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1Department of General Systems Science, University of Tokyo, Tokyo, Japan, 2 Alternative Machine Inc., Tokyo, Japan

In this study, we report the investigations conducted on the mimetic behavior of a new

humanoid robot called Alter3. Alter3 autonomously imitates the motions of a person in

front of it and stores the motion sequences in its memory. Alter3 also uses a self-simulator

to simulate its own motions before executing them and generates a self-image. If the

visual perception (of a person’s motion being imitated) and the imitating self-image differ

significantly, Alter3 retrieves a motion sequence closer to the target motion from its

memory and executes it. We investigate how this mimetic behavior develops interacting

with human, by analyzing memory dynamics and information flow between Alter3 and

a interacting person. One important observation from this study is that when Alter3 fails

to imitate a person’s motion, the person tend to imitate Alter3 instead. This tendency

is quantified by the alternation of the direction of information flow. This spontaneous

role-switching behavior between a human and Alter3 is a way to initiate personality

formation (i.e., personogenesis) in Alter3.

Keywords: personogenesis, agency, imitation, self-simulation, memory, reconsolidation, humanoid robot

1. INTRODUCTION

We present a new humanoid robot named Alter3 (Figure 2) and analyze the dynamics of Alter3’s
interactions with humans. The philosophy behind Alter3 is grounded in long-running discussions
around human/robot cognition (see section 2). We are particularly interested in Rössler’s argument
of an artificial cognitive map system (Rössler, 1981), and we attempt to realize and extend
his ideas with Alter3. Rössler named the self-organization of a dynamic cognitive map under
locomotion as the “Helmholtz–Poincare–Tolman” hypothesis based on Helmholtz’s internal map
system generated through locomotion (Von Helmholtz, 1867), Poincare’s internal and external
representation of the world (Poincarẽ, 1905), and Tolman, O’Keefe, and Nadal’s ideas of a cognitive
map, which was later discussed in relation to placing cells in the hippocampus (O’Keefe and Nadel,
1978).

Dayan et al. (1995) later argued that Helmholtz’s idea could be implemented in a self-supervised
hierarchical neural system, which they called a Helmholtz machine. The Helmholtz machine is
based on an inference system that uses variational Bayesian networks. It is essentially equivalent
to a Boltzmann machine (Hinton and Sejnowski, 1983) and provides a basis for a variational
autoencoder (Kingma and Welling, 2014).

Apart from the probabilistic approach to cognitive map systems, a dynamic systems approach
has also been studied. Jun Tani, for example, studied the self-organization of a neural representation
of an environment, with a recurrent neural network on a navigation robot in a real environment
(Tani, 1996). More recently, using long short-term memory networks, Noguchi et al. (2019)
demonstrated the modality of self-organization of a cognitive map in a navigation robot. The
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current research is not a probabilistic approach to cognitive
map systems. However, it is not, in the strict sense, a dynamic
systems approach, as the updates of the entire system are not
synchronized, and above all, it can only operate as a system when
it interacts with humans.

Rössler’s autonomous navigation system is based on a digital
scanner and a digital flight simulator. Alter3 is the realization of
another autonomous machine, with a completely new purpose.
The purpose is to investigate the ways in which a humanoid robot
becomes a person, which we call the “personogenesis” (Rossler
et al., 2019) of a humanoid robot. “Personogenesis” refers to the
process by which an agent acquires free will to act out of its
own volition, much like an independent person. In addition, it
may perceive happiness from the emotions of a person or be able
to display similar emotions. For example, human babies imitate
the mother’s facial expressions automatically, which is called
primitive mimicry (Meltzoff andMoore, 1989), and then advance
to the personogenesis phase. In Rossler et al. (2019) and Rossler
(1987), this advancement is initiated by two coupled agents: “the
twomirror-competent brain equation carriers with cognition and
memory and mirror competence suddenly become, if coupled
in a cross-caring fashion, their own masters.” In other words,
coupled agents (one of the two can be a real person) can
suddenly share and exchange happy mental states with each
other. Our primary goal is to observe the transition from
the primitive automatic mimicry phase to personogenesis in a
humanoid robot.

