the RQ
data analysis methods. However, a few differences in the
significance levels were detected for tlr3, tnfa, rsad2, ighma and
cd8a expression at 28 or 98 dpi (Figures 4A, K; 5E; 6D, J and
Supplementary Figures S3A, K; S4E; S5D, J).

DISCUSSION

Aspreviouslymentioned, lumpfish are in close contactwith salmon
when delousing sea lice in sea cage aquaculture (17, 19), and this
interaction could result in the horizontal transmission of infectious
disease agents between both species, including R. salmoninarum.
Atlantic salmon is susceptible to R. salmoninarum, and it could
transfer this pathogen to otherfish species (20, 21). It is believed that
lumpfish could act as a non-symptomatic carrier and transmit
disease to cohabitating salmon (19). Haugland et al. (29) confirmed
the experimental transmissionofamoebicparasite fromlumpfish to
salmon (29). Also, Atlantic salmon susceptibility to a lumpfish
EDBA
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FIGURE 3 | Histopathology changes in lumpfish tissues during Renibacterium salmoninarum infection. Lumpfish spleen, liver, and head kidney were collected from
the high-dose (1 x 109 cells/fish) infected group at 14, 28, 42 and 98 days post infection (dpi) and from the control (PBS-mock infected) group and stained with
haematoxylin and eosin (H & E). Histopathological changes in lumpfish spleen: (A) Spleen section from control fish; (B) Spleen section from infected fish at 14 dpi,
showing hemorrhages (black arrowhead); (C) Spleen section from infected fish at 28 dpi, showing degenerations (blue arrowhead); (D) Spleen section from infected
fish at 42 dpi, showing hemorrhage (black arrowhead) and melanomacrophage center [MMC] (green arrowhead); (E) Spleen section from infected fish at 98 dpi.
Histopathological changes in lumpfish liver: (F) Liver section from control fish; (G) Liver section from infected fish at 14 dpi, showing hemorrhage (black arrowhead)
and degeneration (blue arrowhead); (H) Liver section from infected fish at 28 dpi, showing increased vacuolations (red arrowhead); (I) Liver section from infected
fish at 42 dpi, showing hemorrhage (black arrowhead), MMC (Green arrowhead) and vacuolation (red arrowhead); (J) Liver section from infected fish at 98 dpi.
Histopathological changes in lumpfish head kidney: (K) Head kidney section from control fish; (L). Head kidney section from infected fish at 14 dpi, showing
congested glomerulus (yellow arrowhead); (M). Head kidney section from infected fish at 28 dpi, showing degenerations (blue arrowhead); (N). Head kidney section
from infected fish at 42 dpi, showing degeneration (blue arrowhead) and congested glomerulus (yellow arrowhead); (O). Head kidney section from infected fish at 98
dpi. Stain: H & E; Magnification: ✕ 400.
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isolate of M. viscosa reflecting the disease risk to salmon (30).
Although BKD episodes have not been reported in lumpfish, its
susceptibility and immune response to R. salmoninarum are
unknown. Here, we examined the susceptibility of lumpfish to
R. salmoninarum (ATCC 33209) type strain, which has been
utilized for several infection studies in different fish species. Using
similar R. salmoninarum infection doses like other studies, we also
determined the infection kinetics and lumpfish molecular immune
response at early and late chronic infection with R. salmoninarum.
This study is the first report of R. salmoninarum experimental
infection on lumpfish and provides immune-relevant information
on how the lumpfish respond to R. salmoninarum.

