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Abstract

Background: Isotopes can provide unique solutions to fundamental problems related to the ecology and evolution of
migration and dispersal because prior movements of individuals can theoretically be tracked from tissues collected from a
single capture. However, there is still remarkably little information available about how and why isotopes vary in wild animal
tissues, especially over large spatial scales.

Methodology/Principal Findings: Here, we describe variation in both stable-hydrogen (dDF) and strontium (87Sr/86SrF)
isotopic compositions in the feathers of a migratory songbird, the Tree Swallow (Tachycineta bicolor), across 18 sampling
sites in North America and then examine potential mechanisms driving this variation. We found that dDF was correlated
with latitude of the sampling site, whereas 87Sr/86SrF was correlated with longitude. dDF was related to dD of meteoric
waters where molting occurred and 87Sr/86SrF was influenced primarily by the geology in the area where feathers were
grown. Using simulation models, we then assessed the utility of combining both markers to estimate the origin of
individuals. Using 13 geographic regions, we found that the number of individuals correctly assigned to their site of origin
increased from less than 40% using either dD or 87Sr/86Sr alone to 74% using both isotopes.

Conclusions/Significance: Our results suggest that these isotopes have the potential to provide predictable and
complementary markers for estimating long-distance animal movements. Combining isotopes influenced by different
global-scale processes may allow researchers to link the population dynamics of animals across large geographic ranges.
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Introduction

Understanding the ecology, evolution, and life-history strategies

of animals requires detailed knowledge of individual movements

throughout the year [1,2]. Uncovering patterns of migration and

dispersal has been challenging for many species because of the

difficulty associated with tracking the movements of individuals

over large geographic distances [1–3], many of which cover

thousands of kilometres. Marked individuals are rarely recaptured

[4,5] and satellite tags are still too large for many smaller species

(Microwave Telemetry, Inc., Columbia, MD, USA).

Isotopes of specific elements provide a potential solution to the

challenges associated with estimating animal movements because

individuals only need be captured once to estimate the origin of

selected tissues grown during a previous season [3,6–9]. Animals

incorporate isotopic signatures into their tissues through local diet

sources and, depending on the turnover rates within tissues (days

to weeks in blood and liver: [10,11]; up to a year in bone tissue:

[10]), samples from individuals in one period of their life cycle can

be used to infer their origin from the period in which the tissue was

formed. Successful application of this technique relies partly on

predictable geographic variation of the isotopic composition of a

give element [7,12]. For example, stable-hydrogen isotopic

compositions (dD) in animal tissues are closely related to dD

values in precipitation (dDP; [6,7,13,14] and dDP, in turn, varies

with latitude according to elevation and meteorological patterns

[12,14,15]. Several studies have exploited the geographic

distribution of dDP values to estimate the locations of migratory

birds during different periods of the annual cycle [6,7,9,13,16–18].

To date, the assignment of individuals to specific geographic

locations using dD has been limited to coarse regional scales.

Reasons for this are not entirely clear but are likely influenced, in

large part, by variation in temperature, elevation, meteorological

storm patterns, and individual physiology, which, in turn, lead to

local spatial and temporal variation of dD values [19–22]. One oft-

mentioned solution for increasing the resolution of assignments is

to use multiple isotopes [1,3,8,23]. Thus far, efforts to incorporate

multiple isotopic markers have achieved only limited success
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largely because new markers have not always provided compli-

mentary information that increases the resolution for geographic

assignment [19, 24, 25; but see 23, 26].

The isotopic ratio of the heavy element strontium (87Sr/86Sr) is

one marker hypothesized to serve as a useful signal of geographic

origin [6,8,27,28]. Strontium (Sr, atomic number 38) is a non-

nutrient, alkaline earth metal whose isotopic ratio of 87Sr/86Sr

changes with time because of the decay of 87Rb, an unstable

isotope of rubidium (Rb) to 87Sr [29]. As a result, the radiogenic

isotope 87Sr increases relative to the stable 86Sr and 88Sr isotopes

such that the highest 87Sr/86Sr ratios are generally found in older

bedrock [29]. 87Sr/86Sr has been used to estimate short-distance

movements of salmonids (Salmonidae; [30]), to characterize

African Elephant (Loxodonta Africana) populations [31], and to

estimate the migratory movements of extinct megafauna [32,33].