Alter3 autonomously imitates the motion of a person in front
of it and stores those motions in its memory in the form of
a time series. At the same time, the self-simulator included in
Alter3 simulates Alter3’s motions and generates a self-image. If
the visual perception (the motion of the person being imitated)
and the self-image differ significantly, Alter3 retrieves a motion
from memory that is closer to the human motion and enacts the
retrieved motion. In both the cases, Alter3’s spontaneous neural
dynamics affect the generation of motion. Thus, Alter3 involves
three primary functions/features: an automatic mimicry capacity,
self-simulation, and memory selection/variation with a neural
noise source. To the best of our knowledge, this is one of the first
study to focus onmemory-driven imitation in a humanoid robot.

1.1. Automatic Mimicry Capacity
Piaget’s major assumption in his cognitive development theory
(Piaget, 1966) is based on mimicry. It is known that newborn
infants automatically imitate the facial and manual gestures of
adults (Meltzoff and Moore, 1989). This ability is believed to be
an innate characteristic and is observed in human babies when
they are approximately 3 months old. In the design of Alter3,
imitation is considered an important step in the development of
cognitive abilities. Therefore, we implemented an algorithm that
imitates the motion of a person captured by the eye camera.

1.2. Self-Simulation
A self-simulator forms a mental image of the self. Recently,
David Ha and Jürgen Schmidhuber worked on model-based
reinforcement learning and proposed a “world model” (Ha
and Schmidhuber, 2018). In this model, an agent learns an

environmental model that includes its behavior and uses the
environmental model for simulation. It demonstrates that a
control policy can be trained in the simulated world.

While these are examples of self-simulators that include not
only the self but also the environment, Alter3’s self-simulators
are more specific to the self-image. A more pertinent study
is that of the self-modeling agent proposed by Bongard et al.
(2006). Because a four-legged agent acquires a self-model by
autonomously generating its own behavior, even if one of the
legs is removed, the self-model is able to adapt. Kwiatkowski and
Lipson (2019) extended this study by replacing the self-model
with a neural network.

In these studies, the self-simulator is autonomously acquired
through evolutionary processes or through learning by neural
networks; however, in our study, we assume that the self-
simulator has already been acquired in Alter3, and the parameters
are fixed. This is done to focus specifically on the acquisition of
individuality, based on the development of memory through the
imitation of human motion.

1.3. Memory Selection and Variation
As soon as Alter3 generates a motion, it stores the motion
pattern in its memory buffer. The memory is realized as a
queue of chunks (3 s each), with a size of 50 chunks (= 1,500
frames). When the memory is full, the oldest memory chunks are
removed, and new memory chunks are added to the queue (i.e.,
first in, first out).

Alter3 imitates the behavior of the person in front of it (this
is called the awake or open-eye mode). Alter3 uses the memory
queue when it is difficult to imitate behavior or when no human
is in front of it. It searches for the optimal behavioral pattern
evaluated by the optical flow in the memory chunk. When a
memory is retrieved and executed, it is modified by the neural
state. This allows the memory to be recalled and rewritten
without the presence of a person. Specifically, after the recalled
motion is executed, it is combined in spontaneous neural activity
to be stored as a slightly different motion. The more it is recalled,
the more the memory makes a slightly deformed copy of itself. It
can be seen as a Darwinian evolutionary process of the memory.
This is called the dream mode or the closed-eye mode.

The details of these algorithms are given in section 3.

2. RELATED WORKS ON IMITATION IN
HUMANOIDS ROBOTS

Imitation of human behavior by humanoid robots is a long-
standing theme in terms of cognitive and biological aspects (see
e.g., Schaal, 1999). There are two types of imitation studies in
robotics: one for learning and the other for communication.
Both share the same underlying mechanism of imitation,
while the former uses imitation as a learning tool with an
explicit purpose, the latter has no specific purpose for imitation
besides communication.

Schaal (1999) claimed that imitation would be a promising
approach for developing cognition in a humanoid robot. In
the recently surveyed article by Hussein et al. (2017), learning
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through imitation is presented as a viable research area for novel
learning methods. Although most works on imitation consider
it as a strategy for learning from humans unidirectionally, we
are more interested in bidirectional imitation learning—human
to robot and robot to human. We call this approach “imitation
for communication.”

Through communication, people develop the social ability
to think about others and maintain a good relationship,
and imitation plays a significant role in this process. As in
Trevarthen’s experiments (Trevarthen, 1977) with infant–mother
communication, and Nadal’s study on pretend-play behavior
between two children, imitation is a strong driving force for
organizing lively interactions (Nadel et al., 2004). Christopher
Nehaniv and Kerstin Dautenhahn edited a book on imitation
and social learning (Nehaniv and Dautenhahn, 2007). They also
started the Aurora project, which aims to help autistic kids
acquire social skills with the use of robots (The AuRoRA Project,
1998).