For theR. salmoninarum infectionkinetics studies,we selected the
plate counting method in SKDM2 over typical methods for
R. salmoninarum quantification (e.g., FAT, ELISA, and PCR)
because it directly enumerates viable bacteria (7). Spleen and liver
Frontiers in Immunology | www.frontiersin.org 10
were also analyzed, in addition to the head kidney, to consider non-
kidney R. salmoninarum infections, which have been well described
in salmonids (65, 66). In lumpfish, R. salmoninarum infection
becomes evident at 2 weeks post-infection, similar to chinook
salmon (O. tshawytscha) i.p. infected with 1×106 R. salmoninarum
cellsdose-1 (67). InanantibodycaptureELISAandwesternblotbased
analysis, Turaga et al. (1987) reported that levels ofR. salmoninarum
soluble antigens in infected coho salmon (Oncorhynchus kisutch)
gradually increased during the course of infection, and peaked at 20
dpi and thereafter, fish mortality was observed (68). Although in the
current study we did not measure R. salmoninarum soluble antigen
levels, mortality of R. salmoninarum infected lumpfish started at 20
dpi, similar to coho salmon, i.p. infected with R. salmoninarum cells
in the exponential phase of growth (O.D. 500 nm = 1.0) (68). This
suggests that mortality could be initiated by the accumulation of
R. salmoninarum MSA in the infected lumpfish. Because increased
A B EDC
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FIGURE 4 | Expression of transcripts related to pattern recognition (A-E) and cytokines (F-M) in lumpfish head kidney in response to R. salmoninarum infection at
28 and 98 days post infection (dpi). Transcript expression levels in head kidney from control (PBS-mock infected group) and infected [high dose (1×109 cells/dose) of
R. salmoninarum] lumpfish at 28 and 98 dpi were analyzed using qPCR. Relative expression was calculated using the 2−DDCt method and log2 transformed; etif3d
and pabpc1b were the endogenous control genes. A two-way ANOVA test, followed by the Sidak multiple comparisons post hoc test was used to identify significant
differences between treatments (control and infected groups) at a single time point, and for a given treatment at different time points (28 and 98 dpi). Asterisks (*)
represent significant differences between treatments at each time-point (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). Different letters represent significant
differences between control (lower case) and infected (upper case) groups at 28 compared to 98 dpi. Each value is the mean ± S.E.M (n = 6).
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MSA levels correlated with the severity of infection and mortality
(68, 69).

Lumpfish infectedwitha lethal doseofR. salmoninarum showed
prominent BKD associated clinical signs at 14, 28, and 56 dpi
(Figure 2A), similar to clinical signs described in other fish species
(7). Bacterial loads in spleen, liver and head kidney at various time
points indicated thatR. salmoninarum establishedan infection in all
infected individuals (Figure 2C). In contrast, carp (Cyprinus carpio
L.), a non-salmonid-like lumpfish, showed resistance to R.
salmoninarum infection (4.8×107 and 4.8×108 cells/dose), and no
bacteriawere recovered fromheadkidneyafter infection (47).These
results indicate that the lumpfish is susceptible toR. salmoninarum
and could be a potential vector for this pathogen.

Significantly higher tissue bacterial loads at 28, 42, and 56 dpi
correlated with highermortality (Figures 2B, C). However, after fish
Frontiers in Immunology | www.frontiersin.org 11
mortality ended (Figure 2B), R. salmoninarum remained in the
internal tissues (Figure 2C and Supplementary Figures S2E, F),
indicating a pattern of chronic infection. Arctic charr (15), chinook
salmon (62), lamprey (70) and carp (47) cleared R. salmoninarum
infection after 175, 115, 92 and 38 days, respectively. R.
salmoninarum persisted in lumpfish tissues at least for 98 dpi,
which is consistent with studies in chinook salmon where R.
salmoninarum caused a chronic infection and persisted for up to
100 dpi (36). However, if the current study had been extended, it is
possible that lumpfish could have cleared the R. salmoninarum after
98-100dpi, as seen in theArctic charr (15) or remains in other tissues
like gonads (i.e., R. salmoninarum in ovarian fluid is an important
source of infection for the eggs) to facilitate vertical transmission (7).