In birds, Chamberlain et al. [6] combined 87Sr/86Sr ratios with dD

and stable-carbon isotopes (d13C) to infer the breeding area of

Black-throated blue warblers (Dendroica caerulescens) sampled on

their Caribbean wintering grounds. However, tissue sampling was

limited to a small number of sites in the eastern U.S. and 87Sr/86Sr

analysis was conducted on bone, which may have integrated
87Sr/86Sr ratios from diet consumed over multiple periods of the

year. Thus, we still do not have a clear understanding of how

87Sr/86Sr varies across large geographic scales in a single season or

the mechanisms driving this variation.

Here, we examined the geographic variation and potential

causes of such variation in both 87Sr/86Sr and dD in feathers of a

migratory songbird, the Tree Swallow (Tachycineta bicolor), grown at

18 breeding sites across North America (figure 1). Because feathers

are metabolically inert after growth, their isotopic signature

represents the location of feather growth the previous breeding

season [34]. First, we examined the relationship between dD in

feathers (dDF) and dD in precipitation, as estimated from spatially

interpolated values (dDGS; [12,14]). Based on previous studies

[6,7,23,35], we predicted (a) a positive relationship between dDF

and dDGS, (b) that the intercept of this relationship would be in the

range of 227% and 219% [14,23,35] and (c) that the slope of the

relationship would not differ significantly from 1. Because

deuterium tends to decrease with latitude, we also predicted that

dDF would be negatively correlated with the latitude at which

feathers were grown. Because the age of underlying bedrock is one

factor hypothesized to influence 87Sr/86Sr ratios [36], we

predicted a positive relationship between 87Sr/86Sr in feathers

(87Sr/86SrF) and bedrock age. To explore whether there was a

relationship between 87Sr/86SrF ratios and geographic location,

we also examined correlations between 87Sr/86SrF and both

Figure 1. Map of 18 Tree Swallow sampling sites. Sites are black dots, which are overlaid on the relative breeding abundance (based on data
from the Breeding Bird Survey; [37]). The intensity shading represents breeding density where lightest grey is lowest density (,1 individual) and black
is the highest density (.100 individuals; following [37]).
doi:10.1371/journal.pone.0004735.g001
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latitude and longitude of the breeding site. Lastly, we developed a

simulation model to test whether the combination of 87Sr/86SrF

and dDF would increase the probability of correctly assigning

individuals to their site of origin over using either isotope alone.

Methods

All animals were handled in strict accordance with good animal

practice as defined by the relevant national and local animal

welfare bodies, and all animal work was approved by the

appropriate committees.

Study species and sampling sites
Tree Swallows are small (21 g) insectivorous migratory

passerines that breed throughout North America ([37]; figure 1)

and nest almost exclusively in human-made wooden boxes [38].

From April–July 2007, we sampled feathers from adult birds at 18

breeding sites (figure 1, appendix S1) from the Golondrinas de las

Americas network (David Winkler, Cornell University, Ithaca, NY;

http://golondrinas.cornell.edu/). Sample sites were selected to

include a range of distinct bedrock geologies (e.g. Proterozoic

complex: northwest Ontario, Mesozoic sediments: Manitoba, and

Cenozoic volcanics: Oregon) and cover a range of known dD

values in precipitation from Alaska to southeastern US [12,14],

while ensuring samples could be collected in a single season to

eliminate year effects. We collected samples from 14 sites and

received samples from colleagues at the other four (Wolfville, NS;

Amherst, MA; Portland, OR; McCarthy, AK).

Tissue sampling
Although feather of nestlings would be logistically easier to

sample, we chose to sample adult feathers because substantial

differences in dD between adult and nestling from the same site

have been reported in other songbirds [22], as well as Tree

swallows (G. Betini, K.A. Hobson, L.I. Wassenaar, DRN,

unpublished data). To trap adults, we used several live-capture

methods (e.g. moe-traps, flap-traps, wig-wag traps) while they were

incubating eggs or feeding young. Upon capture, we determined

sex based on the presence of a brood patch (only females incubate)

and female age based on plumage colour and iridescence [39]. We

then clipped the first primary feather (P1) approximately 0.5 cm

from its base. The site at McCarthy, AK was the exception to this

protocol. The only available samples were P1s from two recently

deceased fledglings.

