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Cholesterol-enriched diet causes age-related
macular degeneration-like pathology in rabbit retina
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Abstract

Background: Alzheimer’s disease (AD) and age-related macular degeneration (AMD) share several pathological
hallmarks including b-amyloid (Ab) accumulation, oxidative stress, and apoptotic cell death. The causes of AD and
AMD are likely multi-factorial with several factors such as diet, environment, and genetic susceptibility participating
in the pathogenesis of these diseases. Epidemiological studies correlated high plasma cholesterol levels with high
incidence of AD, and feeding rabbits with a diet rich in cholesterol has been shown to induce AD-like pathology
in rabbit brain. High intake of cholesterol and saturated fat were also long been suspected to increase the risk for
AMD. However, the extent to which cholesterol-enriched diet may also cause AMD-like features in rabbit retinas is
not well known.

Methods: Male New Zealand white rabbits were fed normal chow or a 2% cholesterol-enriched diet for 12 weeks.
At necropsy, animals were perfused with Dulbecco’s phosphate-buffered saline and the eyes were promptly
removed. One eye of each animal was used for immunohistochemistry and retina dissected from the other eye
was used for Western blot, ELISA assays, spectrophotometry and mass spectrometry analyses.

Results: Increased levels of Ab, decreased levels of the anti-apoptotic protein Bcl-2, increased levels of the pro-
apoptotic Bax and gadd153 proteins, emergence of TUNEL-positive cells, and increased generation of reactive
oxygen species were found in retinas from cholesterol-fed compared to normal chow-fed rabbits. Additionally,
astrogliosis, drusen-like debris and cholesterol accumulations in retinas from cholesterol-fed rabbits were observed.
As several lines of evidence suggest that oxidized cholesterol metabolites (oxysterols) may be the link by which
cholesterol contributes to the pathogenesis of AMD, we determined levels of oxysterols and found a dramatic
increase in levels of oxysterols in retinas from cholesterol-fed rabbits.

Conclusions: Our results suggest that cholesterol-enriched diets cause retinal degeneration that is relevant to
AMD. Furthermore, our data suggests high cholesterol levels and subsequent increase in the cholesterol
metabolites as potential culprits to AMD.

Background
Age-related macular degeneration (AMD) is a retinal
degenerative disease that involves photoreceptors, retinal
pigment epithelium (RPE), Bruch’s membrane, and chorio-
capillaris. Drusen, extracellular deposits located between
the RPE and Bruch’s membrane, are a major hallmark of
AMD [1,2]. Drusen contains histochemically detectable
lipid including cholesterol in unesterified and esterified
forms [3]. In addition to drusen deposits, oxidative stress,

apoptosis and accumulation of b-amyloid peptide are also
hallmarks of AMD [4]. Interestingly, these hallmarks are
also characteristics of Alzheimer’s disease (AD) [5,6].
Furthermore, Ab accumulation is the leading neuropatho-
logical change that correlates with the diagnosis of AD,
and is considered a key player in the pathogenesis of AD
by inducing oxidative stress and apoptotic cell death. Ab
levels are regulated by generation from amyloid precursor
protein (APP) upon initial cleavage by Beta-secretase 1
(BACE-1) and degradation by enzymes that include insu-
lin-degrading enzyme (IDE). Ab accumulation has also
been shown to be associated with drusen in eyes from
AMD patients [7-9] as well as mice models for AMD [10]
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and Ab immunization has been considered a pertinent
therapeutic approach for both AD and AMD [11].
There is increasing evidence of a link between AD and