Along with the “imitation for communication” approach,
Ikegami and Iizuka (2007) and Iizuka and Ikegami (2004)
studied a turn-taking game to show how imitation emerges as
a by-product of mutual cooperation. The present work is a
continuation of the previous approaches, in a new humanoid
body, with new memory dynamics and a self-simulator.

3. SYSTEM ARCHITECTURE

Figure 1 shows an overview of Alter3’s internal system. The
system is a combination of Rössler’s autonomous cognitive map
system (Rössler, 1981) and Frith, Blakemoore, and Wolpert’s
comparator model (Frith et al., 2000). We extended it to include
a memory state and a neural network as a spontaneous dynamics
circuit. As mentioned earlier, the system is constructed with three
functionalities in mind:

(1) Automatic imitation capability.
(2) Self-simulation.
(3) Memory selection and variation through spontaneous

dynamics.

In this section, we explain the methods used to achieve the above
three functionalities and describe Alter3’s hardware.

3.1. Humanoid Alter3
Alter3’s body has 43 movable air actuator axes, and its motions
can be controlled through a remotely placed air compressor that
is mediated by a control system (Figure 2). More specifically,
its motion is controlled by two types of commands: SETAXIS
and GETAXIS. A SETAXIS command, which can be regarded
as a motor command, is used to set each axis of the humanoid

FIGURE 1 | System architecture of Alter3 for the imitation of human behavior. Alter3’s motion is controlled by three main subsystems: a self-simulator, an automatic

mimicry unit, and memory storage. Additionally, autonomous neural dynamics perturb the memory system. When Alter3 retrieves a memory chunk and executes it,

the retrieved chunk is varied with the neural states and stored again. The details of each module are described in section 3. The mode-selection mechanism is also

described in the section and Figure 5.
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robot to a desired value. By contrast, a GETAXIS command
is a command used to retrieve the current axis angle realized
on Alter3. Ideally, it is expected that the value obtained from
GETAXIS will be the same as the value set by SETAXIS. However,
the actual value set for each axis can differ from the intended
value. Such differences are caused by physical constraints and
latency owing to the body being driven by air actuators. The
control system sends commands via a serial port to control the
body. Alter3’s motions are determined online, and the refresh rate
is 100–150 ms.

Alter3 has two cameras, one in each eye, which send visual
images to a control system. The camera images are used to extract
the key points of the skeleton posture of a human in front of
Alter3, using a software called OpenPose (Cao et al., 2017). Alter3
uses the key points of the skeleton to imitate the human posture.
In the following sections, the image processing system used for
imitation is described in detail.

3.1.1. Automatic Mimicry Capacity
In the awake mode, Alter3’s motor commands are generated by
the automatic mimicry module through the following processes:

1. Detect a human pose.
2. Map the detected human pose to the angles of the axes.
3. Generate motor commands from the obtained angles and

Alter3’s spontaneous neural dynamics.

An image from the eye camera is taken as input to a pose
detection algorithm. We used OpenPose (Cao et al., 2017) as the
algorithm. It detects human poses and generates the positions of
key points, such as the head, neck, shoulders, elbows, and wrists.
The configuration of the key points of a human skeleton differs
from that of the axes in Alter3, and angles of the axes are required
as motor commands for Alter3; therefore, we map the positions
to the angles. The components responsible for these processes
partially constitute Alter3’s body schema and can be regarded as
the controller in the comparator model (Frith et al., 2000). When

FIGURE 2 | Body of Alter3. The body has 43 axes that are controlled by air

actuators. It is equipped with a camera inside each eye.

OpenPose detects poses of multiple people, Alter3 focuses on the
center-most person in its visual field and imitates the person’s
pose. Once the person is locked into Alter3’s vision, the person
is tracked until the person disappears from its view.

Alter3’s spontaneous dynamics consist of spiking neurons
(Izhikevich, 2003) that are combined with the calculated angles
of the axes as a weighted average to calculate the final axis values
(see details in the following sections). The final values are sent to
Alter3 as motor commands at every frame, and Alter3 behaves
in accordance with the motor commands. Thus, Alter3 not only
imitates human motion but also modifies its own motion to an
extent based on its spontaneous dynamics.

