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Abstract

We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns
are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the
activity of the network and the stored patterns. We find that, depending on the excitability of the network, different
working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays
one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two
regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced
by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as
expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region,
the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship
observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws
in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of
spatio-temporal patterns.

Citation: Scarpetta S, de Candia A (2013) Neural Avalanches at the Critical Point between Replay and Non-Replay of Spatiotemporal Patterns. PLoS ONE 8(6):
e64162. doi:10.1371/journal.pone.0064162

Editor: Dante R. Chialvo, National Research & Technology Council, Argentina

Received March 13, 2013; Accepted April 8, 2013; Published June 20, 2013

Copyright: � 2013 Scarpetta, de Candia. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by university public funds from the University of Naples ‘‘Federico II’’ and University of Salerno. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: silvia@sa.infn.it

Introduction

Recently, many experimental results have supported the idea

that the brain operates near a critical point [1–5], as reflected by

the power laws of avalanche size distributions and maximization of

fluctuations. Several models have been proposed as explanations

for the power law distributions that emerge in spontaneous cortical

activity [5,6]. Models based on branching processes [4] and on

self-organized criticality [7–10] are the most relevant.

However, there are additional features of neuronal avalanches

that are not captured in these models, such as the stable recurrence

of particular spatio-temporal patterns and the conditions under

which these precise and diverse patterns can be retrieved [4].

Indeed, neuronal avalanches are highly repeatable and can be

clustered into statistically significant families of activity patterns

that satisfy several requirements of a memory substrate [11–13].

In many areas of the brain having different brain functionality,

repeatable precise spatio-temporal patterns of spikes seem to play a

crucial role in the coding and storage of information. Many

in vitro [14,15] and in vivo [16–18] studies have demonstrated

that cortical spontaneous activity occurs in precise spatio-temporal

patterns, which often reflect the activity produced by external or

sensory inputs. The temporally structured replay of spatio-

temporal patterns has been observed to occur, both in the cortex

and hippocampus, during sleep [16,19,20] and in the awake state

[21–24], and it has been hypothesized that this replay may

subserve memory consolidation.

Further evidence on the central role played by precise phase-

coded spatio-temporal patterns comes from the experiments on

spike-phase coding of natural stimuli in the auditory and visual

primary cortices [25,26] and from experiments on the short-term

memory of multiple objects in the prefrontal cortices of monkeys

[27].

Previous studies have separately addressed the topics of phase-

coded memory storage and neuronal avalanches, but our work is

the first to show how these ideas converge in a single cortical

model. We study a network of leaky integrate-and-fire (LIF)

neurons, whose synaptic connections are designed with a rule

based on spike-timing-dependent plasticity (STDP). The network

works as an associative memory of phase-coded spatio-temporal

patterns, whose storage capacity has been studied in [28].

In this paper, we show that if the excitability of the model is

tuned to be at the critical point of a phase transition, between the

successful persistent replay of stored patterns and non-replay, then

the spontaneous activity is characterized by power laws in

avalanche size and duration distributions, critical exponents

consistent with scaling relations, and maximization of order

parameter fluctuations, as observed in many experiments.

In the cortex, the emergence of power law distributions of

avalanche sizes depends on an optimal concentration of dopamine

[13] and on the balance of excitation and inhibition [5,29],

suggesting that particular parameters must be appropriately tuned.

This may suggest that the cortex operates near the critical point of

a phase transition, characterized by a critical value of excitability.

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e64162



This idea is also supported by experimental results, showing a high

value of fluctuations [5] in correspondence with power law

distributions, as expected at a critical point of a phase transition.

Notably, also large-scale fMRI analysis [2] demonstrates that

the resting brain spends most of the time near the critical point of a

second-order transition and exhibits avalanches of activity ruled by

the same dynamical and statistical properties described previously

for neuronal events at smaller scales.

Results

We model cortical activity with a coupled network of LIF units,

using the Spike Response Model formulation [30,31]. The

postsynaptic membrane potential of each neuron i is given by a

Possonian noise gi(t) plus the sum, weighted by synaptic

connections Jij , of the response kernels to incoming spikes of

presynaptic units. In terms of in vitro cortical cultures, the source

of noise that we model is related to the spontaneous neurotrans-

mitter release at individual synapses, as well as other sources of

inhomogeneity and randomness that determine an irregular

background synaptic noise in vitro.

