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Abstract

Breast cancer (BC) is a highly heterogeneous disease associated with metabolic repro-

gramming. The shifts in the metabolome caused by BC still lack data from Latin populations

of Hispanic origin. In this pilot study, metabolomic and lipidomic approaches were performed

to establish a plasma metabolic fingerprint of Colombian Hispanic women with BC. Data

from 1H-NMR, GC-MS and LC-MS were combined and compared. Statistics showed dis-

crimination between breast cancer and healthy subjects on all analytical platforms. The dif-

ferentiating metabolites were involved in glycerolipid, glycerophospholipid, amino acid and

fatty acid metabolism. This study demonstrates the usefulness of multiplatform approaches

in metabolic/lipid fingerprinting studies to broaden the outlook of possible shifts in metabo-

lism. Our findings propose relevant plasma metabolites that could contribute to a better

understanding of underlying metabolic shifts driven by BC in women of Colombian Hispanic

origin. Particularly, the understanding of the up-regulation of long chain fatty acyl carnitines

and the down-regulation of cyclic phosphatidic acid (cPA). In addition, the mapped meta-

bolic signatures in breast cancer were similar but not identical to those reported for non-His-

panic women, despite racial differences.

Introduction

Breast cancer (BC) remains the most frequent type of cancer and the main cause of cancer

deaths among women worldwide [1]. According to GLOBOCAN, breast cancer mortality

rates in developed countries have declined in the last years, but the incidence rates continues

to rise, especially in Latin America and other developing regions [1, 2]. Mortality reduction

has been associated with the advances in medical diagnostic methods and the development of

new therapies; however, the high heterogeneity of breast cancer still poses challenges to the

understanding of its characteristic phenotype. Reported findings of breast cancer have sug-

gested prognosis and predictive biomarkers based on alterations in genes (e.g. BRCA1 and
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BRCA2) [3, 4] and protein expression (e.g. mTOR, ras, PKC) [5–7]. In the past few years,

metabolites have been proposed as BC markers, along with genes and proteins.

Metabolomics is a consolidated field that has enabled to observe differences in metabolic

signatures generated by a pathological state such as cancer. These differences allow to postulate

molecular mechanisms involved in cancer, proposing and evaluating promissory treatment

targets and diagnosis tools [8–10]. Although the identification of breast cancer biomarkers by

metabolomics is still at an early stage, exploratory studies have allowed highlighting alterations

in aerobic glycolysis, de novo lipogenesis, glutaminolysis, glycerolipid, glycerophospholipid

and amino acid metabolism [11–15]. These alterations have been used to identify metabolic

changes associated with advanced metastatic breast cancer in cell lines [16, 17] and serum

[18], as well as breast cancer subtypes in plasma [13, 19] and tissue [13, 19–21]. Moreover, the

identification of suitable targets for drug development in cell lines [22–24] and therapy selec-

tion in cell lines [25] and serum [26] have also been achieved.

High-throughput analytical chemical techniques such as chromatography coupled to mass

spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy [27, 28] have been

used in metabolomics, along with univariate and multivariate statistics [29, 30], in order to

provide information on a large number of metabolites, in particular those with altered levels

between healthy subjects and cancer patients [9, 31–34]. Metabolomics in BC has been mainly

performed by NMR and MS, according to the purpose of the study and the characteristics of

measured metabolites [35]. NMR has proven useful to determine significant differences in

serum samples, allowing a discrimination between early and metastatic BC, regarding to

amino acid, small organic molecules and general lipid content [26, 36, 37], and also to predict

BC recurrence using amino acid, fatty acid and choline levels [38]. Both GC-MS and LC-MS

have detected alterations that have been proposed for several biomarkers, including amino

acids [38–41], small organic acids [13, 38] and fatty acids [26, 38], whereas lysophospholipid

[42, 43] and carnitine [13] alterations have been found only by LC-MS. In addition, alterations

in less polar lipids, such as glycerophospholipids [42, 44, 45] and glycerolipids [43, 46] have

been reported by LC-MS using a lipidomics approach.

In last decades, extensive research in breast cancer has been conducted in order to under-

stand its heterogeneity, however a comprehensive metabolic profile is still required to identify

promising underlying metabolic signatures that can be used to improve breast cancer diagno-

sis and treatment. Besides, most studies of metabolic alterations in BC have been performed

on Asian, European and North American women, little is known about the metabolic signa-

ture of BC in women from developing regions. In the present pilot study, a multiplatform

metabolomic and lipidomic approach based on NMR, GC-MS and LC-MS was performed

towards mapping breast cancer metabolic perturbations in Colombian Hispanic women. To

our present knowledge, this is the first report of the metabolic fingerprint of BC in the Colom-

bian population.

Materials and methods

Characterization of studied subjects and sample collection

Fifty-eight women between 35 and 65 years were selected for the study with the following char-

acterization of individual groups. Control patient (CP) group: 29 healthy women with an aver-

age age of 51 ± 8 years (where ± is standard deviation) and a body mass index (BMI) with a

mean value of 27 ± 3 kg/m2. Breast cancer patient (BCP) group: 29 women diagnosed with

breast cancer, mostly invasive ductal carcinoma between stage I and III (Table 1). The average

age was 50 ± 7 years and BMI mean value of 26 ± 3 kg/m2. All participants were non-smokers,

not taking hormonal contraception, and had undergone the last dose of cancer-related
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treatment between three to six months before sampling, allowing at least a three month period

of wash-out before sampling. The study was approved by the ethics committee of the Universi-

dad de Los Andes and Liga contra el Cancer- Seccional Bogotá, Colombia. All participants

signed the written informed consent form. Sample collection took place at Liga contra el Can-

cer—Seccional Bogotá, Colombia from December 2015 to January 2016. Venous blood sam-

ples were taken in the morning after overnight fasting and were collected using K3EDTA and

Heparin Vacuette blood collection tubes for MS and NMR analysis, respectively. Once col-

lected, the blood was centrifuged at room temperature (19˚C) for 15 min at 3000 x g. The har-

vested plasma was fractionated into 100 μL aliquots in micro centrifuge tubes and stored at

-80˚C until analysis.