It should be noted that the choice of whether Alter3 imitates
human motion based on the above-mentioned process (awake
mode) or based on its memory (dream mode) depends on the
result of the comparison between its self-simulation and current
visual perception, as described below.

3.1.2. Self-Simulation
Alter3 contains a self-simulator that simulates a future self-image
before executing motor commands. The self-simulator is a robot
simulator that receives each joint angle as a motor command
(which is the same as the SETAXIS command described above)
and returns a posture as a visual image (Figure 3). We used
a custom-built simulator that visualizes the results of forward
kinematics by calculating joint positions from joint angles
without a physics engine, other than simple inertia. As Alter3’s
axes are controlled by air actuators that do not have sufficient
torque to control the axes precisely, the actual motions differ
from the motor commands. Thus, we manually calibrated the
upper and lower limits of the joint angles in the simulation

FIGURE 3 | Example of an internal image generated by the self-simulator. The

self-simulator receives the SETAXIS commands (motor commands) and

generates a visual image.
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by comparing the simulated poses and the actual poses by
Alter3. This self-simulator can be regarded as a predictor in the
comparator model (Frith et al., 2000), which predicts a future
state from an efference copy.

The predicted future self-image is compared with the visual
perception of the optical flow values. The difference between the
two is used to determine the operation mode of Alter3. If the
difference between the optical flow values and the predicted self-
image exceeds a threshold, the mode switches from awake mode
to dream mode, i.e., Alter3 will stop using its automatic mimicry
capacity (OpenPose and its mapping function) and will begin
using its memory to generate new imitation behavior. The details
of this process are explained in the following subsection.

Therefore, Alter3 uses the self-simulator to predict a future
posture from the motor commands generated by the automatic
mimicry module before executing the commands. It then
determines whether it should execute these commands or use
memory to imitate the human motion (based on a comparison
between the state predicted by the self-simulator and a target
human motion).

3.1.3. Memory Selection and Development
Alter3 has a fixed memory size in which the sequence of
movements is divided into short chunks that are stored over
time. Each memory chunk is a short sequence of behavior but
is labeled by an abstract representation of the visual image of
the movement. Specifically, we used the optical flow of the self-
image for this purpose. When Alter3 identifies that the automatic
imitation of a human is not viable under certain criteria, it
searches for the optimal movement in its memory by using the
labels. In addition, the movement that is retrieved is stored in the
memory as a new memory chunk, which allows the formation of
a closed loop.

Alter3 stores the executed motor commands in its memory
as a memory chunk for every 30 frames. As mentioned in the
subsection above, the sequence of motor commands is converted
to a self-image via the self-simulator. They are then converted
to a series of optical flows. We adapted a dense (lattice) type
algorithm to calculate the optical flow. It was originally a two-
dimensional vector field, but we adapted it as a scalar field
by using the magnitude of the vector. The memory chunk
containing 30 frames of the pose sequence was labeled with the
time average of the optical flow. Here, we considered the time
average of the optical flow as the short-term meaning or label
of appearance of the self-motions. For example, when Alter3
performs the action “raising left hand,” the motor command is
a high-dimensional time series and contains a large amount of
information that is irrelevant to the meaning of the motion.
It is assumed that the spatial pattern of the optical flow will
always take a high value near the upper right side of the body
in such cases. Thus, optical flow is qualified as the meaning or
the label. In our experiment, optical flow was calculated using the
algorithm proposed by Farnebäck (2003), and OpenCV library
(Bradski, 2000) was used for the actual implementation. The
memory was realized as a queue of memory chunks, and its size
was limited (50 chunks = 1,500 frames). Thus, if the memory
was full, the oldest memory chunk was removed, and a new
memory chunk was added (i.e., first in, first out). Figure 4 shows
this process.

Alter3 can replay past motions based onmemory in the dream
mode. This memory recall and motion replay occurs in the
following two cases.

1. When no human is in sight.
2. When a self-simulated motion differs significantly from the

target human motion.