To maximize the probability that 87Sr/86Sr and dD values in

feathers were representative of the site in which they were

sampled, we analyzed the P1 from marked adults known to have

bred at the same site the previous year (n = 6 sites). Tree Swallows

undergo a complete pre-basic molt (all feathers) on the breeding

ground prior to fall migration. Primary and secondary flight

feathers are generally molted from the inside outward, beginning

as early as July [39,40]. If it was not possible to sample marked

individuals, we sampled after-second-year (ASY) females (n = 9

sites) because previous studies have shown that they have higher

site fidelity than second-year (SY) females [38]. With the exception

of two sites (NW ON [Thunder Bay] and SW ON [Guelph]), we

did not sample males that were unbanded because it was difficult

to determine age beyond simply classifying them as after-hatch-

year (AHY).

Isotope analysis
We analyzed samples at the Queen’s Facility for Isotope

Research, Queen’s University, Kingston, Ontario. Feathers were

first soaked in a 2:1 solution of chloroform: methanol for 24 hrs to

remove surface oils, then allowed to air dry for 36 hrs.

Stable-hydrogen isotope (dD) analysis. Stable-hydrogen

isotope ratios (2H/1H = R) are expressed in d units where

d= [(Rsample/Rstandard) 2 1]61000. From each feather, we sub-

sampled 0.1–0.4 mg of tissue for dD analysis. Sub-samples were

left open in the lab for 72 hrs to allow the feather’s exchangeable

hydrogen to equilibrate to the lab environment before analysis.

0.1–0.15 mg of each feather sample was loaded into 364.2 mm

silver capsules and left in a 100uC oven to outgas overnight to

minimize the effect of exchangeable hydrogen. In-house standards

were loaded into silver capsules in the same way and left in a

100uC oven for 1 hr. Silver capsules were then sealed, loaded into

a ThermoFinnigan TCEA auto-sampler, and introduced on-line

to a ThermoFinnigan Delta Plus XP Mass Spectrometer through a

Conflo III Interface. One standard was run for every 5–8

unknowns and a duplicate unknown was run every 8–10

samples to verify accuracy of results. During analysis, three in-

house standards were run (mean6s.d.): Georgia Clay (258%62,

n = 19), UofM Brucite (293%65, n = 21), and a Blue Jay

(Cyanocitta cristata) feather (247%65, n = 6). All standards

matched previous values in the lab. The mean6SD difference

between duplicate (same feather) analyses of unknown samples was

3.2%62.8 (n = 17).

Strontium isotope (87Sr/86Sr) analysis. We digested the

remaining feather samples (4.8–10.3 mg) in 2–3 mL concentrated

nitric acid in Savillex Teflon sample vials on a 70uC hotplate for

approximately 3 hrs. Samples were then cooled for 1 hr before the

addition of 30% hydrogen peroxide (H2O2; 0.5 mL) to digest

remaining organic material. Two hours after the addition of

H2O2, capped vials were returned to the 70uC hotplate for 3–

4 hrs. Caps were then removed to allow the solution to dry down

on the hotplate overnight. Dried samples were acidified with 3 g of

3 M nitric acid and allowed to sit covered until fully dissolved (up

to 6 hrs). One gram of this sample was then loaded into inert

column supports filled with Eichrom’s Sr Spec Resin (1.0 M

4,49(59)-di-t-butylcyclohexano 18-crown-6 (crown ether) 1-

Octanol). This resin retains strontium within the crown ether at

high nitric acid concentrations, while allowing other elements and

compounds to pass through. The crown ether releases strontium at

a concentration of nitric acid below 0.05 M (Eichrom

Technologies, Inc.). Before adding digested and acidified

samples to the columns, the resin was cleaned and equilibrated

with 3 M nitric acid and de-ionized water. Acidified feather

samples were loaded into the columns (500 mL, 4 times) before

flushing the columns five times with 500 mL of 3 M nitric acid to

elude most elements with the exception of strontium and lead.