Connectivity governs the collective spontaneous dynamics.

Connections Jij between units are designed via the learning rule,

inspired by the STDP, previously introduced in [28,32–34]. The

importance of spike timing for synaptic plasticity has been

observed in many brain areas [35,36], and its computational

relevance has been analysed from different point of views

[28,35,37–39].

While in [28] we studied the dynamics induced by an external

cue stimulation and showed that a cue with few spikes with the

proper phase relationships is able to induce the replay of the stored

pattern in a proper region of parameters, here we study the

spontaneous dynamics in the absence of any cue external

stimulation in a noisy environment. Moreover, while in [28] a

unique value of the spiking threshold Hi is used for all units, here

we model the heterogeneity of the neurons excitability, using two

values of Hi, a low threshold H1 for a small number N1vN of

units, and a higher threshold H2 for the other N2~N{N1 units.

Indeed, as shown in many raster plots of in-vitro spontaneous

dynamics with neural avalanches, there is often a small subset of

units which have a higher spiking rate than the others. These are

modeled here by the lower-threshold units, that are more sensible

to noise. If some of these units have consecutive phases in one of

the stored patterns, then the replay of the pattern is more easily

triggered by noise. The value of the threshold H1 determines

mainly the probability of activation of the replay of patterns, while

the threshold H2 of the majority of the units will determine the

duration of the replay, and the distribution of avalanches in the

critical regime. For this reason we here fix the concentration of

lower-threshold units and the value of their threshold, and study

the behavior of the network as a function of H2. We show indeed

that, in the absence of any external stimulation, noise is able to

induce an intermittent replay of the stored phase patterns at some

critical value of spiking threshold H2, and a permanent replay of

one of the patterns at lower values of spiking threshold H2.

Figures 1 and 2 show the spontaneous dynamics of a network of

N~3000 units, P~2 stored patterns, spiking threshold H1~0:8,

and spiking threshold H2~2:7 and 3:0, respectively, in Figs. 1 and

2. The spikes of low-threshold neurons (units with H1) are plotted

in green, while those of high-threshold neurons (units with H2) are

plotted in black. As evidence of the replay of different patterns, we

show the raster plot of the network dynamics with different

sortings on the vertical axes. In Figs. 1a and 2a, neurons are sorted

according to increasing values of the phases in pattern m~1, while

in Figs. 1b and 2b, they are sorted according to increasing values

of the phases in pattern m~2.

At a low value of the threshold H2, namely, H2~2:7, the first

pattern that is replayed (randomly chosen by the noise) goes on for

a very long, apparently infinite, time, as shown in Fig. 1b, where

only pattern m~2 is replayed. The same sequence of spikes, shown

in Fig. 1a, does not reveal any long lasting ordered sequence,

showing that pattern m~1 is not continously replayed during the

same interval of time. Note that the noise triggers some short

replays of pattern m~1, that however do not survive due to the

Figure 1. Spontaneous dynamics of a network of N~3000 units, with thresholds H1~0:8 and H2~2:7. The same activity is shown with
neurons sorted according to the phase wm

i with m~1 in A and m~2 in B. In this supercritical regime, a persistent reactivation of one of the patterns
(randomly chosen) emerges, in this case, pattern m~2, as shown by the regular behavior in B. The behavior in A shows that pattern m~1 is not
continously replayed.
doi:10.1371/journal.pone.0064162.g001
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intereference with the permament replay of pattern m~2 that is

going on. This is confirmed by the order parameter, introduced in

the next subsection, that is of order 1=
ffiffiffiffiffi
N
p

in this case for pattern

m~1, and of order one for pattern m~2. With this connectivity

and this value of threshold the dynamics of the network tends to be

oscillatory, with the same phase relationship of one of the stored

pattern, but with an oscillation frequency n different from the

stored frequency nm, namely the replay dynamics is faster then the

one of the stored patterns (see also [28]).

At a little higher value of H2, namely, H2~3:0, the behavior is

very different (see Figs. 2a and 2b). It can be seed that, from time

to time, there is a short transient replay of one of the two patterns.