FIGURE 4 | Illustration of the structure and storage process of the memory. The memory comprises a time sequence of action chunks of 30 frames each and a

time-averaged value of optical flow associated with each action chunk.
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The first case is specifically defined for when OpenPose detects
no humans for 100 frames. In this case, Alter3 recalls a motion
sequence randomly frommemory and replays it. When replaying
the motion, Alter3’s spontaneous dynamics, which consist of
spiking neurons, causes a minor change in the motion as with the
case of automatic mimicry (the details of this mutation process
are described in the next subsection). The mutated motion is
then stored as a new memory. In this case, the memory is
reconstructed by store-replay cycles and spontaneous dynamics,
without any inputs from the environment. This is similar to
memory consolidation in a dream, where memory is reactivated
and reorganized (e.g., Wamsley et al., 2010). When a human
comes into sight, Alter3 switches to the awake mode.

The second case is specifically defined for when the difference
between the optical flows of the self-simulated visual images
and the optical flows of the visual perception (human image)
exceeds a certain threshold during a short period (15 frames).
Mean squared error is used to measure the difference between
the two optical flows. In this case, Alter3 retrieves a memory
chunk that has been labeled with the optical flow values that
are closer to those of the current visual image from the camera
and replays the motion. The replayed motion is also mutated
by the spontaneous dynamics. The motion is labeled as having
a certain optical flow and is stored as a new memory. This is
similar to memory reconsolidation, where the recalled memory
becomes temporally unstable; then, the memory is consolidated
again and becomes stable (e.g., Suzuki et al., 2004). If the optical
flow values of the recalled motion are close to the values of the
current human motion when a memory chunk is replayed, then
Alter3 switches back to awake mode. The algorithms for mode
selection are summarized in Figure 5.

It should be noted that both memory recall mechanisms
explained above are not simple replay mechanisms. Rather, both
are memory reconstructions with mutations that are caused
by spontaneous dynamics. We expect that the memory recall
mechanisms will allow Alter3 to explore new movement patterns
that cannot be generated from its automatic mimicry capacity.
Additionally, the second recall mechanism can select memories
in accordance with the ability to imitate humans, for a given
memory chunk; therefore, it develops the contents of memory
according to the imitation ability. As a result, we expect
that memory structures can evolve through the experimental
imitations of human agents.

3.2. Memory Variation by Spontaneous
Dynamics
Alter3 has internal spontaneous dynamics that act as a central
pattern generator (CPG). This generator has no input from the
environment. It consists of spiking neurons (see Appendix for
the details of the neuron model). The first reason for using
spiking neurons instead of other chaotic dynamical systems or
stochastic dynamic systems is that we intend to add a learning
process with stimulus input in the future work (e.g., the difference
between simulated future self-image and target human motion
might be used as stimulus input to the spiking neurons). The
second reason is that, in this research, it is important that
memory becomes unstable with the internal dynamics when it is
recalled, i.e., the dynamics are used to perturb the memory. Thus,
it would be better if the dynamics kept changing with synaptic
plasticity. We compared the dynamics of spiking neurons with
synaptic plasticity to spiking neurons without synaptic plasticity
and random patterns. The results (Figure A1) show that the

FIGURE 5 | Flow chart for mode selection. When no human is detected and the automatic mimicry module works well, Alter3 enters the awake mode. In the awake

mode, Alter3 behaves only according to the automatic mimicry system. A dream mode is divided into two sub-modes. When no person is detected, Alter3 randomly

extracts one memory chunk of behavior and replays it. By contrast, when a person is detected, and the automatic mimicry system is unable to imitate the person

efficiently (judged by the optical flow), Alter3 searches for a better memory chunk and deploys it.
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generated patterns of the spiking neurons with synaptic plasticity
were more structured and temporally richer than the ones
without plasticity (seeAppendix 2 for the details of this analysis).
For these reasons, we adopted spiking neurons with plasticity as
the candidates for noise sources to perturb memory.

The dynamics of the CPG are added to the motor
commands before they are sent to Alter3, which implies that
the dynamics also mutate recalled memories, much like memory
reconsolidation. The original motor commands generated by
automatic imitation or memory selection are always affected by
the CPG. Specifically, final motor commands realized by Alter3’s
hardware are taken in a weighted summation of the original
motor commands and output of the CPG. We set the weight
of the CPG output to 0.1, and the weight of original motor
commands to 0.9. In other words, CPG dynamics mutate recalled
memories, like memory reconsolidation.