Strontium was released from the column, using 500 mL 0.05 M

nitric acid, and collected in a 2 mL Teflon vial. These samples

were dried on a 70uC hotplate overnight and acidified with 2 g of

2% nitric acid, transferred to clean Teflon sample vials, and

loaded into the auto-sampler of the ThermoFinnigan Neptune

high-resolution multicollector ICP-MS for measurement of the
87Sr/86Sr ratio.

For the 87Sr/86Sr ratio, the MC-ICP-MS takes 63 consecutive

measurements per sample. For each sample, seven atomic masses

were measured: 84Sr, 86Sr, 87Sr, 88Sr, and 90Sr, as well as 83Kr,
85Rb. The Sr content was adjusted for both the standards and

samples to 10 ppb, 5 ppb or 2 ppb depending on the amount of

strontium in the sample and each sample was bracketed with

standards. All ratios were normalized to 86Sr/88Sr to account for

mass fractionation and all results were corrected for blanks. The

non-strontium masses are measured to account for potential

sources of contamination in 87Sr/86Sr ratios, including Kr from
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the plasma gas, 87Rb corrected using 85Rb and Ca diamers using

the 45Ca diamer to reflect these. 87Sr/86Sr ratios are expressed as

the mean of 63 measurements. The mean SE of unknown samples

was 0.00004. The National Institute of Standards and Technology

certified NBS 987 produced a mean (6s.e.) 87Sr/86Sr ratio of

0.71025 (60.00002, n = 31) for 10 ppb Sr, 0.71025 (60.00004,

n = 7) for 5 ppb, and 0.7102 (60.0002, n = 13) for 2 ppb.

Strontium isotope ratios are expressed as the ratio of 87Sr to
86Sr and the 87Sr/86Sr ratio was corrected using a ratio of
86Sr/88Sr (0.1194). The mean (6s.d.) of the in-house organic

standard (Wild turkey feather, Meleagris gallopavo) was

0.708660.0006 (n = 4).

GIS kriging
To visually illustrate the spatial variation of each isotope, we

used ArcView 9.2 (ESRI, Redlands, California, USA) to create a

series of contour surfaces based on the mean dDF value and
87Sr/86SrF ratio at each of the 18 sites. We used ordinary kriging

to assign weights to data points within a neighbourhood, which

was defined as the region of search around the location to be

interpolated [41,42]. The purpose of these maps was to provide a

visual description of spatial variation and was not used for

assigning birds to specific areas in North America.

Statistical analysis
We used Spearman’s rho correlation (rs) to examine the

relationship between the geographic location of each sampling

site (latitude and longitude) and the mean isotope values of feathers

(dDF and 87Sr/86SrF) sampled at each site. We used generalized

linear mixed-effects models (GLMM) with restricted maximum

likelihood protocol (REML) in R (version 2.6.1, R Core

Development Team) to investigate the potential mechanisms

driving the patterns of variation in dDF values (dD in precipitation)

and 87Sr/86SrF (age of bedrock) in avian feathers. Mixed-effect

models included site as a random-effect to account for individual

differences at each sampling site.

For dD values in precipitation, we used site-specific, spatially

interpolated growing season precipitation (dDGS) values from the

OIPC (Online Isotopes in Precipitation Calculator; www.water-

isotopes.org). These values were used instead of analysing dD

values in actual water samples because the dD value of standing

water (i.e. ponds and lakes) are predicted to change substantially as

the growing season progresses [43]. Therefore, water collected

during the short window of time when we visited each breeding

site (3–6 days) would likely not have reflected the dD values being

assimilated into plants, insects, and ultimately birds throughout the

breeding season (2–3 months). Bedrock ages were derived by

determining the geologic classification of the bedrock (e.g.

Phanerozoic complex, Mesozoic complex) using the Global GIS

Database v. 6.2, U.S. Geological Survey, Flagstaff, AZ, USA

(www.agiweb.org/pubs/). We then determined the estimated age

of the components that make up the rocks in the area that

contribute to the strontium reservoir of the region (see appendix

S2). The age of unsorted glacial material (till) was estimated from

the age of the bedrock in the region and known glacial direction of

transport. Values of estimated age of bedrock were log-

transformed to meet normality requirements. For both mechanis-

tic model types (precipitation and age of bedrock), we evaluated

the strength of mixed-effects versus fixed-effects models using

Akaike’s Information Criterion for small sample sizes (AICc) and

evidence ratios (ER = e0.5*DAICc; [44].