The lethal dose 50 (LD50) of R. salmoninarum ATCC 33209
in various salmonid hosts ranged from 1.4×105 to 2.94×108
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FIGURE 5 | Expression of transcripts related to regulation of the innate (A–E) and inflammatory (F–I) immune response in lumpfish head kidney in response to R.
salmoninarum infection at 28 and 98 days post infection (dpi). Transcript expression levels in head kidney from control (PBS-mock infected group) and infected [high
dose (1×109 cells/dose) of R. salmoninarum] lumpfish at 28 and 98 dpi were analyzed using qPCR. Relative expression was calculated using the 2−DDCt method and
log2 transformed; etif3d and pabpc1b were the endogenous control genes. A two-way ANOVA test, followed by the Sidak multiple comparisons post hoc test was
used to identify significant differences between treatments (control and infected groups) at a single time point, and for a given treatment at different time points (28
and 98 dpi). Asterisks (*) represent significant differences between treatments at each time-point (*p < 0.05, ****p < 0.0001). Different letters represent significant
differences between control (lower case) and infected (upper case) groups at 28 compared to 98 dpi. Each value is the mean ± S.E.M (n = 6).
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CFU dose-1 (64). We could not determine the LD50 for R.
salmoninarum ATCC 33209 in lumpfish because the fish infected
with the highest dose (1×109 cells dose-1), similar to other studies,
showed only 35% mortality. In contrast, mortality reached 100%
within 15 days in Atlantic salmon infected with 108 cells dose-1 of
highly virulent R. salmoninarum strains (71). The LD50 of R.
salmoninarum type strain in lumpfish might be greater than 1×109

CFUdose-1, and although 109 cells dose-1 ofR. salmoninarumATCC
33209was sufficient to invade, replicate, and establish an infection in
lumpfish, its lethalitywas lower than in salmonid species (36, 72–75).

Differences in virulence betweenR. salmoninarum isolates from
several geographical regions and fish hosts have been reported (64).
Rhodes et al. (76) demonstrated the positive correlationbetween the
functional msa gene copy number per bacterial cell and virulence
(i.e., increased mortality) (76). The type strain R. salmoninarum
ATCC33209used in this studyhas twomsagenecopies, andbothof
these msa gene copies are essential for disease development and
Frontiers in Immunology | www.frontiersin.org 12
mortality (62, 63). Compared to other R. salmoninarum strains, R.
salmoninarumATCC 33209 has a reduced virulence. For example,
this strain showed lower virulence in chinook and coho salmon
compared to the other isolates, and it is not capable of causing BKD
in rainbow trout (45, 64). Furthermore, R. salmoninarum type
strain does not infect the carp (Epithelioma papillosum) cell line,
evenwithadoseof1×109 cells, in contrast tomore virulent strainsof
R. salmoninarum (e.g., FT10) that are capable of invading and
proliferate in these cells (45, 77). R. salmoninarum ATCC 33209
type strain was isolated in 1974, and it has been subjected to
extensive laboratory passages, which may have contributed to its
relatively reduced virulence (76). In the present study, R.
salmoninarum ATCC 33209 was unable to kill all infected
lumpfish even at a high dose, and this could be linked to the low
virulence documented for R. salmoninarum ATCC 33209.

Histology observations in the sampled lumpfish infected with
R. salmoninarum showed similarities with the histopathological
A B

FE HG
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FIGURE 6 | Expression of transcripts related to humoral (A–F) and cellular mediated (G–K) immunity in lumpfish head kidney in response to R. salmoninarum
infection at 28 and 98 days post infection (dpi). Transcript expression levels in head kidney from control (PBS-mock infected group) and infected [high dose (1×109