4. EXPERIMENTS

We conducted experiments with Alter3 at the NRW-Forum,
Düsseldorf between April 26 and May 4, 2019. During the

experiments, Alter3 was located in the exhibition room (Figure 6,
left), which is a public space. The public could freely visit
the exhibition and witness Alter3’s movements. They were
allowed to interact with it through their own movements
(Figure 6, right; see also Supplementary Video 1). There was
no limitation on the duration for which a person can interact
with Alter3, and no information about the experiment was
provided besides the fact that Alter3 could imitate human
motion. The advantage of a public demonstration was that
people of all ages, genders, and nationalities could come to
see Alter3. Furthermore, as our policy was to experiment with
robots in an open and natural environment, the demonstration
was a welcome activity. It is also possible to conduct longer
experiments, which can last for weeks (Ikegami, 2010, 2013;
Masumori et al., 2020).

We performed six experiments, each consisting of 100,000
frames and lasting approximately 4–5 h. During the experiments,
we recorded Alter3’s motor commands, its actual motion data,
and the human motion data (Figure 7). We analyzed these
data to understand how Alter3’s behavior changed during
the experiments.

FIGURE 6 | Alter3 at the exhibition NRW-Forum, Düsseldorf. It was evident to the public that Alter3 was trying to imitate the pose of a person.

FIGURE 7 | Example of the recorded data. The first raw data represent the mode flag (0 represents awake mode; 1 represents memory mode). The second raw data

represent human motion data. The third raw data represent motor command data, which were sent to Alter3. The last raw data represent Alter3’s actual motion data.
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5. RESULTS

5.1. Development of Memory Structure
We analyzed the change inmemory and actual motions of Alter3.

The memory and actual motion values (values of SETAXIS and

GETAXIS) have 43 dimensions; hence, we adapted a dimension-
reduction algorithm called UMAP (McInnes et al., 2018) to
visualize them. Figure 8 shows the results of the dimension-
reduction by UMAP, which reduced the memory and actual
motion data of Alter3 to two dimensions. These results show

FIGURE 8 | Motor commands (A) and motion data (B) are projected onto a two-dimensional space using the dimension reducing algorithm, UMAP. The blue dots

indicate that the pose is generated by imitating human motion, and the red dots represent poses generated from memory. (A) Motor commands data (history of

Alter3’s motor commands: SETAXIS) for each experiment. (B) Motion data (history of Alter3’s actual motion: GETAXIS) for each experiment.
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a different pattern for each experiment, especially experiments
#0 and #5. We consider that these differences reflect differences
in the interactions between Alter3 and humans. This suggests
that different personalities in Alter3 emerge from different
environments (e.g., differences in the frequency and duration of
people’s stays and motion patterns).

As shown in this figure, in almost all the experiments, the
poses generated in the awake mode and the poses generated
in the dream mode have different clusters, although some of
these clusters overlap. The former poses tend to have more
clusters than the latter ones. This suggests that Alter3 not

only copied human motions but also varied them using its
memory mutation and selection process. The memory data
(Figure 8A) and the actual motion data (Figure 8B) reflect the
same tendencies. However, they also marginally differ because
of Alter3’s construction: Alter3’s axes are controlled by air
actuators, and they do not have sufficient torque to control
the axes precisely. Thus, the actual motions differ from the
motor commands.

Figure 9 shows the developments in the motion patterns
over time. Figure 9A (top) shows that the clusters of the poses
generated frommemory, represented by the red dots, are initially

FIGURE 9 | Example of the time development of motion patterns. (A) Time series of the poses in two-dimensional space. The entire duration of the experiment was

divided into five parts at every 20,000 frames and plotted as five figures (top). The subsequent two rows represent the time series of the switching between memory

and awake modes (middle) and the time series of whether a human is within Alter3’s sight (bottom). (B) Trajectory of motion data in two-dimensional space (UMAP)

and sample real data for a point in two-dimensional space. A red line in the two-dimensional space represents the trajectory of the motion data that is generated

based on memory. A blue line represents the trajectory of the motion data that is generated based on human imitation.
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located near the clusters of the poses generated by automatic
mimicry capacity, represented by the blue dots. Then, the red
clusters begin to vary and move away from the blue clusters.
At 40,000–60,000 frames and 80,000–100,000 frames, many red
clusters can be observed. In these phases, there are cases where
Alter3 retrieves a memory and behaves accordingly despite a
person being in its sight (Figure 9A, middle and bottom). In such
a case, memory selection and the reconsolidation process occur.
These results suggest that the memory selection and variation
process work well to diversify memory, rather than just copy
human motion.