Metabolic fingerprinting by GC-MS analysis

Plasma sample preparation and metabolite analysis by GC-MS were performed as previously

reported by Garcia et al. [47]. Briefly, the plasma (40 μL) was deproteinized with cold acetoni-

trile (1:3, −20˚C), followed by a two-step derivatization: (i) methoximation with O-Methoxya-

mine hydrochloride in pyridine (15 mg/mL, room temperature, 16 h) followed by (ii)

silylation with BSTFA containing 1% TMCS (70˚C, 1 h). Metabolic fingerprinting (MF) was

performed using an HP 6890 Series GC system equipped with an HP 6890 autosampler and an

Agilent Mass Selective Detector 5973 (Agilent technologies, Palo Alto, CA, USA). Two micro-

liters of the derivatized plasma samples were injected onto a Zebron ZB-5MSi capillary GC

Table 1. Characteristics of studied subjects.

Characteristic BCP CP

n = 29 n = 29

Age Group, years (Average ± SD) 51 ± 8 50 ± 7

BMI, Kg/m2(Average ± SD) 26 ± 3 27 ± 3

Diagnosis IDC 19 (65.5%) NA

ILC 10 (34.5%) NA

Stage I 3 (10.3%) NA

II 15 (51.7%) NA

III 11 (37.9%) NA

ER status pos 19 (65.5%) NA

neg 10 (34.5%) NA

PR status pos 12 (41.4%) NA

neg 17 (58.6%) NA

HER2 status pos 6 (20.7%) NA

neg 23 (79.3%) NA

Surgery Yes 24 (82.8%) NA

No 5 (17.2%) NA

Chemotherapy Yes 27 (93.1%) NA

No 2 (6.9%) NA

Radiotherapy Yes 22 (75.9%) NA

No 7 (24.1%) NA

Hormonal Therapy Yes 15 (51.7%) NA

no 14 (48.1%) NA

IDC: Invasive ductal carcinoma; ILC: Invasive lobular carcinoma; ER: Estrogen receptor; PR: Progesterone receptor;

HER2: Human epidermal growth factor receptor 2; NA: not applicable.

https://doi.org/10.1371/journal.pone.0190958.t001
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column (30 m x 0.25 mm x 0.25 μm) using helium as carrier gas at a constant gas flow of 1.0

mL/min. The injector temperature was set at 250˚C and the split ratio to 1:10. The temperature

gradient program started at 60˚C held for 1 min, followed by a subsequent increase in temper-

ature to 320˚C at a rate of 10˚C/min. The GC-MS transfer line, filament source and the quad-

rupole temperature were set at 280, 230 and 150˚C, respectively. The electron ionization (EI)

source was set at 70 eV and the mass spectrometer was operated in full scan mode applying a

mass range from m/z 50 to 600 at a scan rate of 1.38 scan/s.

Metabolic fingerprinting by LC-MS analysis

Plasma deproteinization and metabolite extraction were performed using the protocol pub-

lished by Ciborowski et al. [48]. The plasma (40 μL) was mixed with a cold mixture of metha-

nol/ethanol (1:1, −20˚C) in a ratio of 1:3. MF by LC-MS was performed using an HPLC system

1200 series coupled to Q-TOF 6520 (Agilent Technologies, Santa Clara, CA, USA). Ten micro-

liter of sample extract were injected onto a C18 column (Kinetex C18 150 mm x 2.1 mm,

2.6 μm; Phenomenex) with a guard column (Kinetex C18 20 mm x 2.1 mm, 2.6 μm; Phenom-

enex). LC separation was performed at 40˚C using a mobile phase that consisted of 0.1% (v/v)

formic acid in water (A) and 0.1% (v/v) formic acid in acetonitrile (B) at a flow rate of 0.3

mL/min. The applied gradient elution program started at 25% B increased then to 95% B in 35

min, returned to initial conditions in 1 min and was kept constant for 9 min to ensure re-equil-

ibration of the column. Data were collected in both positive and negative electrospray ioniza-

tion (ESI) modes in separate runs, using the conditions previously described [48]. During all

analysis, two reference masses were continuously injected for mass correction: m/z 121.0509

(C5H4N4) and m/z 922.0098 (C18H18O6N3P3F24) for positive ionization mode and m/z
112.9856 (C2O2F3(NH4)) and m/z 1033.9881 (C18H18O6N3P3F24) for negative ionization

mode.

Metabolic fingerprinting by NMR analysis

Plasma samples for NMR analysis were prepared according to the procedure published by

Dona et al [49]. In short, D2O phosphate buffer pH 7.4 (0.075M Na2HPO4�7H2O) with 3-tri-

methylsilyl propionic acid (TSP) (350 μL) was added to heparin containing plasma samples

(350 μL). The mixture was centrifuged and transferred into NMR tubes. 1H-NMR spectra

were acquired using a Bruker UltraShield 400 MHz spectrometer (Bruker Biospin, Karlsruhe,

Germany). Samples were measured at 300 K employing two NMR experiments. First, a water

suppression using pre-saturation pulses (zgpr, 25Hz) was carried out using the standard pulse

sequence [RD—P(90˚)–AQ]. Thereafter, a Carr-Purcell-Miboom-Gill (CPMG) pulse sequence

was applied with a receiver gain of 90.5, a total mixing time of 78 ms (126 loops), 4 dummy

scans and 64 free induction decay (FID). FIDs were multiplied by a 0.3 Hz exponential func-

tion prior to Fourier transform and only zero-order phase correction was allowed [50].

Lipid fingerprinting by LC-MS analysis

Plasma lipids were extracted using methyl tert-butyl ether (MTBE) as previously reported by

Whiley et al. [51]. In short, plasma (20 μL) was vortex-mixed with MTBE/methanol (10:2)

mixture, deionized water (250 μL) was added and the upper phase containing the plasma lipid

fraction was transferred into vials for LC-MS analysis. Lipid fingerprinting (LF) was performed

employing the same instrumentation used for MF analysis by LC-MS. Five microliter of the

lipid extract were injected onto a C8 column (Phenomenex-Luna C8 150mm x 2.0 mm, 3um).

Chromatographic analysis were carried out at 60˚C using a gradient elution applying 10 mM

ammonium formate in Milli-Q water (A) and 10 mM ammonium formate in methanol (B) at
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a constant flow of 0.5 mL/min. The eluent gradient ranged from 75% to 96% B in 23 min, and

was then held for 22 min at 96%B. The gradient was then increased to 100% B in 1 min and

kept constant for 4 min before the gradient could return to its initial conditions in 1 min and

held there for 14 min to enable column re-equilibration. Mass spectrometric detection was

performed in both positive and negative ionization mode as previously described by Whiley

et al. [51]. Throughout the analysis, the same reference masses were used as described in the

section on MF analysis.