When pattern m~1 is replayed, a short sorted sequence of spikes

appears in Fig. 2a, while when pattern m~2 is retrieved, a short

sorted sequence of spikes appears in Fig. 2b. Note that, when the

pattern m~1 is replayed, a chaotic burst of spikes appears in

Fig. 2b that is sorted according to the other pattern m~2 and vice

versa.

At still higher values of the threshold (not shown), neither of the

patterns is replayed for a time long enough to be distinguishable

from noise.

The Order Parameter and the Phase Transition
To measure the success of the replay, we introduce a quantity

that estimates the overlap between the network collective activity

during the spontaneous dynamics and the stored phase-coded

pattern. This quantity is maximal (equal to one) when collective

activity is periodic, as in Fig. 1b, and the ordering of spiking times

coincides with that of one of the stored patterns, and is of order

^1=
ffiffiffiffiffi
N
p

when the spike timings are uncorrelated with the stored

ones. The overlap Qm(Tw) is defined as the average of the time-

dependent quantity q(t,tzTW ), namely

Qm(Tw)~SDq(t,tzTw)DT

where

q(t,tzTw)~
1

Ns

X
tvt�

j
vtzTw

j~1,...,N

e
{i2pt�

j
=Tw

e
i2pt

m
j
=Tm

ð1Þ

t
m
j are the spike times in the stored phase-coded pattern m with

period Tm, t�j are the spike times of neuron j during the

spontaneous collective dynamics, Tw is a ‘‘probe’’ window of

time, the average S � � � T is done on the starting time t of the

window, and Ns is the number of spikes in the time interval Tw.

The fluctuations of the overlap are given by

s2(Qm)~N SDq(t,Tw)D2T{SDq(t,Tw)DT2
� �

: ð2Þ

As the overlap q(t,tzTw) is an intensive quantity, that is it does

not depend on the number N of neurons when N is large, we

expect that its fluctuations are of order 1=N , and therefore add a

factor N in Eq. (2).

In Figs. 3a and 3b, we show the overlap and its fluctuations,

respectively, as a function of Tw for N~3000, H1~0:8, and three

values of H2, namely, H2~2:7, 3.0, 3.3. We see that the overlap

always has a maximum at some value of Tw. This corresponds

(approximately) to the period of the pattern during replay, both

when the pattern is replayed continuously, as in Fig. 1b, and when

there are short and incoherent partial segments of different

patterns, as in Figs. 2a and 2b. We therefore define the order

parameter mm as the maximum of the overlap as a function of Tw,

mm~ max
Tw

Qm(Tw): ð3Þ

This definition works also when the periodic pattern is not

replayed continuously, and short replays are hidden in a

nonperiodic spike train, such as here and in many experimental

situations. The fluctuations s2(mm) of the order parameter are

Figure 2. Spontaneous dynamics of a network of N~3000 units, with thresholds H1~0:8 and H2~3:0. Neurons are sorted as in Fig. 1. In
this critical regime, an intermittent spontaneous replay of both the patterns is observed.
doi:10.1371/journal.pone.0064162.g002
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defined as the fluctuations of the Tw-dependent overlap, at the

same Tw where the overlap has its maximum.

In Figs. 4a and 4b, the behavior of the order parameter and its

fluctuations, as a function of the spiking threshold H2 and for

different sizes of the network, are shown. At a low-spiking

threshold, the order parameter is high, and fluctuations are low,

indicating that, as shown in Fig. 1a, the noise is able to initiate a

successful long-lasting replay of the stored pattern. At high

thresholds, both the order parameter and its fluctuations are low.

At the critical point between the two regimes, the fluctuations of

the order parameter are maximized, and the maximum seems to

diverge at the transition with the size of the network, as happens in

a continuous phase transition. This suggests that there is not a

defined timescale of the replayed segments but rather a scale-free

power law distribution. We therefore, in the next Section, study

the distributions of the durations and sizes of the replayed

segments. Notably the phase transition that we find here is not a

thermodynamical phase transition but a non-equilibrium phase

transition, defined using a dynamical order parameter that is an

extension of the Hopfield order parameter but for phase-coded

dynamical states.