cells/dose) of R. salmoninarum] lumpfish at 28 and 98 dpi were analyzed using qPCR. Relative expression was calculated using the 2−DDCt method and log2
transformed; etif3d and pabpc1b were the endogenous control genes. A two-way ANOVA test, followed by the Sidak multiple comparisons post hoc test was used
to identify significant differences between treatments (control and infected groups) at a single time point, and for a given treatment at different time points (28 and 98
dpi). Asterisks (*) represent significant differences between treatments at each time-point (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). Different letters
represent significant differences between control (lower case) and infected (upper case) groups at 28 compared to 98 dpi. Each value is the mean ± S.E.M (n = 6).
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characteristics of BKD in salmonids (Figure 3). For instance,
glomerulopathy is related to antigen-antibody complexes
deposition in the glomeruli, which causes thickening of the
glomerular basement membrane (10, 78). In concordance with
BKD histopathology, congested glomeruli were observed in the
head kidney of infected lumpfish at 14 and 42 dpi (Figures 3L, N).
Also, lysed and disrupted melanomacrophages resulting from the
dispersal of pigments in tissues during BKD (79, 80) were observed
in spleen and liver from infected lumpfish at 42 dpi (Figures 3D, I).
Nohistopathological differenceswere observed at 98dpi (Figure 3).
The persistence of R. salmoninarum in lumpfish tissues at 98 dpi
was indicative of a chronic infection, and the bacteriummay remain
dormant or controlled by the fish immune system (81). The lack of
tissue inflammation anddamage at 98 dpi could be explainedby the
known immune-suppressive nature ofR. salmoninarum (8, 10, 82).

At 98 dpi, R. salmoninarum was isolated from spleen, liver and
headkidney of the high dose infected lumpfish which showed no
external, internal and histopathological disease signs (Figures 2C
and3). Similar toour results,M.viscosawas isolated fromkidneysof
non-symptomatic lumpfishat27dayspost bathchallenge (30).This
implies that lumpfish could be asymptomatic carriers for R.
salmoninarum, and chronic infection could be a common
strategy of marine bacterial pathogens.

The BKD-related histopathology observations in lumpfish
coincided with the downregulation of immune-related genes in
lumpfish head kidney after R. salmoninarum infection. For
instance, we observed that R. salmoninarum influenced the
expression of genes related to pathogen recognition, immune
signalling, antibacterial activity, and humoral and cell-mediated
immunity in lumpfish (Figures 4–6).

TLR5 is associated with flagellin detection (83). tlr5a was
significantly upregulated at 28 dpi (Figure 4B). Increased
expression of tlr5a in lumpfish upon exposure to Gram-positive,
non-motile or non-flagellated bacteria like R. salmoninarum (84) is
controversial.However, a similar upregulation of tlr5 in response to
alive and formalin-killed R. salmoninarum has been reported (46,
85). Also, increased expression of tlr5a and tlr5b was reported in
turbot (Scophthalmus maximus L.) mucosal tissues (i.e., intestine
and gills) in response to the Gram-positive non-flagellated
pathogen Streptococcus iniae (86). Therefore, the role of TLR5
beyond the recognition of flagellin, specifically in infection with
non-flagellated bacteria in teleosts, warrants further investigation.

R. salmoninarum increased gene expression levels of the
proinflammatory cytokine (il1b) and of the proinflammatory
response related chemokines ( i l8a , i l8b) at 28 dpi
(Figures 4F–H) in lumpfish, which coincided with a canonical
innate immune response. Simultaneously, il10, an anti-
inflammatory mediator, was significantly upregulated at 28 dpi
(Figure 4I). This pattern strongly suggests an R. salmoninarum
induced immune suppression (8, 82). Similar to our results, IL-
10 induction upon R. salmoninarum strain H-2 infection in
Atlantic Salmon Kidney (ASK) cell line was observed by Bethke
et al. (87) (87). IL10 counteracted the induced inflammatory
immune responses (e.g., ILb, IL8), and as a result, the pathogen
could move forward in disease progression. However, as teleost
fish IL-10 demonstrates immune suppressive function, il-10
Frontiers in Immunology | www.frontiersin.org 13
expression upon pathogen infection could be the natural way
of lumpfish to regulate its early innate immune responses (88).
Thus, IL-10 upregulation might be seen from a host point of view
in which host is trying to create a conducive environment to
alleviate host-mediated pathology. For instance, IL-10 can
promote tissue repair to overcome the tissue damage due to
disease progression (89).

