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Two new organic–inorganic hybrid double perovskites (R3HQ)4CsSm(NO3)8
(1) (R3HQ = (R)-(-)-3-quinuclidinol) and (R3HQ)4CsEu(NO3)8 (2)

were synthesized and characterized. Compounds 1 and 2 exhibit obvious

phase transitions at 379 and 375 K, respectively, confirmed by differential

scanning calorimetry (DSC) and variable temperature powder X-ray

diffraction. The rapid switching between high- and low-dielectric states

makes it a typical dielectric material with a switchable dielectric constant

for thermal stimulus response. Furthermore, 1 and 2 show attractive

photoluminescence and paramagnetic behavior, and the fluorescence

quantum yield of 2 reached 14.6%. These results show that compounds 1

and 2 can be used as excellent candidates for multifunctional intelligent

materials, which also provides a new way for development of

multifunctional materials.
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Introduction

Perovskite structure, typically of ABX3-type perovskites, comprises a three-

dimensional (3D) network by corner-sharing BX6 octahedra, where the B atom is a

metal cation and the A-site cation is located in the octahedra center (Wang et al., 2021;

Zhou et al., 2021; Xu et al., 2022). For ~20 years, extensive interest has been focused on

organic–inorganic hybrid perovskites (OIHPs) owing to their potential applications in

areas such as ferroelectric, piezoelectric, and photovoltaic, etc. (Saparov and Mitzi, 2016;

Chen et al., 2019; Shi et al., 2020a; Zhou et al., 2021). Compared with pure inorganic

perovskites, OIHPs show much flexible structural tunability due to the introduction of

organic materials (Wang et al., 2021; Shao et al., 2022). More organic cations can be used

as an ideal substitute for site A when the dimension of OIHPs is reduced from 3D to 2D

due to the larger tolerance factor of the 2D compound (Li et al., 2019; Yang et al., 2019; Shi

et al., 2020a; Zhang et al., 2020).
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In principle, replacing the B site with two different metals will

produce a double perovskite structure; this kind of double

perovskite-like compound can provide higher structural

variability and richer physical–chemical connotations, leaving

great opportunities for multifunctional materials (Shi et al.,

2020a; Ma et al., 2021). Much research interest focuses on

exploring molecular-based multifunctional materials (Mao

et al., 2019; Zhang et al., 2021). The versatility of the material

depends on the coordination of the metal (Pan et al., 2000; Zhang

et al., 2013; Som et al., 2014; Kim et al., 2015; Huang et al., 2017;

Li B. et al., 2018; Chen et al., 2019; Xue et al., 2020), for example,

rare-earth ions have rich coordination modes and unique

photoluminescence and magnetic properties because of the

characteristics of their electronic configuration. They are used

as one of the metals to assemble double perovskites to easily form

multifunctional materials, which makes them a good candidate

for the construction of multifunctional bimetallic perovskite

materials (Zhang et al., 2021).

Compared with organic–inorganic hybrid halide perovskites

developed rapidly with halogen atoms as the bridging ligand,

there are few reports on the synthesis of double perovskite

structure compounds using multi-atom nitrate as the bridging

ligand (Xu et al., 2016). In 2020, we reported on a family of rare-

earth double perovskite compounds, in which ferroelectric,

piezoelectric, and fluorescent properties were successfully

achieved (Shi et al., 2020a; Shi et al., 2020b; Hua et al., 2020).

Inspired by these works, two new rare-earth alkali metal double

perovskite-type compounds were synthesized by introducing

rare-earth ions into the B site of double perovskite and using

NO3
− as the bridging ligand: (R3HQ)4CsSm(NO3)8 (1) and

(R3HQ)4CsEu(NO3)8 (2) (R3HQ = (R)-(-)-3-quinuclidinol).

The compounds not only undergo a reversible structural

phase transition at about 379 K for 1 and 375 K for 2 but

the phase temperature is also increased by about 30 K

compared to the reported (R3HQ)4RbSm(NO3)8 and

(R3HQ)4RbSm(NO3)8. Interestingly, 1 and 2 exhibit

photoluminescence under UV excitation, and the quantum

yield of 2 reached 14.6%. In addition, the direct current (DC)

magnetic susceptibility of compounds shows obvious

paramagnetic signals. The successful construction of the

compounds provides a new idea for further enriching the

rare-earth double perovskite system (Zhang et al., 2020). The

fast switchable dielectric behaviors, and photoluminescence

and magnetic properties make them an ideal candidate for

multifunctional materials (Rok et al., 2019).