The Critical Point and Neural Avalanches
In order to characterize the noise-induced collective dynamics

near the critical point, we study the interspike-interval statistics

and the sizes and durations of the avalanches of spikes.

The distribution of interspike intervals (ISI) among consecutive

spikes over all of the network is shown in Fig. 5 for N~20000 and

spiking threshold H2~2:5, 3.0, 3.7. We note that, while at high-

and low-spiking thresholds the network ISI distribution is well

described by an exponential, only at the critical threshold is the

network ISI clearly not exponential. The distributions at H2~2:5

and 3.7 are well described by the exponential fit e{t=t0 , with

t0~0:003 ms and t0~0:015 ms, respectively. On the other hand,

the critical distribution at H2~3:0 starts with an exponential with

t0~0:006 ms but at t~0:03 ms deviates strongly from the

exponential behavior. This makes a strong link between the

criticality observed in terms of the order parameter and the spiking

dynamics characterized in terms of the network ISI. The

coexistence of many time scales at the critical point is revealed

also in the shape of the network ISI distribution.

To study the network dynamics in terms of avalanches of

activity, we define an avalanche as a sequence of spikes preceded

and succeeded by a time interval of length at least tmin without any

spikes. The value of tmin has been chosen looking at the network

ISI distributions as a value greater than the short timescale of ISIs

within an event but less than the timescale of the longer quiescent

periods, which are not distributed exponentially. Therefore, we

take a value of tmin~0:03 ms as the time at which the ISI

distribution at the critical point deviates from the initial

exponential behavior.

For each avalanche, we measure its duration T in ms and its

size s defined as the total number of spikes within the avalanche.

Figure 6a shows the size distributions at the three different spiking

thresholds. At the critical point (H2~3:0), the size distribution is a

power law, and the fit P(s)!s{b gives an exponent b~1:55.

Figure 6b shows the duration distribution for the three regimes,

showing that at the critical point H2~3:0 the duration distribution

approaches a power law, well fitted by P(T)!T{a with a~1:63.

Note that, for the values H2~3 and 3:7, when there is not a

permanent replay of one pattern, there is an initial exponential

regime of the size and duration distributions. This is due to the fact

that only a small fraction of the avalanches of low threshold units

are able to trigger a larger avalanche of high threshold units. The

remaining majority of avalanches of low threshold units have an

exponential distribution with a small characteristic size and

duration, independent from the value of H2.

Finally, Fig. 7 shows the average size SsT(T) of the avalanche of

duration T , as a function of duration T . Again, the function

approaches a power law, with exponent k~1:14. Note that the

critical exponents satisfy the scaling relation
a{1

b{1
~k, as expected

for a system at criticality and experimentally verified in [40].

Therefore, the same critical value of the threshold, which gives

the maximization of the fluctuation of the order parameter, also

Figure 3. Overlap (A) and its fluctuations (B) as a function of the chosen window Tw, with N~3000, H1~0:8, and H2~2:7 (squares),
3.0 (circles) and 3.3 (triangles). Note that, while overlap increases when the spiking threshold H2 decreases, the fluctuations are larger at the
critical value of the threshold.
doi:10.1371/journal.pone.0064162.g003
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gives a critical avalanche distribution and universal scaling. This is

in agreement with the picture discussed previously, showing that,

at the critical threshold, there are intermittent reactivations of

different stored patterns, which last for different durations, and the

reactivation may be as large as the full network or involve only a

short number of units. This suggests that the critical avalanches

observed experimentally may be the manifestation of a system at

the dynamic critical point of a phase transition, between a regime

with replay of spatio-temporal dynamics patterns and a regime of

non-replay.

Discussion

We studied the spontaneous temporal dynamics in a noisy

coupled network of spiking integrate-and-fire neurons, whose

connectivity is designed in such a manner as to favor the

spontaneous emergence of collective oscillatory spatio-temporal

patterns of spikes. We introduce an order parameter to measure

the overlap between the spintaneous collective dynamics and the

stored phase-coded patterns, and we find a critical transition from

a region of non-replay to a region of replay of the stored patterns.