IL-1b was activated in fish leucocytes and macrophages and
induced the expression of proinflammatory transcripts such as
cox2 and tnfa (90–92). However, at 28 dpi, we observed that cox2
and tnfa were not upregulated even with high expression of il1b
(Figures 4F, K, and 5C). IL-1b can also initiate an acute phase
response and induce the synthesis of acute-phase proteins
(APPs) such as serum amyloid A5 (SAA5) upon invasion of
the pathogen (93, 94). We observed a significant upregulation of
saa5 at 28 dpi in lumpfish (Figure 5B) indicating an
inflammatory response to the infection (95).

TNF-a is associated with inflammation and chronic infections
(96). TNF-a can either improve the phagocytic activity of fish
leucocytes or support the intracellular survival of pathogens (97–
100). In the current study, despite the high bacterial load in the fish
tissues (Figure2C), significantdownregulationof tnfa at 28dpiwas
observed in lumpfish (Figure 4K), which could affect the tnfa
dependent killing pathways, thereby facilitating the infection and
intracellular survival of R. salmoninarum (32). Also, this tnfa
repression could reflect the immune-suppressive action of R.
salmoninarum in lumpfish.

Reducing the availability of iron to bacteria as a means of
nutritional immunity is one strategy used by vertebrates such as
fish to control pathogens (101). On the other hand, intracellular
bacteria compete for iron for their survival (102). HAMP is an
antimicrobial peptide (AMP) that has anti-bacterial and immuno-
modulatory functions and plays a role in iron homeostasis in fish
(103).Here, we found thathampwas significantly upregulated at 28
dpi (Figure 5A). Similar to our results, increased expression of
hamp inheadkidneyofAtlantic salmonhas alsobeenobservedwith
R. salmoninarum infection (46, 85). Additionally, transferrin, an
AMPencoding gene, which has a putative role in iron sequestration
from bacteria, is upregulated in response to R. salmoninarum in
salmonid hosts (67) and is involved in BKD resistance in coho
salmon (O. kisutch) (104). Thus, hamp and transferrin in lumpfish
might play an essential role in the BKD response.

IFN-g is associated with adaptive immunity and has a role in
both the early and late immune responses and in the host
immune defense to intracellular bacteria (96, 102). ifng
stimulation in lumpfish at 28 dpi was not significant in our
study. In contrast, significant upregulation of ifng was reported
in Atlantic salmon and chinook salmon infected with R.
salmoninarum (46, 67). Interferon-induced effectors (rsad2,
mxa, mxb and mxc) were significantly upregulated at 28 dpi
(Figures 4J and 5D, G–I). Similar to our results, upregulation of
rsad2 has also been observed in Atlantic salmon head kidney
upon R. salmoninarum infection (46). In addition, increased
expression of mx genes, mx1, mx2, and mx3 in rainbow trout
macrophages (32) and mx1 in chinook salmon (67), after R.
salmoninarum infection was also reported.
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The immune-suppressive effects of R. salmoninarum were
also observed in the adaptive immune response of lumpfish at 28
dpi. For instance, significant downregulation of humoral (igha,
ighd, ighma, ighmb) (Figures 6A, C–E) and cell-mediated (cd4a,
cd4b, ly6g6f, cd8a, cd74) (Figures 6G–K) adaptive immune-
related transcripts at 28 dpi, was observed. Mortality in lumpfish
during the early time points could be attributed to this immune
suppressive function of R. salmoninarum observed at 28 dpi.
Significant downregulation of cd74 (an invariant polypeptide
involved in major histocompatibility complex-II (MHC-II)
formation and transport) (Figure 6K) in lumpfish head kidney
at 28 dpi suggests that the T-cell responses could be modified
towards an enhanced MHC-I and a reduced MHC-II dependent
pathway, perhaps caused by an increased amount of MSA,
similar to R. salmoninarum infection in rainbow trout (32,
105). This skewing towards the MHC-I pathway in lumpfish at
the early stages of R. salmoninarum infection correlates with the
BKD-dependent major histocompatibility-1 (mh1) induction
observed in Atlantic salmon at 13 dpi (46). Further, Rozas-
Serri et al. (106) demonstrated that the humoral and cell-
mediated adaptive immune responses against R. salmoninarum
in Atlantic salmon pre-smolts were significantly downregulated
at the later stage of infection (55 dpi) (106), which agrees with
our findings at 28 dpi. In contrast, most of the humoral-immune
genes showed strong down-regulation at 28 dpi (Figures 6A,
C–E), only the ighmc was significantly upregulated (Figure 6F).
This observation at 28 dpi is controversial but in line with the
triggered humoral response against R. salmoninarum in
salmonids, which does not necessarily correlate with immune
protection (7, 8, 106).