Quality control samples

Quality control (QC) samples were prepared by mixing equal volumes of plasma from each

BCP and CP sample. Subsequently, profiles from the QC samples were recorded following the

same procedures as described above for each technique. To determine the reproducibility of

plasma sample preparation and the stability of the analytical platforms used, several QC runs

were performed prior to the analysis of all plasma samples until system equilibration was

achieved. QC plasma samples were also analyzed after every five randomized plasma samples

[52].

Data treatment

GC-MS data treatment consisted in data deconvolution and metabolite identification using

Agilent MassHunter Unknowns Analysis B.07.00, Fiehn version 2008 and NIST 14 libraries.

Thereafter, retention time alignment was performed using Agilent Mass Profiler Professional

B.12.1 software, and the results were exported to Agilent MassHunter Quantitative B.07.00 in

order to perform the integration of each metabolite. Raw LC-MS data was treated with Agilent

MassHunter Profinder Software B.06.00 using Molecular Feature Extraction (MFE) and subse-

quent Recursive Feature Extraction (RFE) algorithms for noise reduction, feature deconvolu-

tion and alignment. Finally, alignment and integration of the features by GC-MS and LC-MS

were manually inspected and exported to Excel (Microsoft) to filter by presence and reproduc-

ibility, keeping only the metabolites detected in at least 80% of all plasma samples and a coeffi-

cient of variation (CV %) of less than 30% of the same metabolite detected in the QC samples

[53].

For NMR data treatment, the spectral range was set 0.5 to 8.5, in which the spectral regions

of water (4.7 to 4.9 ppm) and TSP (-0.20 to 0.20ppm) were excluded. Data were segmented

and reduced by binning method with a window of 0.04 ppm and stored as a data matrix.

Statistical analysis

Significant differences between plasma samples fingerprints from BCP and CP obtained within

each technique, were evaluated by multivariate (MVA) and univariate (UVA) statistical analy-

sis. MVA were performed using SIMCA-P+ 12.0 (Umetrics, Umea, Sweden). Unsupervised

principal component analysis (PCA) was first used to evaluate the quality of the analytical sys-

tem performance using the QC samples. Then, a supervised method, orthogonal partial least

squares regression (OPLS-DA) was performed to maximize differences between BCP and CP,

and for the selection of the variables responsible for the separation between the two different

groups. Pareto scaling and logarithmic transformation were used before the statistical analysis.

The accuracy of the classification was assessed by means of a double cross-validation scheme.

The original data set was split into a training, test and external set before any step of statistical

analysis. The number of OPLS components were chosen on the basis of a 7-fold cross-valida-

tion that was performed on the training set only, and the best model was used to predict the
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samples in the test set. The whole procedure was repeated 50 times with a 7 cross-validation

scheme, and the results were averaged [54].

UVA was performed employing MatLab (7.10.0 Mathworks, Inc., Natick). Data normality

was verified by evaluation of the Kolmogorov-Smirnov-Lillefors and Shapiro—Wilk tests and

variance ratio by the Levene’s test. The p-value was determined by parametric (unpaired t-test)

or non-parametric (Mann—Whitney U test) tests with a Benjamini—Hochberg False Discov-

ery Rate post hoc correction (FDR).

For both LC-MS and GC-MS data, the significant variables were selected by keeping only

the variables that fulfilled: 1) UVA (p-value<0.05 from hypothesis testing) and 2) MVA crite-

ria (variance important in projection (VIP) with Jack-knife confident interval (JK) not includ-

ing 0), while in NMR significant chemical shifts were selected only by MVA.

Metabolite identification

Metabolites obtained by GC-MS analysis were identified using the Fiehn version 2008 and

NIST 14 libraries, while significant features obtained by LC-MS were putatively identified by

matching the observed accurate mass of each compound with the m/z values available online

using following databases: METLIN (http://metlin.scripps.edu), KEGG (http://genome.jp/

kegg), lipid MAPS (http://lipidMAPS.org), and HMDB (http://hmdb.ca) with the CEU Mass

Mediator tool (http://ceumass.eps.uspceu.es/mediator/). Finally, some LC-MS significant

metabolites were further analyzed by MS/MS analysis, in order to confirm the metabolite’s

identity. For NMR, metabolites were identified by their 1H-NMR spectra by comparison of

observed chemical shifts and signal multiplicities reported previously in the literature [55, 56].

Pathway mapping of metabolites

Metabolic pathway analysis was performed using MetaboAnalyst 3.0 tool (http://www.

metaboanalyst.ca/), which integrates two pathways analysis approaches, enrichment and topol-

ogy pathway analysis. A list of compound names from identified significant metabolites was

uploaded and processed using “homo sapiens” library [57].

Results

Multiplatform metabolic and lipid fingerprinting analysis of BCP and CP plasma samples were

conducted using four different approaches aiming at detecting the largest possible number of

metabolites. The total coverage of plasma metabolites from the MS-based platforms consisted

of 1428 identified metabolites, 77 by GC-MS, 298 by MF/LC-MS(+), 313 by MF/LC-MS(-),

532 by LF/LC-MS(+) and238 by LF/LC-MS(-). Furthermore, 1757 chemical shifts were

detected by 1H NMR analysis. A comparison between the number of detected metabolites dur-

ing data processing across the different analytical techniques used is presented in S1 Table,

and a typical metabolic fingerprint from each platform is presented in S1–S3 Figs.

The performance of the different analytical platforms was assessed by clustering of the QC

samples in the PCA models (S4 Fig), assuring the acquired data quality and the conservation

of biological variation over experimental bias. Using this approach, further statistical com-

parisons across the samples were allowed. The discrimination between BCP and CP was

achieved using an OPLS-DA model for each platform, as shown in Fig 1. A clear group sepa-

ration was observed in the score plots for all models, with acceptable values of predicted vari-

ance (R2) and predictive ability (Q2). Double cross-validation of the models showed that

these correctly discriminated the groups correctly above 70% of classification accuracy for

NMR (71%), MF/LC-MS(+) (81%), MF/LC-MS(-) (79%) and GC-MS (71%), while only

above 60% for LF/LC-MS(+) (68%) and LF/LC-MS(-) (60%). Individual differentiating
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metabolites were determined by a combination of MVA (VIP > 1 with JK) and UVA (per-

centage of change > 30% and p < 0.05) criteria, obtaining 16 significant metabolites by

GC-MS, 31 by MF/LC-MS(+), 50 by MF/LC-MS(-), 50 by LF/LC-MS(+) and 41 by LF/

LC-MS(-) analysis.