At a critical value of the excitability, that is, of the spiking

threshold H2, the system has a transition from a regime of

Poissonian noise activity to a regime of spontaneous persistent

replay of one of the stored spatio-temporal patterns. Exactly at the

transition, the network spontaneous dynamics shows an intermit-

tent reactivation of the stored patterns, with durations and sizes

distributed over many scales. This suggests a relationship with the

well-known phenomena of neural avalanches [5,6,11] observed in

spontaneous cortical activity. Indeed, at the critical point, we

observe avalanches whose size and duration distributions are

power laws.

A model for neural avalanches related to the directed

percolation model has been proposed recently [5]. Our model is

different in that it makes use of spiking integrate and firing units

and, more importantly, because synaptic connectivity is not

random but has a structure derived from the learning rule defined

in Eq. 9. The structure of the connectivity is responsible for the

spatio-temporal correlations of the collective reactivations, which

appear intermittently during the spontaneous dynamics. Notably,

experimentally, the neural avalanches are related to the existence

of repeated precise spatio-temporal activity patterns [4,11,13],

and, to our knowledge, our model is the first one able to account

for the recurrence of precise spatio-temporal patterns and give

insight into the conditions under which these patterns can be

retrieved.

To characterize the collective dynamics in the diverse regimes,

we introduce in Eqs. (1) and (3) an order parameter. We see that,

at the transition from low- to high-order parameter regime, the

Figure 4. Order parameter (A) and its fluctuations (B) as a function of H2, for N~3000 (triangles), 10000 (circles) and 20000
(squares). The lower threshold is H1~0:8. Both the order parameter and its fluctuations show the signature of a phase transition at H2~3:0.
doi:10.1371/journal.pone.0064162.g004

Figure 5. The distribution of interspike intervals, between
network spikes, is shown for N~20000, H1~0:8, and H2~2:5
(circles), 3.0 (squares) and 3.7 (triangles). While the network ISI
distributions at low and high values of H2 are quite well fitted by an
exponential (shown as a solid black line), the network ISI at the critical
threshold cannot be described by a single exponential (it strongly
deviates from the exponential at intervals larger than 0.03 ms).
doi:10.1371/journal.pone.0064162.g005
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fluctuations of the order parameter are maximized. As we increase

the size of the system, the order parameter transition becomes

steeper and fluctuations more peaked, as expected in a continuous

phase transition.

The order parameter we introduce is a sort of extension of the

Kuramoto order parameter, r(t)!D
P

j eiwj (t)D, used in [5], which

measures the synchrony of activity. However, the Kuramoto order

parameter r(t) measures only the overlap with a pattern having all

phases wm
equal, and therefore, the antiphase locking or, in

general, the phase locking with different phases will reduce the

order parameter. On the contrary, our order parameter measures

the similarity with a pattern having arbitrary phases wm
j . In our

model, we know a-priori the phases wm
j of the patterns, while

experimentally the phases should be extracted from the data

looking at the more repetitive patterns of phases. Interestingly, the

onset of synchrony, together with the peak of synchrony

fluctuations, observed in cortical cultures by [5] strongly suggests

that the system undergoes a critical phase transition. This is in line

with our model that shows the onset of order parameter m
together with the maximization of order parameter fluctuations

and a power law in avalanche size and duration distributions.

The effects of noise in a cortical model was already addressed in

an analogous Cowan-Wilson network model [41], with a

connectivity structure similar to the one used here, and the

existence of a stochastic resonance phenomenon was pointed out.

It was shown that, in a particular regime of parameters, noise

induces aperiodic collective synchronous oscillations, which

mimics experimental in vitro cortical observations [42,43]. Under

some conditions [41,44], the energy distribution of activity over

low frequencies has a broadband with a power law decay, which

indicates the existence of positive long-range time correlations in

the sequences of bursts, as observed experimentally by Segev et al.

[42,43]. The analog cortical model [41], equipped with a proper

STDP learning rule, has been suggested to account for the

spontaneous collective theta rhythms and the theta phase

precession in hippocampus [34], while the coexistence of multiple

patterns [45] and multiple frequency rhythms has then been

addressed in [46]. The model introduced in [41] has then been

extended to the case of binary units [47,48] and spiking IF units

[28,49,50], but the study has been limited to the study of the

replay dynamics induced by a short cue stimulation. In this paper,

we study for the first time the dynamics, in the absence of cue

stimulation, in a coupled network of IF units, and we show that

intermittent collective emergence of multiple spatio-temporal

patterns arises in presence of noise. For the first time, the existence

of a nonequilibrium phase transition in the IF model has been

pointed out, and the critical point has been characterized in terms

of an order parameter and its fluctuations and power laws in

avalanche size and duration distributions.