retinal diseases including glaucoma and AMD, as evi-
denced with the deposition of Ab peptide in both dis-
eases (see review [12]). Visual problems have been
observed during the initial stages of AD [13]. Reduction
in the number of ganglion cells and in the thickness of
the nerve-fiber layer has been observed in AD patients
[14]. The causes of AMD and AD are not well defined,
but several factors including diet, environment, and
genetic susceptibility likely contribute to the pathogen-
esis of these diseases [15]. Epidemiological and animal
studies have suggested a link between high plasma cho-
lesterol levels and AD [16]. As well, high intake of cho-
lesterol and saturated fat have long been suspected to
increase the risk for AMD [17]. Cholesterol (free and
esterified) has been shown to be highly distributed in
the human drusen [18-20]. Drusen may raise the risk of
developing AMD [21]. The source of the cholesterol
that accumulates in the retina is suggested to derive
from both local cells and plasma origins [22-24]. Cur-
rently, the mechanisms by which cholesterol may
increase the incidence of AMD are not clear. Several
lines of evidence suggest that oxidized cholesterol meta-
bolites (oxysterols) may be the link by which cholesterol
contributes to the pathogenesis of AMD. The oxysterol
pathway has been proposed as a unifying hypothesis for
the cause of AMD [25,26]. We have shown that choles-
terol-enriched diets increase Ab levels, oxidative stress
and cell death in rabbit brains [27]. We have further
presented ample evidence that increased levels of 27-
hydroxycholesterol, an oxidized cholesterol metabolite,
is a potential link that mediates cholesterol-induced AD
pathology [28,29]. We have also recently demonstrated
that incubation of retinal pigment epithelial cells with
the oxysterol 27-hydroxycholesterol caused Ab accumu-
lation, oxidative stress and apoptosis [30]. Our data sug-
gest that increased oxysterol levels, subsequently to high
plasma cholesterol levels, may be a common pathogenic
factor for both AD and AMD. However, the extent to
which cholesterol-fed rabbit retinas also exhibit
increased Ab levels, oxidative stress and cell death is not
well known. As well, the extent to which these features
are associated with increased levels of oxysterols in rab-
bit retinas has not been determined.
In this study, we fed rabbits with a cholesterol-

enriched diet for 12 weeks and found that this regimen
is associated with increased levels of Ab, oxidative
damage, apoptotic cell death as well as increased choles-
terol and oxysterol levels in retinas. Our results suggest
a potential link between cholesterol metabolism and ret-
inal degeneration.

Methods
Animals and treatments
Male New Zealand white rabbits (1.5-2 years old, 3-5
kg), housed separately in cages in a room with 12 h
dark/light cycle, were randomly assigned to 2 groups
(n = 6 each) as follows: group 1, normal chow and
group 2, chow supplemented with 2% cholesterol (Har-
lan Teklad Global Diets, Madison, WI). Animals fed
with cholesterol-enriched diet and their matched con-
trols were euthanized 12 weeks later. At necropsy, ani-
mals were perfused with Dulbecco’s phosphate-buffered
saline (GIBCO) and the eyes were promptly enucleated.
One eye of each animal was used for biochemical analy-
sis and the other was immediately placed in a fixative
solution for paraffin embedding. All animal procedures
were carried out in accordance with the U.S. Public
Health Service Policy on Humane Care and Use of
Laboratory Animals and were approved by the Institu-
tional Animal Care and Use Committee at the Univer-
sity of North Dakota.

Immunohistochemistry
After deparaffinization and rehydration, paraffin sections
(7 μm) were washed with PBS, incubated with trypsin
enzymatic antigen retrieval solution (Abcam, Cambridge,
MA) then blocked with 10% normal goat serum solution
for 1 h. This was followed by an overnight incubation at
4°C with mouse monoclonal antibody to 4G8 that detects
Ab (1:100, Signet Laboratories, Dedham, MA), rat mono-
clonal to GFAP (1:50, Abcam), mouse monoclonal anti-
body to vitronectin (1:200, Santa Cruz Biotechnology,
Santa Cruz, CA) and mouse polyclonal antibody to
CYP27A1, the enzyme that converts cholesterol to 27-
hydroxycholesterol (1:200, Novus Biologicals, Littleton,
CO). Anti-mouse IgG conjugated with Alexa Fluor 488
Dye (Molecular Probes, Eugene, OR) at 1:500 and anti-
rat IgG conjugated with Alexa Fluor 594 Dye (Molecular
Probes) at 1:500 were used as secondary antibodies and
incubated in PBS for 1 h at room temperature. DAPI or
propidium iodide was used as a counter stain for visualiz-
ing nuclei. Hematoxylin and eosin (H&E) staining was
carried out after deparaffinization and rehydration of ret-
inal sections with xylene, ethanol and deionized H2O.