Fig 1. OPLS-DA models. OPLS-DA models with Log transformation and Pareto scaling for metabolic and lipid

fingerprinting of breast cancer (green dots) and control (blue dots) groups. Panels: A. MF by GC-MS: R2 = 0.827. Q2 = 0.514.

B. MF by NMR: R2 = 0.921. Q2 = 0.614. C. MF by LC-MS(+):R2 = 0.858. Q2 = 0.665. D. MF by LC-MS(-): R2 = 0.930. Q2 =

0.681. E. LF by LC-MS(+): R2 = 0.779. Q2 = 0.535. F. LF by LC-MS(-):R2 = 0.829. Q2 = 0.501.

https://doi.org/10.1371/journal.pone.0190958.g001
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For GC-MS analysis, the significant metabolites corresponded to the chemical classes of

fatty acids, organic acids and amino acids (Table 2). All identified metabolites were up-regu-

lated in the BCP group, except for one metabolite; pyruvic acid. MF/LC-MS(±) analysis

resulted in the identification of altered lipids in the plasma of BCP (Table 3), in particular,

fatty acylcarnitines, fatty acids, lysophosphatidylethanolamines (LPE), lysophosphatidylcho-

lines (LPC), phosphatidic acids (PA) and phosphatidylglycerol (PG). In addition, LF/LC-MS

(±) determined significant differences in non-polar lipids such as phosphatidylcholines (PC),

sphingolipids (SM) and mono, di-and triacylglycerides (MG, DG and TG) (Table 4). The

number of statistical significant metabolites across MS platforms are compared in Fig 2.

For 1H-NMR analysis, a total of 519 chemical shifts in the spectral range were found statisti-

cally significant for group differentiation. These chemical shifts correspond to the region of

lipids, lactate and the amino acid valine (Table 5). These regions were integrated and evaluated

by UVA, and the data allows to conclude that lactate, valine and lipids were statistically signifi-

cant with a p-value< 0.05.

Discussion

Our results show that a multiplatform approach for metabolic and lipid fingerprinting allows a

wide coverage of different metabolite classes in plasma. The combination of these approaches

enabled the detection of 1450 metabolites in total, of which 95 were significantly altered in

BCP, including amino acids (7), organic acids (3), sugar alcohols (1), fatty acyls (15), fatty

Table 2. Compounds with statistical significance identified by GC-MS.

Compound Molecular formula RT (min) Target ion Qualifier ion (Q) m/z CV for QC (%) Change (%) p-value VIPb

Amino acids and derivatives
Valine C5H11NO2 7.146 72 55 5 + 36 0.012 1.83

Alanine C3H7NO2 7.413 116 73 6 + 25 0.045 1.34

Isoleucine C6H13NO2 8.480 86 79 7 + 21 0.035 1.15

Serine C3H7NO3 9.682 132 8 + 110 0.019a 2.65

Glutamic acid C5H9NO4 14.390 246 73 8 + 27 0.047 1.26

4-Hydroxyproline C5H9NO3 13.306 230 73 11 + 55 0.042a 2.18

Organic acids
Pyruvic acid C3H4O3 6.587 174 89 6 - 22 0.014 1.35

2-Hydroxybutyric acid C4H8O3 7.788 131 147 6 + 31 0.029a 1.62

3-Hydroxybutyric acid C4H8O3 8.350 147 73 9 + 26 0.045 1.62

Sugar alcohol
Glycerol C3H8O3 9.959 205 147 4 + 21 0.048 1.05

Fatty acids
Myristic acid C14H28O2 16.797 117 285 13 + 20 0.047 1.03

Palmitoleic acid C16H30O2 18.577 311 75 17 + 60 0.017a 2.32

Palmitic acid C16H32O2 18.757 313 117 8 + 29 0.041a 1.28

Linoleic acid C18H32O2 20.304 75 67 8 + 41 0.032a 1.68

Oleic acid C18H34O2 20.346 339 117 11 + 39 0.021a 1.87

Arachidonic acid C20H32O2 21.684 91 73 12 + 43 0.021 1.41

a p values corrected by Benjamin Hochberg (FDR correction),
bVIP values with Jack-Knife confidence intervals estimative not including 0, 95% confidence level, RT: retention time; CV for QC (%): CV obtained for the same feature

within the set of quality control samples.; Change: percentage of change of the abundances, calculated as (Breast cancer-control)/control, the sign indicates the direction

of change in BCP group.

https://doi.org/10.1371/journal.pone.0190958.t002
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acylcarnitines (10), glycerophospholipids (24) and glycerolipids (35). Fig 2 compares the num-

ber of altered metabolites identified by MS-based platforms, where 13%, 27% and 49% of the

alterations were determined exclusively by GC, MF/LC(±) and LF/LC(±), respectively. Only

oleic acid was common on all platforms.

The pathway analysis shows perturbations in the biosynthesis of aminoacyl-tRNA and sev-

eral amino acids, as well as in the metabolism of fatty acids, glycerolipids and glycerophospho-

lipids (Fig 3 and S3 Table). GC-MS and NMR both identify shifts in the glycolytic pathway

Table 3. Compounds with statistical significance identified by metabolic fingerprinting using LC-MS(±).

Compound name Molecular

formula

Molecular weight (DB) g/

mol

RT

(min)

Mass error

(ppm)

CV for QC

(%)

Change

(%)

p-value VIPb DET CON

Fatty acyl carnitines
Decanoylcarnitine C17H33NO4 315.2409 11.085 0 8 + 35 0.0091 1.75 ESI+ MS/MS

Decenoylcarnitine C17H31NO4 313.2253 9.079 0 7 + 22 0.079 1.18 ESI+ MS/MS

Dodecenoylcarnitine C19H35NO4 341.2566 12.982 2 9 + 48 0.011a 2.12 ESI+ MS/MS

Laurylcarnitine C19H37NO4 343.2722 14.813 1 9 + 45 0.011a 2.06 ESI+ MS/MS

Linoleyl carnitine C25H45NO4 423.3348 20.040 1 10 + 20 0.010 0.97 ESI+ Putative

Myristoylcarnitine C21H41NO4 371.3035 18.065 0 12 + 36 0.011a 1.82 ESI+ MS/MS

Oleoylcarnitine C25H47NO4 425.3505 21.912 1 9 + 29 0.0083 1.48 ESI+ Putative

Palmitoylcarnitine C23H45NO4 399.3348 21.154 0 9 + 21 0.0077 1.26 ESI+ MS/MS

Tetradecadiencarnitine C21H37NO4 367.2722 14.597 2 9 + 46 0.021a 2.01 ESI+ MS/MS

Tetradecenoylcarnitine C21H39NO4 369.2879 16.351 0 26 + 54 0.0044a 2.42 ESI+ MS/MS