To compare with previous studies, ordinary least squares (OLS)

regression was used to estimate the discrimination factor (intercept)

and slope of the dDF,dDGS relationship. Because we used the

mean dDF value from each site for this analysis, we emphasize that

this was only done to compare our intercept with prior work.

Normality of within-group errors was tested by examining normal

probability plots of the random effects and residuals for each

Figure 2. Relationship between dD and 87Sr/86Sr values in Tree swallows sampled across North America. Values are mean6s.e. from
primary flight feathers. Abbreviations are: AB = Red Deer, Alberta; AK = McCarthy, Alaska; IA = Ames, Iowa; MA = Amherst, Massachusetts;
MB = Brandon, Manitoba; MI = Allendale, Michigan; MT = Monarch, Montana; NS = Wolfville, Nova Scotia; NW ON = Thunder Bay, Ontario; NY = Ithaca,
New York; OR = Portland, Oregon; SE ON = Elgin, Ontario; SK = Saskatoon, Saskatchewan; SW ON = Guelph, Ontario; TN = Lenoir City, Tennessee;
VA = Waynesboro, Virginia; WI = Saukville, Wisconsin; WY = Big Horn, Wyoming.
doi:10.1371/journal.pone.0004735.g002
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model. Heteroscedasticity of the data was assessed by examining

the plots of standardized residuals versus fitted values.

Assignment simulations
We performed a series of simulations to test whether the

combination of the two isotopes would increase the probability

with which individuals were correctly assigned to sites of origin

when compared to using each isotope alone. The simulation

model was used because it is robust in cases with small sample sizes

and is more appropriate for comparing the number of correct

assignments in dual- versus single-isotope markers.

First, separate univariate normal probability distribution

functions were fit for dDF and 87Sr/86SrF values to feather data

from each site and then 5000 isotope values were simulated for

each site from the fitted probability density functions. Each

simulated isotope value was then assigned back to one of the 18

sampling sites based on maximum likelihood. Because we knew

which probability distribution function generated each synthesized

datum, this procedure allowed us to calculate the percentage of

correct assignments for each site independently and for all sites

combined based on using either dDF or 87Sr/86SrF. We then

repeated this procedure but combined 87Sr/86SrF and dDF values

by fitting bivariate normal distribution functions to the data for

each site.

To explore whether each of the isotopes alone or together would

be useful for assigning individuals to larger geographic areas, we

reduced the number of potential breeding sites from 18 to 13 and

repeated the above procedure. Sites were grouped by geographic

proximity. In constructing all of the above models, we assumed

that the actual data values of dDF and 87Sr/86SrF were an accurate

representation of a random univariate or bivariate normal

distribution and that the analytical/measurement error was

negligible (i.e. that each isotope value is known exactly; [45]).

Although these models are more robust against small sample sizes,

this approach is limited in its power to estimate the origin of

individuals when samples sizes are particularly low (i.e. McCarthy,

AK site: N = 2). However, our purpose in developing the models

was simply to test whether 2 isotopes would be more effective than

a single isotope. All simulations were preformed in Matlab (The

MathWorks Inc., Natick, MA, USA).

Figure 3. Relationship between geographic location and isotopes in flight feathers of Tree swallows. Isotope values are mean6s.d. from
18 sites. (a) latitude versus dDF (rs = 20.47, P = 0.05), (b) longitude versus 87Sr/86SrF (rs = 0.62, P = 0.009).
doi:10.1371/journal.pone.0004735.g003
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Results

Geographic distribution of dDF and 87Sr/86SrF

dD values (6s.e.) in Tree swallow feathers (dDF) ranged from

250%67 (Portland, OR) to 2145%64 (McCarthy, AK) and

87Sr/86SrF ratios (6s.e.) ranged from 0.711160.0003 (Amherst,

MA) to 0.705760.0003 (Portland, OR; figure 2, appendix S1).