R. salmoninarum persisted in the lumpfish tissues for at least
98 dpi (Figure 2C), which correlates with the chronic nature of
BKD (2, 107). Significant upregulation of the eicosanoid cox2 at
98 dpi (Figure 5F) could be related to the inflammatory response
and supports the chronic persistence of R. salmoninarum in
lumpfish tissues. tnfa was significantly upregulated at 98 dpi,
which could be the result of MSA accumulation in infected
lumpfish (32). Chronic stimulation of tnfa is known to assist the
chronic inflammatory pathology of BKD and contributed to the
host-mediated destruction of the kidney tissues in rainbow trout
(32). In contrast, survivor lumpfish with considerable R.
salmoninarum burden remaining in their internal tissues for at
least 98 dpi (Figure 2C) did so in the absence of BKD clinical
signs (Figures 3E, J, O) even with high expression of tnfa with
respect to the control (Figure 4K). This immune pattern might
be related to the chronic stage of R. salmoninarum infection. On
the other hand, tnfa upregulation at 98 dpi (Figure 4K) could be
linked to the low bacterial loads in lumpfish tissues at 98 dpi
compared to 28 dpi (Figure 2C), because of the role of TNF-a in
restricting the bacterial growth in infected macrophages and
promoting macrophage survival in zebrafish (Danio rerio)
infected Mycobacterium marinum (108).

Most of the downregulated adaptive immune genes (igha,
ighd, ighma, ighmb, cd4a, cd4b, ly6g6f, and cd8a) in infected
lumpfish at 28 dpi returned to basal expression levels at 98 dpi
(Figures 6A, C–E, G–J). Upregulation of cd74 at 98 dpi
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(Figure 6K) could induce MHC-II expression. Also, significant
stimulation of ifng at 98 dpi (Figure 4J) could enhance antigen
presentation through MHC-I, as was observed in rainbow trout
(109). Thus, the interaction between this intracellular pathogen
and teleost MHC-pathways warrants further investigation.

Based on gene expression results, R. salmoninarum could
immune-suppressed lumpfish at the early infection stages (28
dpi). In contrast, at late stages (98 dpi), it seems that R.
salmoninarum is partially controlled by the lumpfish immune
system, which may be attributed to the induced cell-mediated
immunity. It is not clear whether the R. salmoninarum will be
cleared or if it will persist and be horizontally transmitted or
vertically transferred to the next generation of lumpfish. On the
other hand, the majority of the lumpfish (65%) survived R.
salmoninarum infection and presented the bacteria in head
kidney until 98 dpi. These observations suggest that lumpfish
is susceptible to R. salmoninarum. Lumpfish susceptibility to
high virulent strains of R. salmoninarum with multiple msa gene
copies (i.e., msa gene copies ranged from two to five among 68
isolates) (110) and its transmission potential to other fish species
warrants future research.
CONCLUSION

This study revealed that lumpfish is susceptible toR. salmoninarum
ATCC33209 i.p infection, exhibiting a chronic infection pattern.R.
salmoninarum caused immune suppression and modulated the
lumpfish immune response towards theMHC-I pathway at 28 dpi.
Lumpfish seemed to trigger a cell-mediated immune response
against R. salmoninarum at the chronic stage of infection.
Although R. salmoninarum persisted for at least 98 dpi in
lumpfish tissues, it is not known whether lumpfish is able to clear
the infectionor ifR. salmoninarumwill persist anduse lumpfish as a
vector during cohabitation with salmon. Lumpfish susceptibility to
more virulent R. salmoninarum strains or different routes of
infection warrants further investigation.
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