Glycerophospholipids
cPA(18:0) C21H41O6P 420.2641 11.383 6 24 - 45 0.040a 1.68 ESI- Putative

LPC(16:1) C24H48NO7P 493.3168 18.548 1 11 + 26 0.0064a 1.73 ESI+ MS/MS

LPC(18:1) C26H52NO7P 521.3481 22.415 0 11 + 27 0.017a 2.07 ESI+ MS/MS

LPC(18:4) C26H46NO7P 515.3012 20.066 5 19 + 29 0.014a 1.33 ESI- Putative

LPC(20:4) C28H48NO8P 557.3118 19.477 4 17 + 24 0.033a 1.21 ESI- Putative

LPE(18:0) C23H48NO7P 481.3168 21.090 17 22 + 49 0.017b 1.90 ESI- Putative

LPE(18:1) C23H46NO7P 479.3012 19.473 16 19 + 29 0.015a 1.39 ESI- Putative

PA(32:0) C35H69O8P 648.4730 31.822 4 8 + 35 0.00067a 1.74 ESI- Putative

PA(P-31:1) C34H65O7P 616.4468 28.111 8 19 + 52 0.011a 1.95 ESI- Putative

PG(22:0) C28H57O9P 568.3740 10.833 1 24 + 50 0.014 1.52 ESI- Putative

Fatty Acids
11’-Carboxy-γ-

tocotrienol

C25H36O4 400.2614 31.615 14 24 + 70 0.000059a 2.37 ESI- Putative

9’-Carboxy-γ-tocotrienol C23H32O4 372.2301 28.888 13 16 + 41 0.0030a 1.74 ESI- Putative

γ-Homolinolenic acid C20H34O2 306.2550 31.203 12 25 + 76 9.7E-07a 2.68 ESI- Putative

Adrenic acid C22H36O2 332.2710 31.616 17 14 + 62 0.00074a 2.15 ESI- Putative

Arachidonic acid C20H32O2 304.2402 28.976 2 10 + 45 0.014 2.28 ESI± MS/MS

Docosapentaenoic acid C22H34O2 330.2559 29.592 17 20 + 49 0.0045a 1.73 ESI- Putative

12-HETE C20H32O3 320.2351 26.800 14 16 + 35 0.017 1.35 ESI- Putative

Linoleic acid C18H32O2 280.2400 29.349 2 22 + 50 0.00019 2.65 ESI± MS/MS

Oleic acid C18H34O2 282.2550 31.955 6 5 + 43 0.0019a 2.29 ESI± MS/MS

Palmitic acid C16H32O2 256.2400 31.255 2 17 + 34 0.0044a 2.04 ESI± MS/MS

a p values corrected by Benjamin Hochberg (FDR correction),
b VIP values with Jack-Knife confidence intervals estimative not including 0, 95% confidence level, RT: retention time; CV for QC (%): CV obtained for the same feature

within the set of quality control samples; Change: percentage of change of the abundances, calculated as (Breast cancer-control)/control, the sign indicates the direction

of change in BCP group; DET: detection mode; CON: confirmation.

https://doi.org/10.1371/journal.pone.0190958.t003
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Table 4. Compounds with statistical significance identified by lipid fingerprinting using LC-MS(±).

Compound name Molecular formula Mass (Da) RT Mass error (ppm) CV for QC (%) Change

(%)

p-value VIPb DET CON

Oleic acid C18H36O2 356.2927 5.77 2 21 + 34 0.026 1.85 ESI+ MS/MS

Stearic acid C18H36O2 284.4772 7.35 0 15 + 35 0.007 2.25 ESI- MS/MS

Monoacylglycerides
MG(18:1) C21H40O4 356.2927 22.940 2 30 + 95 0.0027a 1.98 ESI+ Putative

MG(18:2) C21H38O4 354.2770 22.520 3 27 + 80 0.000057a 2.24 ESI+ MS/MS

Diacylglycerides
DG(32:1) C35H66O5 566.4910 21.550 3 24 + 77 0.012a 1.62 ESI+ Putative

DG(34:1) C37H70O5 594.5223 22.980 1 25 + 77 0.0019a 1.85 ESI+ Putative

DG(34:2) C37H68O5 592.5067 22.050 1 21 + 88 0.000049a 2.28 ESI+ Putative

DG(34:3) C37H66O5 590.4910 21.080 0 19 + 84 0.000076a 2.32 ESI+ MS/MS

DG(36:2) C37H72O5 620.5380 23.420 0 24 + 68 0.00035a 1.94 ESI+ Putative

DG(36:4) C39H68O5 616.5067 17.560 2 28 + 46 0.0039a 1.51 ESI+ Putative

DG(38:3) C41H74O5 646.5536 19.740 0 21 + 32 0.0062a 1.35 ESI+ Putative

DG(40:4) C39H68O5 616.5067 21.600 1 22 + 75 0.00033b 2.09 ESI+ Putative

Triacylglycerides
TG(48:0) C51H98O6 806.7363 31.700 1 10 + 41 0.00072a 1.56 ESI+ MS/MS