As predicted, dDF exhibited a negative correlation with

breeding site latitude (rs = 20.47, P = 0.05; figure 3a), whereas

there was a weaker correlation with longitude (rs = 0.41, P = 0.09,

Figure 4. Geographic variation of (a) dD and (b) 87Sr/86Sr values in Tree Swallow feathers. Contour maps were produced by ordinary
kriging and are based on mean values in primary flight feathers at 18 breeding sites (denoted by black circles).
doi:10.1371/journal.pone.0004735.g004
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n = 18). Conversely, 87Sr/86SrF was positively correlated with

longitude (rs = 0.62, P = 0.009; figure 3b) and there was a weaker

negative correlation with latitude (rs = 20.45, P = 0.06, n = 18).

Consistent with these isotope providing complimentary informa-

tion, there was no correlation between the mean values of dDF and
87Sr/86SrF in Tree swallows across sampling sites (rs = 0.13,

P = 0.26, n = 79, figure 2). Interpolated maps of both isotopes

illustrate the geographic variation of both dDF (figure 4a) and
87Sr/86SrF (figure 4b) across North America.

Mechanisms of geographic variation in dDF and 87Sr/86SrF

As predicted, we found that Tree swallows with more positive

dDF values tended to be from breeding sites with more positive

dDGS (table 1, figure 5a), and that individuals with higher
87Sr/86SrF ratios tended to be from breeding sites with older

underlying bedrock (table 1, figure 5b). In both cases, the mixed-

effect model had greater strength of evidence relative to the fixed-

effect model (lower ER values; table 1).

The intercept of the dDF,dDGS relationship using OLS

regression was 247%614, which was substantially lower than

values from previous studies (e.g. 26 to 231%; [7, 14, 16, 20, 23,

35 but see 19]). Also unlike previous studies (e.g.

[7,14,16,20,23,46]), the slope of the dDF,dDGS relationship was

less than 1 (b = 0.5260.19). When we constrained the slope to 1

and re-ran the model, the sum of squares and R2 were both 0,

suggesting that the slope was significantly different than 1.

Assignment tests
Using all 18 locations as potential sites of origin, we found that

only 30% of individuals were correctly assigned to their breeding

site of origin using dD alone (figure 6a) and only 32% when using
87Sr/86Sr alone (figure 6b). When both isotopes were used alone,

only 17% (3/18) of the sites had a correct assignment rate greater

than 70% and only one had a rate greater than 90%. However,

when dD and 87Sr/86Sr were combined, 61% of individuals were

correctly assigned to their site of origin (figure 6c) and 33% (6/18)

of the sites had a correct assignment rate greater than 70% (3 sites

had greater than 90%).

When we collapsed the number of potential sites of origin from

18 to 13, we found that 35% and 39% of individuals were

correctly assigned using dD and 87Sr/86Sr, respectively

(figure 7a,b). When both isotopes were used alone, only 23% (3/

13) of the sites had correct assignment rates greater than 70% and

one was greater than 90%. In contrast, 74% of individuals were

correctly assigned to their site of origin when dD and 87Sr/86Sr

were combined (figure 7c) and 77% (10/13) of the sites had greater

than 70% of correct assignments (3 sites had greater than 90%).

Discussion

Achieving greater resolution with multiple isotopes is critical for

being able to estimate the origins and movements of animals that

are nearly impossible to follow using traditional methods. Our

results provide evidence that 87Sr/86Sr and dD can be used as

complementary geographic markers to estimate the origins of

animals in North America. We found that dD values in Tree

swallow feathers (dDF) were correlated with latitude whereas
87Sr/86Sr ratios in feathers (87Sr/86SrF) were related to the

Table 1. Results from the generalized linear mixed effects models (GLMM) used to examine the mechanisms influencing dDF and
87Sr/86SrF.

slope estimate s.e. r2 AICc DAICc e.r.