Figure 6. Avalanche size (A) and duration (B) distributions are shown for the network with N~20000 H1~0:8, and H2~2:5 (circles),
3.0 (squares) and 3.7 (triangles). Solid lines are power law best fits of the H2~3:0 data in the intervals 102

vsv104 for the sizes and 1 ms vTv

23 ms for the durations and give exponents b~1:55 for the sizes and a~1:63 for the durations.
doi:10.1371/journal.pone.0064162.g006

Figure 7. Mean avalanche size as a function of the duration for
the network with N~20000 H1~0:8, and H2~2:5 (circles), 3.0
(squares) and 3.7 (triangles). The solid line is a power law best fit of
the H2~3:0 data in the interval 1 ms vTv 23 ms and gives exponent
k~1:14.
doi:10.1371/journal.pone.0064162.g007

Neural Avalanches and Memory Replay
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This model makes a strong connection between the evoked

dynamics, induced by a cue sensory stimulation, and the

spontaneous dynamics, in the absence of any sensory stimulus.

Indeed, we found that the spatio-temporal patterns imprinted in

the connectivity, which can be evoked by a cue stimulation [28],

are the same spatio-temporal patterns that are intermittently

reactivated by noise in the spontaneous dynamics at the critical

point, as shown here. Recently, there was renewed interest in

reverberatory activity [15] and in cortical spontaneous activity

[51], whose spatio-temporal structure seems to reflect the

underlying connectivity. Interestingly, the similarity between

spontaneous and evoked cortical activities has been experimentally

shown to increase with age [52] and with repetitive presentation of

the stimulus [53].

Models

We consider a recurrent neural network with N(N{1) directed

connections Jij , where N is the number of neural units. The single

neuron model is a LIF model [30]. We use the spike response

model formulation [30,31] of the LIF model. In this formulation,

the postsynaptic membrane potential of neuron i is given by

hi(t)~gi(t)z
X

j

Jij

X
t̂tjwt̂ti

E(t{t̂tj), ð4Þ

where gi(t) is a Poissonian noise, Jij are the synaptic connections,

(t) describes the response kernel to incoming spikes, and the sum

over t̂tj runs over all presynaptic firing times following the last spike

of neuron i. Namely, each presynaptic spike j, with arrival time t̂tj ,

is supposed to add to the membrane potential a postsynaptic

potential of the form JijE(t{t̂tj), where

E(t{t̂tj)~K exp {
t{t̂tj

tm

� �
{ exp {

t{t̂tj

ts

� �� �
H(t{t̂tj) ð5Þ

where tm is the membrane time constant (here 10 ms), ts is the

synapse time constant (here 5 ms), H(t) is the Heaviside step

function, and K is a multiplicative constant chosen so that the

maximum value of the kernel is one. The sign of the synaptic

connection Jij sets the sign of the postsynaptic potential change.

A Poissonian noise gi(t), related to the spontaneous neuro-

transmitter release at individual synapses, as well as other sources

of inhomogeneity and randomness that determine an irregular

background synaptic noise in vitro, is modeled as

gi(t)~
X

t̂tnoisewt̂ti

JnoiseE(t{t̂tnoise): ð6Þ

The times t̂tnoise and the strengths Jnoise are extracted randomly

and independently for each neuron i. The intervals between times

t̂tnoise on the single neuron are extracted from a Poissonian

distribution P(dt)!e{dt=tnoise , while the strength Jnoise is extracted

for each time t̂tnoise from a Gaussian distribution with mean �JJnoise

and standard deviation s(Jnoise). In all simulations noise is given

by Eq. (6) with tnoise~1 ms, �JJnoise~0, and s(Jnoise)~0:2.