TG(48:1) C51H96O6 804.7207 30.380 3 13 + 56 0.00019a 1.92 ESI+ MS/MS

TG(48:2) C51H96O6 802.7050 31.090 1 24 + 63 0.028a 1.59 ESI+ MS/MS

TG(48:3) C51H92O6 800.6894 29.890 1 28 + 56 0.023a 1.58 ESI+ MS/MS

TG(50:0) C53H102O6 834.7676 33.980 3 12 + 36 0.00025a 1.61 ESI+ Putative

TG(50:1) C53H100O6 832.7520 33.260 8 21 + 70 0.0019a 1.88 ESI+ Putative

TG(50:2) C53H98O6 830.7363 31.700 15 18 + 87 0.0013a 2.27 ESI+ Putative

TG(50:3) C53H96O6 828.7207 31.690 1 17 + 89 0.00015a 2.28 ESI+ MS/MS

TG(50:4) C53H94O6 844.7389 30.380 3 27 + 99 0.000053a 2.43 ESI+ MS/MS

TG(52:0) C55H106O6 862.7989 37.050 2 26 + 71 0.00083a 1.94 ESI+ MS/MS

TG(52:1) C55H104O6 860.7833 34.890 5 16 + 52 0.00027a 1.85 ESI+ MS/MS

TG(52:2) C55H102O6 858.7676 34.000 10 14 + 45 0.00019a 1.80 ESI+ MS/MS

TG(52:3) C55H100O6 856.7520 32.360 9 15 + 66 0.000071a 2.05 ESI+ MS/MS

TG(52:4) C55H98O6 854.7363 32.360 1 14 + 66 0.00019a 2.02 ESI+ MS/MS

TG(52:5) C55H96O6 852.7207 30.990 0 21 + 79 0.0012a 2.17 ESI+ MS/MS

TG(54:2) C57H106O6 886.7989 36.840 9 18 + 64 0.000076a 2.08 ESI+ MS/MS

TG(54:3) C57H104O6 884.7833 37.070 1 30 + 90 0.00077a 2.13 ESI+ MS/MS

TG(54:4) C57H102O6 882.7676 34.900 1 19 + 63 0.00022a 2.02 ESI+ MS/MS

TG(54:5) C57H100O6 880.7520 33.890 1 20 + 69 0.00053a 1.97 ESI+ Putative

TG(54:6) C57H98O6 878.7363 31.590 2 10 + 77 0.00063a 2.08 ESI+ MS/MS

TG(56:5) C59H104O6 908.7833 36.100 0 16 + 77 0.0053a 2.17 ESI+ MS/MS

TG(56:6) C59H102O6 906.7676 34.790 0 23 + 96 0.000014a 2.60 ESI+ MS/MS

TG(56:7) C59H100O6 904.7520 33.300 0 19 + 87 0.0000093a 2.39 ESI+ MS/MS

TG(56:8) C59H98O6 902.7363 31.730 3 16 + 115 0.0000052a 2.65 ESI+ MS/MS

TG(58:9) C61H100O6 928.7520 32.450 0 9 + 72 0.0000093a 2.22 ESI+ Putative

Phosphatidylcholines
PC(P-31:1) C39H76NO7P 701.5359 20.740 4 16 + 33 0.0036a 1.35 ESI+ MS/MS

PC(32:1) C40H78NO8P 731.5465 20.680 0 18 + 40 0.0027a 1.49 ESI+ MS/MS

PC(36:0) C44H88NO8P 789.6248 21.810 6 23 + 44 0.0019a 1.60 ESI+ MS/MS

PC(36:1) C44H86NO8P 787.6091 21.790 0 23 + 49 0.0018a 1.68 ESI+ MS/MS

PC(O-36:4) C44H82NO7P 765.5672 21.330 1 21 + 40 0.000058a 1.76 ESI+ MS/MS

(Continued )
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[14]. The observed down-regulation of pyruvic acid and the up-regulation of lactic acid and

alanine (Tables 1 and 4) are in accordance with the Warburg effect [58]. In cancer cells, energy

metabolism shifts occur in order to generate energy, mainly by pyruvate to lactate conversion,

regardless of oxygen concentration [59]. This generates a decrease in pyruvate and an increase

in lactate. The depletion of pyruvate also affects the tricarboxylic acid (TCA) cycle. Cancer

cells promote the conversion of glutamine to glutamic acid via glutaminolysis in order to

maintain the TCA cycle [12, 60–62] and to provide amino groups for serine biosynthesis. Both

glutamic acid and serine were detected as significantly upregulated (Table 2).

All three analytical platforms were consistent in indicating an overall upregulation of fatty

acyls (FA) (Tables 1–4). This is expected considering that FA can be used as signalling mole-

cules and an energy source in themselves, and also as building blocks for the synthesis of com-

plex lipids. For that reason, FA are crucial to maintaining cancer cell proliferation, migration,

survival and tissue invasion [13]. In breast cancer, a high demand of FA from de novo synthesis

has been reported [63] as a response to the overexpression of several enzymes, such as fatty

acid synthase (FASN) [23, 64], acetyl-CoA carboxylase (ACC) and ATP citrate lyase (ACLY)

[65]. The differentiating FA included palmitic (16:0), oleic (18:1), linoleic (18:2) and arachi-

donic acids (20:4), as well as 12-HETE, which have been proposed as potential biomarkers in

breast cancer [62, 66]. For instance, linoleic acid can modulate BRCA1 gene expression and

increase 12-HETE and 15-HETE production in BC [67], thereby promoting proliferation,

angiogenesis and immunomodulation in tumors [68].

FA can also be consumed through β-oxidation, producing key substituents to providing the

energy needed for cancer cell survival [69]. For this purpose, carnitines are used as shuttle sys-

tem to transport long chain FA inside the mitochondria. Carnitine palmitoyltransferase 1

(CPT1), which catalyzes the transfer of the fatty acid moiety from acyl-coenzyme A (CoA) to a

long-chain acylcarnitine, has been reported as overexpressed in breast cancer [70, 71].

Moreover, increased levels of several carnitines in BC were reported by Shen et al., including

hexanoylcarnitine, octanoylcarnitine and cis-4-decenoylcarnitine [13]. Therefore, the up-regu-

lation of (16:0), (18:1) and (18:2) fatty acyl carnitines shown in Table 3, suggest transport of de
novo synthetized FA to mitochondria, where they are used to energy production via β-oxida-

tion. This is also supported by the up-regulation of the 3-hydroxybutyric acid (a ketone body),

Table 4. (Continued)

Compound name Molecular formula Mass (Da) RT Mass error (ppm) CV for QC (%) Change

(%)

p-value VIPb DET CON

PC(38:4) C46H84NO8P 809.5935 21.810 10 23 + 41 0.0021a 1.54 ESI+ MS/MS

PC(P-38:4) C46H84NO7P 793.5985 22.130 2 28 + 34 0.0066a 1.36 ESI+ MS/MS

PC(38:6) C46H80NO8P 805.5622 19.520 0 13 + 36 0.0000014a 1.68 ESI+ MS/MS

PC(38:7) C46H78NO8P 803.5465 19.540 0 13 + 35 0.00016a 1.67 ESI+ MS/MS

PC(40:5) C48H86NO8P 835.6091 21.980 0 23 + 43 0.00017a 1.65 ESI+ MS/MS

PC(40:6) C48H84NO8P 833.5935 21.120 0 18 + 43 0.000014a 1.80 ESI+ MS/MS

Sphingolipid
SM(d41:2) C46H91N2O6P 798.6615 22.740 1 26 + 34 0.0099a 1.29 ESI+ MS/MS