dDF,dDGS, mixed 0.51 0.19 0.67 714 0 1

dDF,dDGS, fixed 0.44 0.11 751 37 1.16108

87Sr/86Sr,bedrock, mixed 0.00032 0.00008 0.84 2881 0 1

87Sr/86Sr,bedrock, fixed 0.00032 0.00004 2831 50 2.461012

The relative performance of the mixed-effects versus fixed-effects models was assessed using the difference in the Akaike’s Information Criterion for small sample sizes
(DAICc) and evidence ratios (ER = e0.5*DAICc). Mixed effect models included sample location as a random effect in addition to the fixed effect (dD growing season
precipitation [dDGS] for dDF and log transformed bedrock age [bedrock] for 87Sr/86SrF).
doi:10.1371/journal.pone.0004735.t001

Figure 5. Predictors of dD and 87Sr/86Sr values in Tree swallow
primary flight feathers. Each point represents an individual (n = 79).
(a) dD growing season precipitation (dDGS) versus dDF (b) age of under
lying bedrock versus 87Sr/86SrF. dDGS data are from waterisotopes.org
[14]. Bedrock ages represent the estimated age of the components that
make up the rocks in the area that contribute to the strontium reservoir
of the area (see appendix S2). Results from the GLMM are presented in
table 1.
doi:10.1371/journal.pone.0004735.g005
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longitude of the sampling site. Simulation results demonstrated

that combining these markers more than doubled the percentage

of individuals successfully assigned to their sites of origin when

compared to using either isotope marker alone.

Our study also provides the first test of the hypothesis that
87Sr/86Sr ratios in birds are related to the age of underlying

bedrock across large geologic scales. Even when one outlying site

was removed (Portland, OR) the relationship remained strong

(GLMM: R2 = 0.71, b = 0.00160.0007, a = 0.70760.0018). Al-

though bedrock age was a significant predictor of 87Sr/86SrF, other

factors likely contribute to variation in 87Sr/86Sr ratios in animal

tissues. For instance, the precise geochemistry of local bedrock is

likely to influence Rb/Sr ratios in the food web. For example, two

of the sites (Wolfville, NS and McCarthy, AK) had the same

estimated bedrock age (300 my) but significantly different mean
87Sr/86SrF ratios (1-tailed t-test; t5 = 23.82, P = 0.006). The

integrated Rb/Sr ratios of the sedimentary rocks around Wolfville

are higher than those of those of igneous rocks in Alaska, likely

resulting in higher bedrock 87Sr/86Sr ratios. Predicting precise
87Sr/86Sr ratios in animal tissues will require integration of the

geological histories of local areas.

Although analytical variability in dD is known to be a significant

source of error when estimating animal movements [45], there

have been no studies that have reported repeatability of 87Sr/86Sr

in animal tissues. We found that the coefficient of variation in dD

from repeated measurements of in-house feather standards

(CV = 0.12) was much higher than 87Sr/86Sr (CV = 0.009). One

reason for this is that stable peak signal intensities are measured in

Sr ratios rather than integrating the total intensity, as in dD

analysis. A second reason is that, aside from diet, dD values in

tissues are influenced by a range of metabolic processes [47]

because of the large difference in the masses of hydrogen isotopes

and the different bonding states that could contribute to

substantial variation. Strontium, in contrast, is a non-nutrient

Figure 6. The proportion of Tree swallow correctly assigned to their original site of origin. (a) dD, (b) 87Sr/86Sr, and (c) dD and 87Sr/86Sr.
Proportion of correct assignments are based on 5000 simulations at each of the 18 breeding sites.
doi:10.1371/journal.pone.0004735.g006
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mineral and the bonding environment is relatively constant.

Despite this, we still recommend that future studies asses the

influence of Sr variability when assigning animals to geographic

locations [45,48].

Although our results suggest that the dDGS is a useful predictor

of dDF, the slope of the dDF,dDGS relationship (b = 0.5260.19)

was smaller compared to previous studies (e.g. b = 0.68 to 1.0:

[7,14,16,20,46]. A slope of less than one implies that large

differences in dDGS values across the landscape will result in only

small differences in dDF values. Potential reasons for a slope less

than 1 include differences between sites in available diet, rates of

evaporation, seasonal temperature trends, or the possibility that

dDGS estimates could be incorrect for the sampled areas. Future

work is needed to examine the mechanisms causing variation in

the slope of this relationship. Otherwise, it is not possible to use

corrected dDGS values for assigning animals to geographic

locations without significant amounts of error.