Experimental

Synthesis of (R3HQ)4CsSm(NO3)8 (1) and
(R3HQ)4CsEu(NO3)8 (2)

All reagents were purchased commercially and used as

received without any further purification. First, an

unseparated R3HQNO3 (R3HQ = (R)-(-)-3-quinuclidinol)

aqueous solution was obtained by adding R3HQ and HNO3

solution (65–68%) to an aqueous solution in a molar ratio of 1:1.

Then, high-quality colorless transparent block crystals were

obtained by slowly evaporating the mixed aqueous solution of

Sm(NO3)3/Eu(NO3)3, CsNO3, and R3HQNO3 in a molar ratio of

1:1:2 at room temperature for about 2 weeks. Anal. (%) Calc. for

C28H56CsSmN12O28: C, 25.25, H, 4.23, N, 13.94. Found: C, 26.03,

Graphical Abstract
Two new organic-inorganic hybrid rare-earth double perovskites exhibit interesting properties such as photoluminescence, magnetism, and
structural phase transition.
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H, 4.37, N, 13.01. Anal. (%) Calc. for C28H56CsEuN12O28: C,

25.30, H, 4.19, N, 13.17. Found: C, 26.00, H, 4.36, N, 12.99.

General measurements

DSC measurements were performed with a NETZSCH

differential scanning calorimeter 214 Polyma in the temperature

range 300–390 K under atmospheric pressure with a 20 K min−1

heating/cooling rate by heating and cooling the crystalline samples.

The real part ε′ of the complex permittivity which is related to the

temperature was performed using a TH2828A variable temperature

dielectric measuring instrument in the temperature range of about

345–390 K. The variable temperature powder X-ray diffraction data

were measured on a Rigaku D/MAX 2000 PC X-ray diffraction

system with Cu-Kα radiation in the 2θ range of 5°–50° with a step

size of 0.02° and in the temperature range 298–403 K.

Photoluminescence was recorded on an Edinburgh FL980 UV/V/

NIR fluorescence spectrometer. The quantum yield was measured by

using an Edinburgh FLS 1000 UV/V/NIR fluorescence spectrometer.

The single-crystal X-ray diffraction data were collected on a Rigaku

Synergy apparatus with graphite-monochromate Mo-Kα radiation at

278 K for 1 and 301 K for 2, respectively. Thermogravimetric analysis

was performed onNETZSCHSTA449F3 in the temperature range of

about 298–1070 K.

Results and discussion

Crystal structure

Single crystal X-ray diffraction studies revealed that 1

crystallized in the tetragonal chiral space group P4322 (no. 95)

at 278 K with cell parameter a = 10.1274(1) Å, b = 10.1274(1) Å,

c = 46.2252(11) Å, and Z = 4. The crystallographic asymmetric

unit of 1 comprises Sm and Cs sharing a nitrate and each

connecting a complete nitrate and an incomplete nitrate, and

two separate organic cations, the complete molecules being

generated by inversion symmetry. Both Sm and Cs are

coordinated with six NO3
− as bridging ligands to chelate into

an alternately arranged corner-sharing octahedral structure to

form a framework of inorganic metal layers, and the double layer

of R3HQ organic cations occupied the space between the

inorganic layers (Figure 1). The distance between the two

adjacent inorganic metal layers is about 11.56 Å, where the

distance between Sm–Sm or Cs–Cs and Sm–Cs is about

12.78 Å and 12.62 Å, respectively. The distance between

Sm–Cs in the same inorganic metal layer is 7.16 Å. Therefore,

the resulting octahedron is slightly distorted rather than the

standard regular octahedron. The organic cation layer and

inorganic metal framework layer are interleaved along the

c-axis, and there are four inorganic layers in one cell. All C-O

bonds in the organic layer are arranged along the c-axis,

therefore, forming an infinite octahedron corner-sharing

A4B
IBIIIX8-type two-dimensional layered organic–inorganic

hybrid double-metal perovskite structure. The structure of 2 is

similar to that of 1 and is not described in detail here

(Supplementary Figure S1).