The motion pattern of Alter3 can be represented in a two-
dimensional plane. Figure 9B shows the trajectories of the
motion data in two-dimensional space (UMAP), and some
samples of the data of actual points in the two-dimensional space.
It can be observed that the complex motion pattern derived
from human motion (at 1000–1200 frames) gradually converges
to relatively static motions (at 38,000–38,200 frames and at
70,000–70,200 frames), probably because there were few humans
in Alter3’s sight at 38,000–38,200 frames, and none at 70,000–
70,200 frames. This suggests that Alter3’s memory diversifies
itself through interactions with the environment (human) at first.
However, without such interactions, its memory is overwritten
by its spontaneous activity and gradually disappears, similar to
forgetting dynamics in actual humans.

5.2. Information Flow Between Alter3 and
Human
To evaluate whether Alter3 could effectively imitate human
motion and whether humans also imitated Alter3, we analyzed
the information flow between Alter3 and humans. We used
transfer entropy (TE) to estimate the information flow between
the motions of Alter3 and the humans during the experiments.
TE measures directed information transfer (Schreiber, 2000). A
high TE from one entity to another indicates that the former
affects the latter. Thus, TE enables us to estimate causation during
an imitation.

The TE from time series J to time series I is defined as

TEJ,I =
∑

p(it+1, i
(k)
t , j

(l)
t+1)log

p(it+1 | i
(k)
t , j

(l)
t+1)

p(it+1 | i
(k)
t )

, (1)

where it denotes the value of I at time t, jt denotes the value of j
at time t, and it+1 denotes the value of i at time t + 1. Parameters
k and l give the order of the TE and represent the number of time
bins in the past that are used to calculate the histories of time
series i and j. Here, they are set to k = l and k = 3.

We computed the TE between the motion data of both Alter3
and humans (continuous multivariate data) using the Kraskov–
Stögbauer–Grassberger estimator in the JIDT library (Lizier,
2014) and compared the results for the awake and memory
conditions. The awake condition was defined to be equivalent to
the awake mode explained above. The memory conditions were
defined such that there was a human in front of Alter3, but the
error of the optical flow exceeded the threshold, and memory was
used to generate Alter3’s motion.

The mean TE values between Alter3’s motion and human
motion are shown in Figure 10. In the awake mode, the value
of TE from Alter3’s motion to human motion was significantly
lower than in the opposite direction (Mann–Whitney U-test,
n = 6, p = 0.0025). This implies that information flow from
humans to Alter3 was higher than the flow from Alter3 to
humans. This suggests that Alter3 could imitate human motion
effectively. In contrast, for the memory condition, the value of
TE from Alter3 to human motion was significantly higher than
the TE value for the opposite direction (Mann–Whitney U-test,
n = 6, p = 0.0227). This suggests that information flow was
reversed in the memory condition, and humans tended to imitate
Alter3. During the dream mode, the motions were selected from
memory based on the similarity of the visual image-basedmotion
pattern (optical flow) between the poses of Alter3 and a human,
rather than the similarities of joint angles itself. Thus, under this
condition, the similarity of the motion at the joint angle level will
not necessarily be as high as it would be in the awake mode. Such
a difference may induce people to start imitating Alter3.

TE varies temporally. As an example of a time series, Figure 11
shows an alternation of local TE between Alter3 and human
motions. It shows that, in the memory conditions, the local TE
from Alter3’s motion to human motion was often higher than in
the opposite direction. In addition, in the awake mode, the local
TE fromAlter3’s motion to humanmotion was sometimes higher
than that from human to Alter3. These results imply that the
causes and effects of the imitation were often reversed over time;
thus, Alter3 and humans imitated each other. We think that this