Several factors may account for the unexplained variation in the

dDF,dDGS relationship. First, interpolated dDGS values were

derived from IAEA stations in North America with limited

geographic coverage [14,45]. Second, limited access to water can

cause individuals to become deuterium enriched due to high rates of

water loss [49] and Tree swallows varied considerably in their

proximity to bodies of water [38]. We regressed the residuals from

the dDF,dDGS regression against distance to water and found that

individuals further away from water tended to be more enriched in

deuterium than individuals closer to water (b = 1.8, P = 0.03),

although the amount of variation explained was low (R2 = 0.06).

Differences in proximity to water between species may also

explain why the discrimination value (247%614) between water

Figure 7. The proportion of Tree swallows correctly assigned to their original site of origin. Same as figure 6, except 18 sites were
collapsed to 13 sites based on geographic proximity. The Great Lakes group (GL) includes Ithaca, NY, Elgin, ON, Allendale, MI, and Saukville, WI, the
Mid-west group (MW) includes Ames, IA, Big Horn, WY, and Brandon, MB. All other sites are the same as in figure 6.
doi:10.1371/journal.pone.0004735.g007
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and tissue (intercept of the dDF,dDGS relationship) was lower and

than in previous studies ([7]: 231%; [46]: 226%; [16]: 234%;

[35]: 225%; [14]: 219%; [20]: 26%). The difference between

dDF and dDGS could be partly driven by the fact that there is likely

large variation in water loss among Tree swallows. In support of

this hypothesis, we found that the discrimination value for Tree

swallows sampled at sites greater than 3 km from water was more

positive (228%, R2 = 0.51, b = 0.60, n = 4), and similar to that of

previous studies, compared to the discrimination value for

individuals sampled 0–2 km from water (252%, R2 = 0.35,

b = 0.51, n = 14).

Although we attempted to sample tissues of known-origin, it is

possible that not all birds grew their feathers at the site they were

sampled. Forty-two percent of the Tree swallows we sampled were

known to have bred at the same site the previous year. If a large

percentage of the remaining unmarked birds immigrated from

other populations, then sites with only unmarked individuals

(n = 10) should have greater variation in 87Sr/86SrF and dDF than

sites with only marked birds (n = 7; one site where both marked

and unmarked birds were present was excluded). However, we

found no difference in the variation between these groups (1-tailed

t-test; 87Sr/86Sr: mean std. devunmarked = 0.0006, mean std. dev-

marked = 0.0005, t15 = 20.743, P = 0.23, dD: mean std. devunmarked = 17,

mean std. devmarked = 14, t15 = 20.44, P = 0.33).

In addition to only having to sample individuals once to infer

their origin, stable-light isotopes are ideal for tracking long-

distance movements of small animals because analysis only

requires a small amount of tissue (as little as 0.15 mg) and the

cost has decreased considerably over the last decade. However,

these advantages may not be directly transferable to isotopic

studies of heavy elements. Because strontium is less abundant in

animal tissues, substantially more tissue is needed for analysis.

Previous studies have used large quantities (up to 25 mg) of bone

[5], although we were able to produce reliable 87Sr/86Sr ratios

from approximately 5 mg of feather. A previous study was able to

obtain 87Sr/86Sr ratios from feather samples using 0.2–1.5 mg

[28], but they used Thermal Ionization Mass Spectrometry

(TIMS) that is more laborious and lengthy than MC-ICP-MS.

Even so, MC-ICP-MS costs are ten times that of light isotope

analysis. This is due, in large part, to the maintenance of more

specialized equipment and the materials and time required to

extract pure strontium from digested feather samples. Although

the cost per sample is decreasing, it is unlikely to match the current

costs of light isotopes in the near future.

Our study suggests that combining heavy and light isotopes may

provide the opportunity to link the dynamics of populations over

large geographic areas, a goal which has been impossible to

achieve with the current resolution offered by light isotopes alone.

Additional sampling over a wider range of sites with different

geological histories and bedrock types will likely help refine the

predictive power of 87Sr/86Sr and could allow isotopic patterns for

animals to be inferred from soil or plants. Nevertheless, our results

demonstrate how isotopes influenced by vastly different global-

scale processes can be used effectively to track long-distance

animal movement.
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