SM(d42:2) C47H93N2O6P 812.6771 23.340 0 27 + 32 0.014a 1.15 ESI+ MS/MS

a p values corrected by Benjamin Hochberg (FDR correction),
bVIP values with Jack-Knife confidence intervals estimative not including 0, 95% confidence level, RT: retention time; CV for QC (%): CV obtained for the same feature

within the set of quality control samples; Change: percentage of change of the abundances, calculated as (Breast cancer-control)/control, the sign indicates the direction

of change in BCP group; DET: detection mode; CON: confirmation.

https://doi.org/10.1371/journal.pone.0190958.t004

Comprehensive plasma metabolic and lipid fingerprinting of breast cancer in Colombian Hispanic women

PLOS ONE | https://doi.org/10.1371/journal.pone.0190958 February 13, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0190958.t004
https://doi.org/10.1371/journal.pone.0190958


observed by GC-MS. An overview of the basic relationships between the pathways described is

presented in Fig 4.

A comprehensive understanding of the perturbations in glycerophospolipid metabolism

was established both by metabolic and lipid approaches based on LC-MS. While LF/LC-MS(±)

analysis found alterations in phosphatidylcholines (PC), MF/LC-MS(±) analysis found

changes in phosphatidic acid (PA), lysophosphatidylcholines (LPC) and lysophosphatidyletha-

nolamines (LPE). PC are the most common glycerophospholipids because of their structural

roles and since they serve as a precursor of signalling molecules such as arachidonic acid, dia-

cylglycerol (DG) and PA [72–74]. The relevance of PC has been examined in several studies

which have determined alterations in BC samples [75–77]. As shown in Table 4, all differenti-

ating PC species were found up-regulated in the BCP group, including some already reported

as PC(32:1) [78–81], PC(36:0) [45], PC(36:1) [78–80], PC(38:4) [78] [79], PC(40:5) [17], and

PC(40:6) [17, 79]. It has been suggested that PC accumulation in BC is caused by an unbalance

Fig 2. Venn diagram. Venn diagram for the number of differentiating metabolites in BCP group identified in each chromatographic

technique coupled to mass spectrometry (blue circle: MF/GC-MS, yellow circle: MF/LC-MS(±), green circle: LF/LC-MS(±).

https://doi.org/10.1371/journal.pone.0190958.g002
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Table 5. Chemical shifts of compounds with statistical significance identified by 1H-NMR.

Metabolite Assignment 1H (δ) Multiplicity Trend p-value VIP

Valine 1.02 d " 0.019a 1.41

1.07 d " 0.022a 1.95

2.31 m " 0.031a 1.96

Alanine 1.49 d " 0.025a 2.18

Lactate 1.33 d " 0.0014a 2.88

4.11 q " 0.0040a 1.18

Lipids 0.8 m " 0.014a 2.25

1.28 m " 0.014 a 1.27

2.04 m " - 1.16

5.26–5.33 m " - 1.64

a p values corrected by Benjamin Hochberg (FDR correction), Trend: Regulation in BCP group: " Up regulated, # Down regulated, VIP: variance important in

projection from OPLS-DA model with Jack-Knife confidence intervals estimative not including 0, 95% confidence level.

https://doi.org/10.1371/journal.pone.0190958.t005

Fig 3. Pathway analysis. Pathway analysis displaying metabolic pathways arranged by scores from pathway enrichment

(y axis) and from topology analysis (x axis) using MetaboAnalyst 3.0 tool. The color and size of each circle is based on p-

values and pathway impact values, respectively [57].

https://doi.org/10.1371/journal.pone.0190958.g003
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between a high activity of the enzyme choline kinase in the anabolic pathway [73, 82, 83] and

the activity of the enzymes phospholipases A2 (PLA2), phospholipase C (PLC) and phospholi-

pase D (PLD) in the catabolic pathway [73, 84–87].

Lysophospholipids can be produced by PLA2 activity over PC and others glycerophospho-

lipids. Lyso-type lipids have specific actions in cancer cells, such as activation of specific G-

protein coupled receptors by LPC [88] or the increase of intracellular Ca2+ by LPE [89].

Therefore, the observed up-regulation of LPC and LPE species are suggested to play a role in

cancer cell signaling, in agreement with previous published studies that found alterations in

LPC (16:1), LPC (18:1) [17, 90, 91], LPC (20:4) [45, 92], LPE (18:0) [91], LPE (18:1) [91]. PC

cleavage can also be performed by PLD to generate PA, such as the PA (32:0) and PA(P-31:1)

found in this study. These acids can act as messengers that directly binds to the mammalian

target of rapamycin (mTOR) to activate this anti-apoptotic pathway [93].

Nevertheless, a structural analogue of lysophosphatidic acid (LPA), the cyclic phosphatidic

acid cPA (18:0) was found to be down-regulated (Table 3), which is consistent with its activity

to inhibit cell proliferation, platelet aggregation, and metastasis in cancer [94]. To our present

knowledge, it is the first report of cPA alterations in breast cancer plasma samples.

Fig 4. Significant altered pathways in breast cancer. Significant altered pathways in breast cancer according to multiplatform findings in blood

plasma. In red up-regulated and in green down-regulated metabolites. Abbreviations: 12-HETE, 12-hydroxyeicosatrienoic acid; α-KG, α-ketoglutarate;

ACC, acetyl-CoA carboxylase; ACLY, acetyl-CoA lyase; cPA, cyclic phosphatidic acid; CPT1, carnitine palmitoyltransferase I; DG, diacylglycerides; FA,

fatty acid; FA-CoA, fatty acyl-CoA; FA-carnitine, fatty acyl-carnitine; FASN, fatty acid synthase; GA3P, glyceraldehyde 3-phosphate; G3P, glycerol

3-phosphate; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; MAGL, monoacylglycerol lipase; MG, monoacyl glycerides; PA, phosphatidic

acid; PC, phosphatidylcholine; PLA2, phospholipase A2; PLC, phospholipase C; PLD, phospholipase D; SCD, stearoyl-CoA desaturase; SM,

sphingomyelin; SMS, sphingomyelin synthase; TCA cycle, tricarboxylic acid cycle; TG, triacylglycerides.