We first carried out powder X-ray diffraction (PXRD) of 1

and 2 at 298 K (Supplementary Figure S2). It can be seen that the

as-synthesized samples are a single pure phase, and all

subsequent analyses and measurements are based on this

premise. Preliminary thermal analysis has shown that the two

compounds undergo a reversible structural phase transition. To

further reveal the cause of the phase transition of these

compounds, variable temperature X-ray single-crystal

FIGURE 1
Structure packing diagrams (A) and the coordination and connection of atoms of an inorganic anion skeleton layer (B) of 1 at 278 K.
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diffraction was carried out. When the temperature was above the

phase transition temperature, we were unable to obtain X-ray

single-crystal diffraction data because of their poor crystal

quality. It is speculated that the crystal structure changes

dramatically, which is caused by the excessive latent heat

during the phase transition (Tang Y.-Z. et al., 2015; Ye et al.,

2016; Harada et al., 2018; Yang et al., 2019; Xu et al., 2021).

Therefore, variable temperature PXRD measurements were

performed to determine whether the structures of 1 and 2

changed as the temperature increased. The PXRD patterns of

1 and 2 (Figures 2A,B, Supplementary Figure S3) remain

unchanged in the temperature range from 298– 373 K.

However, the diffraction peak of the PXRD patterns appear to

change including shift, disappear, increase, and even the distance

between part diffraction peaks changes obviously when the

temperature continues to rise 383 K above the phase

transition temperature, indicating that the crystal structure

has changed because of the temperature change. The results

are consistent with DSC and dielectric behavior analysis.

Phase transition

Differential scanning calorimetry (DSC) is an effective

thermodynamic method used for determining whether crystals

undergo phase transition resulting from temperature induction.

The phase transitions of 1 and 2 were investigated by DSC under

nitrogen and atmospheric pressure with a heating/cooling rate of

FIGURE 2
Variable temperature PXRD patterns of 1 (A) and 2 (B).

FIGURE 3
DSC curves of 1 (A) and 2 (B)measured under nitrogen and atmospheric pressure at a heating/cooling rate of 20 Kmin−1 at a temperature range
of 330–400 K.
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20 K min⁻1. The DSC curve (Figure 3A) of 1 displays an obvious

thermal anomaly peak at 379 K upon heating, and the

corresponding thermal anomaly peak appeared at 358 K upon

cooling. Compared with the reported (R3HQ)4RbSm(NO3)8 and

(R3HQ)4RbSm(NO3)8, the phase transition temperature is

increased by about 30 K. Its average temperature is taken and

calculated, and the change in entropy and enthalpy is 17.44 kJ

mol⁻1 and 46.0254 J mol⁻1 K⁻1, respectively. Similarly, compound

2 showed corresponding thermal anomaly peaks at 375 and

359 K (Figure 3B). The change in entropy and enthalpy is

21.02 kJ mol⁻1 and 56.0608 J mol⁻1 K⁻1, respectively. That is,

the change of rare-earth elements in adjacent positions has little

thermal change for compounds with the same configuration.

According to the Boltzmann equation, ΔS = R ln(N), where R is

the gas constant and N is the ration of the number of respective

geometrically distinguishable orientations in high- and low-

temperature phases (Zhao et al., 2019), the values of N1 and

N2 are calculated as 1.0043 and 1.0052, respectively. The small N

values indicated the complex phase transition mechanism (Fu

et al., 2012; Sun et al., 2012; Tang Y. et al., 2015; Sun et al., 2015; Li

S.-G. et al., 2018). Combining the obvious thermal hysteresis of

about 21 and 16 K during the heating–cooling cycles and wide

peak patterns revealed obvious first-order phase transition

characteristics. Moreover, according to the thermogravimetric

(TG) curves, the phase transition temperature was significantly

lower than its decomposition temperature of 1 and 2

(Supplementary Figure S4), which also confirmed that the

phase transition was not caused by the decomposition of

compounds.

Dielectric properties

The dielectric constant is the most basic parameter to measure

dielectric materials (Fu et al., 2008a; Fu et al., 2008b; c). The real part

(ε′) of the temperature-dependent dielectric constant of 1 was

investigated in the temperature range of 348–390 K and the

frequency of 100 kHz. The dielectric constant shows a trend of

slow increase in the range of about 348–365 K, and a trend of

slow decrease in the temperature range of about 369–395 K

(Figure 4A). However, the dielectric constant changes sharply by

about 2-fold in these two temperature ranges. An obvious “step-like”

anomaly appeared at 371 K upon the heating process, and the

corresponding anomaly appeared at 369.7 K upon the cooling

FIGURE 4
Temperature-dependence of the dielectric constant real part (ε′) of 1 (A) at 100 kHz and 2 (B) at 1 MHz with powder samples, respectively.
Temperature-dependence of the dielectric constant real part (ε′) of 1 (C) and 2 (D) during heating at different frequencies.
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process. Similarly, it can be seen that in the temperature range of

345–395 K and the frequency of 1 MHz, the real part of the dielectric

constant of 2 also shows a trend of slow increase first, then a sharp

rise by about 2-fold, and finally, slow decline (Figure 4B). In the

heating process, there is an obvious “step-like” abnormity at 374.7 K,

and corresponding steps appear at 366.8 K in the cooling process.