When the membrane potential hi(t) exceeds the spiking

threshold Hi, a spike is scheduled, and the membrane potential

is reset to the resting value of 0. No refractory period is taken into

account. While in previous work [28] we used a unique value of

the spiking threshold Hi for all units, here we use two values of Hi,

a low threshold H1 for N1vN units more sensible to noise and a

higher threshold H2 for the other N2~N{N1 units. We form the

hypothesis that, due to the many sources of inhomogeneity and

randomness, for each stored pattern there is a subset of units, with

consecutive phases in the pattern, that have a low threshold H1.

These low-threshold units will be more sensitive to noise, while the

units with a higher threshold H2 will be activated mainly only

when the collective replay of the pattern has emerged. In all

simulations a fraction equal to 3.3% of the neurons has a threshold

H1~0:8, while the other units have a threshold H2, which has a

different value ranging from 2:5 to 3:7.

Numerical simulations of the dynamics are performed for a

network with P stored patterns, where connections Jij are

determined via the learning rule, inspired by the STDP, previously

introduced in [28,32–34,54]. The connections Jij are designed

during the learning mode. After the learning stage, the connection

values are frozen, and the spontaneous collective dynamics are

studied. During the learning stage, the average change in the

connection Jij , occurring in the time interval ½{T ,0�, due to the

presentation of a periodic spike trains of period Tm is formulated as

follows:

dJij~
1

N

Tm

T

ð0

{T

dt

ð0

{T

dt
0
xi(t)A(t{t

0
)xj(t

0
) ð7Þ

where 1=N and Tm=T are normalization factors, xj(t) is the

activity of the presynaptic neuron at time t, and xi(t) the activity of

the postsynaptic one. In the STDP, the learning window A(t) is

the measure of the strength of the synaptic change when a time

delay t occurs between pre- and postsynaptic spikes. Here, the

patterns to be stored are defined as precise periodic sequence of

spikes, i.e., phase-coded patterns. When pattern m is replayed, the

activity of neuron j is periodic, with spikes at times t
m
j ,

x
m
j (t)~

X?
n~{?

d t{(t
m
j znTm)

h i
, ð8Þ

where t
m
j znTm is the set of spikes times of unit j in the pattern m

with period Tm.

From Eqs. (7) and (8), when the learning time is longer than the

period Tm of the learned pattern, we have

dJ
m
ij ~

1

N

X?
n~{?

A(t
m
j {t

m
i znTm): ð9Þ

The window A(t) is the one introduced and motivated by [55],

A(t)~ape{t=Tp{aDe{gt=Tp if tw0 and A(t)~apegt=TD{aDet=TD

if tv0, with the same parameters used in [55] to fit the

experimental data of [36], ap~c½1=Tpzg=TD�{1
and

aD~c½g=Tpz1=TD�{1
with Tp~10:2 ms and TD~28:6 ms,

g~4, c~42.

This function satisfies the balance condition
Ð?
{? A(t)dt~0.

Notably, when A(t) is used in Eq. (9) to learn phase-coded

patterns with uniformly distributed phases, then the balance

condition assures that the sum of the connections on the single

neuron
P

j Jij is of order 1=
ffiffiffiffiffi
N
p

, and therefore, it assures a balance

between excitation and inhibition. Note that, as we are studying a

network of excitatory neurons, the negative connections have to be

thought as connections mediated by fast inhibitory interneurons.
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The spike patterns used in this work are periodic spatio-

temporal sequences made up of one spike per cycle, each of which

has a phase wm
j randomly chosen from a uniform distribution in

½0,2p). In each pattern, information is coded in the precise time

delay between spikes of unit i and unit j, which corresponds to a

precise phase relationship among units i and j. A spatio-temporal

pattern represented in this way is often called a phase-coded

pattern. A pattern’s information is coded in the spiking phases,

which, in turn, shape the synaptic connectivity responsible of the

emerging dynamics and the memory formation. The set of timing

of spikes of unit j is defined as

t
m
j znTm~

1

2pnm
(wm

j z2pn):

Thus, each pattern m is characterized by the frequency

nm~1=Tm and the specific phases of spike wm
j of the neurons

j~1, . . . ,N. In all simulations we use nm~3 Hz, and randomly

extracted phases wm
j . When multiple phase-coded patterns are

stored, the learned connections are simply the sum of the

contributions from individual patterns, namely,

Jij~
XP

m~1

dJ
m
ij : ð10Þ
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