https://doi.org/10.1371/journal.pone.0190958.g004
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Finally, lipid fingerprinting by LC-MS(±) was the only analytical platform able to detect gly-

cerolipids as differential metabolites (S2 Table). As shown in Table 4, several MG, DG and TG

species were found up-regulated in the BCP group, which is consistent with previous reports

in breast cancer [46, 91, 95–97]. MG can be used as a source of FA in cancer cells in order to

maintain an FA pool always available, given the overexpression of monoacylglycerol lipase

(MAGL) as reported by Nomura et al [98]. DG are important intermediates of the lipid metab-

olism and cellular signalling. Several studies have reported alterations in DG concentrations in

diseases like breast cancer [46] and various other cancer types [99], by affecting the protein

kinase C (PKC) [86, 100, 101]. TG are central to energy storage and as a source of building

blocks for complex lipids; therefore, high TG levels have been associated with breast cancer

progression and aggressiveness [102–106]. Raised TG production has been suggested as a cell

strategy to decrease the cytotoxicity generated by the high amount of free FA in the cytoplasm

[107, 108]. Although TG upregulation also could be related to the dietary fat, a direct link to

BC has not been proven [95, 96].

Previous studies on BC in Colombian women of Hispanic origin have been focused on

genomics. These studies have revealed several disparities in the gene mutations spectra

when compared to other Hispanic families in United States [109] or other Central/South

America countries [110, 111]. Considering that genotypic differences can be related with

phenotypic ones, the present study provides an insight into the alterations of plasma metab-

olites in Colombian women, which is helpful for further personalized and population-based

medicine approaches. A comprehensive view of all the alterations found in this multiplat-

form study are in accordance with the general plasma metabolic signatures associated

with BC for other populations, including the glycolytic pathway, amino acid and lipid

metabolism. However, some of the differentiating metabolites have not yet been reported

for BC, such as cPA and several FAcyl-carnitines, which might be reflecting genotype and

environmental disparities of BC in Latin woman of Hispanic origin. Although this pilot

study allowed the exploration of metabolic perturbations in Colombian Hispanic women

with BC, it will be important to consider for further targeted studies and/or biomarker

validation a much larger cohort of women with BC in early stage, without any previously

treatment.

Conclusion

Through metabolic and lipid fingerprinting, a comprehensive characterization of metabolite

alterations of breast cancer in Colombian Hispanic women was achieved. This multiplatform

study demonstrated the complementarity of the different analytical technologies in non-target

approaches, allowing to observe modifications in a wide range of metabolite levels. Altered

metabolites belonging to glutaminolysis, amino acids, fatty acids, glycerolipid and glyceropho-

spholipid metabolism were observed. Most of the alterations found agreed with the metabolic

signatures reported previously for BC; nevertheless, in this study, new metabolites were

observed that had not yet been reported, such as the down-regulation of cyclic phosphatidic

acid cPA (18:0) or the up-regulation of several long fatty acylcarnitines. These findings not

only provided a map of metabolic perturbations in BC, but also demonstrated that the meta-

bolic signature of BC in Hispanic women is comparable to the metabolic signature reported

for Asian, European and North American women, regardless of the large variations in this

heterogeneous disease. Determining metabolic disturbances in specific populations may be

promising for patient stratification, regarding the selection of an appropriate therapy or the

development of new therapeutic targets.
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Supporting information

S1 Fig. Comparison of GC-MS chromatograms. Comparison of GC-MS chromatograms

(truncated at 30 minutes) for breast cancer (green) and control (blue). Identified metabolites:

1. N-Ethylglycine I. 2. Pyruvic acid. 3. Lactic acid. 4. Glycolic acid. 5. Valine I. 6. Alanine I. 7.

2-Ketoisocaproic acid I. 8. Acetoacetate I. 9. Glycine I. 10. 2-Hydroxybutyric acid I. 11. Sarco-

sine. 12. Acetoacetate II. 13. Oxalic acid. 14. p-Cresol. 15. Leucine I. 16. 3-Hydroxybutyric

acid. 17. 2-etoisocaproic acid I. 18. N-methylalanine. 19. Proline I. 20. Isoleucine I. 21. 2-Ketoi-

socaproic acid II. 22. Malonic acid I. 23. Valine II. 24. Glyceraldehyde II. 25. Benzoic acid. 26.

Urea. 27. Serine I. 28. Caprylic acid. 29. Leucine II. 30. Glycerol. 31. Phosphoric acid. 32. Thre-

onine I. 33. Isoleucine II. 34. Proline II. 35. Glycine. 36. Glyceric acid. 37. Fumaric acid. 38.

Serine II. 39. Pipecolic acid II. 40. Threonine II. 41. Aspartic acid I. 42. 3-Aminoisobutyric

acid II. 43. Iminodiacetic acid I. 44. Threose II. 45. Aminomalonic acid. 46. Threitol. 47.

Methionine II. 48. Pyroglutamic acid. 49. trans-4-Hydroxy-L-proline II. 50. Iminodiacetic acid

II. 51. Phenylalanine I. 52. Creatinine. 53. Glutamic acid II. 54. Phenylalanine II. 55. Lauric
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Julien Wist, Roland J. W. Meesters.

Data curation: Mónica P. Cala, Julian Aldana, Jessica Medina, Julien Wist.

Formal analysis: Mónica P. Cala, Julian Aldana, Jessica Medina, Julien Wist.

Funding acquisition: Mónica P. Cala, Roland J. W. Meesters.

Investigation: Mónica P. Cala, Julian Aldana, Jessica Medina, Julien Wist.

Methodology: Mónica P. Cala, Julian Aldana, Jessica Medina, Julien Wist.

Project administration: Mónica P. Cala, Julian Aldana, Roland J. W. Meesters.

Resources: Mónica P. Cala, Jessica Medina, Julián Sánchez, José Guio, Julien Wist.

Software: Jessica Medina, Julien Wist.

Supervision: Mónica P. Cala, Julian Aldana, Roland J. W. Meesters.

Validation: Mónica P. Cala, Jessica Medina, Julien Wist.

Visualization: Mónica P. Cala, Julian Aldana, Jessica Medina.

Writing – original draft: Mónica P. Cala, Julian Aldana, Roland J. W. Meesters.

Writing – review & editing: Mónica P. Cala, Julian Aldana, Julián Sánchez, José Guio, Julien
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