Reversible dielectric anomalies during the heating–cooling cycle

confirm the reversible phase transition of the compounds. That is,

the real part of the dielectric constant of the compounds can be

adjusted between the high and low dielectric states, indicating that the

compounds are a good candidate for switching dielectric materials in

response to thermal stimuli. This reversible transition between high

and low dielectric states confirms DSC measurements that the

compounds undergo a first-order reversible phase transition. In

addition, it can be seen that the permittivity of the compounds

varies with frequency at the same temperature, with an obvious

frequency dependence (Figure 4C, Figure 4D). This is due to the

effect of the external electricfield, and the polarization of the dielectric

cannot keep up with the change in the alternating electric field when

the frequency increases, which causes dielectric loss (Gridnev and

Trukhachev, 2013; Khanchaitit et al., 2013).

Photoluminescence properties

One of the purposes of introducing rare-earth ions to

construct a double metal perovskite structure is to combine

the photoluminescence properties of rare-earth ions.

Photoluminescence is caused by electron transitions of

unpaired 4f electrons. In particular, 2 showed a distinct

orange light visible to the naked eye under UV light. As

shown in Figure 5A, there are three strong absorption

peaks at 562, 596, and 646 nm in the emission spectrum of

1, which are caused by the 4G5/2→6H5/2,
4G5/2→6H7/2, and

4G5/

2→6H9/2 transitions of SmIII, respectively. Similarly, three

strong absorption peaks and one weak absorption were

observed at 592, 616, and 671 nm in the emission spectrum

of 2 (Figure 5B), which were caused by the 5D0→7F1,
5D0→7F2,

and the relatively weak 5D0→7F4 transitions of EuIII,

respectively. Among them, the magnetic dipole transition
5D0→7F1 is obviously stronger than the electric dipole

transition 5D0→7F2 because EuIII is in an almost centrally

symmetric position. The fluorescence quantum yield of 2

reached 14.6%. The solid-state optical absorption spectra of

1 and 2 were measured by the diffuse reflectance technique

(Supplementary Figure S5). The band gaps, estimated from

the absorption edges, are 3.71 eV for 1 and 3.81 eV for 2,

which are in agreement with their crystal colors.

FIGURE 5
Excitation spectra and emission spectra of 1 (A) and 2 (B).

FIGURE 6
DC magnetic susceptibility of compounds 1 and 2 at the
temperature range of 3–300 K and the magnetic field of 1.0 kOe.
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Magnetic properties

The direct current (DC) magnetic susceptibility of

compounds 1 and 2 was measured in the temperature

range of 2–300 K under 1.0 kOe with powder samples

(Figure 6). In general, the value of χmT is zero for EuIII

due to J = 0, but an obvious paramagnetic signal was

observed from the experimental data. This is because the

first excited state of EuIII is too close to the ground state

(300 cm−1), which leads to the population of excited states.

The ground state energy level is split into seven 7FJ states

caused by spin-orbit coupling. Hence, J is no longer 0, it can

change from 0 to 6. Therefore, the value of χmT gradually

decreases and approaches 0 with the decrease in temperature.

For 2, SmIII is the same as EuIII, the value of χmT decreases

gradually with the decrease in temperature, which is a

paramagnetic signal.

Conclusion

In summary, we obtained two organic–inorganic hybrid

rare-earth double perovskites, which adopt a

Ruddlesden–Popper (RP)-type perovskite structure. The

reversible dielectric phase transition and switchable

dielectric constant between high- and low-dielectric states

of the compounds are verified by measuring temperature-

dependence of the real part of the dielectric constant using

differential scanning calorimetry (DSC) and variable

temperature PXRD. Simultaneously, the compounds also

have significant photoluminescence and paramagnetic

behavior. Therefore, the compounds have potential

application in the field of stimulus-responsive

multifunctional intelligent materials, and the successful

synthesis of the two compounds further enriches the rare-

earth two-dimensional perovskite family.
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