FIGURE 10 | Transfer entropy (TE) between Alter3 and human motions. In the

awake condition, the TE from Alter3’s motion to human motion was

significantly lower than the reverse case. In contrast, for the memory condition,

the TE from Alter3 to human motion was significantly higher than the TE in the

opposite direction. The awake conditions were equivalent to the awake mode,

where Alter3 imitated human motion with its automatic mimicry module. The

memory conditions were defined when Alter3 used memory to generate

motion (i.e., there was a human in front of Alter3, but the difference between

the optical flow values of the human motion image and the simulated future

self-image of Alter3 exceeded a threshold; thus, memory was used to

generate motion). *p < 0.05, **p < 0.01.
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FIGURE 11 | Example of a time series of local transfer entropy (TE) between Alter3 and human motions. The yellow zones indicate a memory condition in the dream

mode, where Alter3 used its memory to generate a posture. In the memory condition, the values of local TE from Alter3’s motion to human motion tend to be higher

than those from human motion to Alter3’s motion. Furthermore, in the awake mode, in which Alter3 imitates human motion by automatic mimicry capacity, there were

also cases where the values of local TE from Alter3 to human motion were sometimes considerably higher (e.g., close to 420 frames in the figure). We think that this

was because Alter3’s generated motion pattern was sometimes not as good as expected, thus Alter3 failed to imitate human motion. It seems that this situation led

people to imitate Alter3 in turn, thus TE values from Alter3 to human sometimes higher than opposite direction even in the awake mode.

was because Alter3’s generated motion pattern was sometimes
not as good as expected, thus Alter3 failed to imitate human
motion. It seems that such a situation led people to imitate Alter3
in turn, thus the TE value from Alter3 to human was sometimes
higher than opposite direction.

6. DISCUSSIONS

Alter3 is programmed to imitate the motion of a person in front
of it. A human pose detection algorithm (OpenPose) extracts the
key points of the skeleton from the posture pattern. However,
Alter3 sometimes fails to imitate themotion. The imitation rating
is based on the difference between the optical flow pattern of
Alter3 and the optical flow pattern of the person Alter3 attempts
to imitate. The smaller the difference, the better the imitation.
The main reasons why Alter3 sometimes fails to imitate human
motion are (i) physical constraints imposed by the mechanical
structure of Alter3, (ii) incorrect detection caused by OpenPose
or disturbance to the eye camera, (iii) the dynamic characteristics
of Alter3’s unstable process, (iv) a significant time delay between
the control program and the motor output, and (v) Alter3
encountering a style of motion that cannot be imitated. Such
types of failures play an important role for Alter3, such as
organizing memory through selection and mutation processes
and inducing role switching in interactions with human, as
discussed below.

Introducing memory into Alter3, we incorporated an
imitation recovery process: if Alter3 fails to imitate human
motion with automatic mimicry capacity, Alter3 uses memory
to imitate the motion. Alter3’s spontaneous neural dynamics
commonly affects the generation of motion. Therefore, posture

patterns are not only stored in memory but also changed
over time. Owing to the selection and the mutation processes,
memories are copied and changed when they are used. If Alter3
uses a stored pattern frequently, more copies of this pattern
emerge with modifications.

Alter3’s organized motion is generated by the automatic
mimicry capacity or through Alter3’s memory. Therefore,
the whole posture space of Alter3 is decomposed into two
categories. One consists of the postures provided by estimating
human postures, and the other category has the self-organized
postures generated through memory selection and variation. The
decomposition is shown by applying the UMAP compression
in Figure 8. These two categories are created spontaneously
through interaction with humans.Moreover, if no person appears
in front of Alter3 for a certain period, the postures in the latter
category gradually change and converge to Alter3’s spontaneous
dynamics provided by the spiking neurons, after which another
category is organized.

To determine whether Alter3 imitates people’s postures or

whether people imitate Alter3, we measured the TE between

Alter3 and the people whose motions it seemed to imitate. The
results suggest that people often imitate Alter3 strongly when

Alter3 is in the dream mode (i.e., when Alter3 fails to imitate
with the automatic mimicry capacity and it generates a motion
from its memory). We also found that people sometimes imitate
Alter3, even when Alter3 was in the awake mode (i.e., when it
generates a motion based on its autonomous mimicry capacity).
It is interesting that people try to imitate the posture of Alter3
because it shows that imitation is an essential property of a living
system. In other words, as people grow up, primitive imitation
behavior does not disappear, but exists as a background process.
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For example, close friends are known to synchronize the timing
of their speech.

Starting from primitive imitation without any memories,
Alter3 develops its memories via imitating human behavior and
generates various behaviors based on memory selection and
variation processes.While Alter3 interacts with a human and fails
to imitate the human’s behavior, humans tend to imitate Alter3
instead. This is quantified by the reversal of TE. We say that this
spontaneous switching of roles between man and machine is a
necessary condition of personogenesis.
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