Quantification of Ab levels by ELISA
Ab levels (Ab40 and Ab42) were quantified in the retina
of control and cholesterol-fed rabbits with an ELISA kit
(Invitrogen, Carlsband, CA) according to the manufac-
turer’s protocol. Briefly, to measure the amount of Ab40
and Ab42, the wet mass of the retina was homogenized
thoroughly with 8 × mass of cold 5 M guanidine HCl/50
mM Tris-HCl. The homogenates were mixed for 3-4 h at
room temperature and samples were diluted with cold
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reaction buffer (Dulbecco’s phosphate-buffered saline
with 5% BSA and 0.03% Tween-20 supplemented with
1 × protease inhibitor cocktail) and centrifuged at
16,000 × g for 20 min at 4°C. The supernatant was dec-
anted, stored on ice until use, diluted 1:2 with standard
diluent buffer, and quantified by colorimetric sandwich
ELISA kits. The quantity of Ab in each sample was mea-
sured in duplicates. Protein concentrations of all samples
were determined by standard BCA assay (Pierce Chemi-
cal Co, Rockford, IL). Ab levels were normalized to total
protein content in the samples.

Western blot analysis
Retinas dissected from control and cholesterol-fed rabbit
eyes were homogenized in T-PER(tissue protein extraction
reagent, Thermo Scientific, Rockford, IL) supplemented
with protease and phosphatase inhibitors (Thermo Scienti-
fic). Protein concentrations were determined with BCA
protein assay reagent (Pierce Chemical Co). Proteins
(10 μg) were separated on SDS-PAGE gels followed by
transfer to a polyvinylidene difluoride membrane (Biorad,
Herculus, CA) and incubated with antibodies to BACE-1
(Mouse, 1:1000, Millipore), IDE (Rabbit, 1:5000, Millipore),
HO-1 (Mouse, 1:200, Assay Designs, Ann Arbor, MI),
GFAP (Rat, 1:200, Abcam), Bcl-2 (Mouse, 1:100, Santa
Cruz Biotechnology), Bax (Mouse, 1:100, Santa Cruz Bio-
technology), gadd153 (Mouse, 1:1000, Abcam), CYP27A1
(Rabbit, 1:800, Protein Tech Group, Chicago, IL), and
ABCA1 (Mouse, 1:100, Neuromics, Edina, MN). b-actin
was used as a gel loading control (Mouse, 1:5000, Santa
Cruz Biotechnology). For antibodies of mouse origin, goat
anti-mouse secondary antibody conjugated with horserad-
ish peroxidase (HRP, 1:5000, Biorad), for antibodies of rab-
bit origin goat anti-rabbit secondary antibody (1:5000,
Biorad), and for antibodies of rat origin, goat anti-rat sec-
ondary (1:500, Santa Cruz Biotechnology) were used. The
blots were developed with enhanced chemiluminescence
(Immun-star HRP chemiluminescent kit, Bio-Rad). Bands
were visualized on a PVDF membrane by using Ultra Vio-
let Products (UVP) Bioimaging System (UVP, Upland,
CA) and analyzed by LabWorks 4.5 software. Quantifica-
tion of results was performed by densitometry and the
results analyzed as total integrated densitometric values
(arbitrary units).

TUNEL Assay
The DeadEnd Fluorometric TUNEL assay (Promega,
Madison, WI) was performed for detection of apoptosis.
The TUNEL staining was performed according to manu-
facturer’s instructions. Briefly, sections were deparaffi-
nized, rehydrated and washed with PBS. Sections were
permeabilized with Triton-X, washed with PBS, incubated
with terminal deoxynucleotidyl transferase, fluorescein-12-
dUTP. The fluorescein-12-dUTP labeled DNA was then

visualized directly by fluorescence microscopy. Propidium
iodide was used as counter stain for staining nucleus.

Reactive Oxygen Species measurements
Reactive Oxygen Species (ROS) generation was measured
in retinal tissue homogenates using a 2’-7’-dichlorofluores-
cin-diacetate (DCFH-DA) as well as fluorometric detection
of H2O2. DCFH-DA, a non-fluorescent dye, is cleaved by
esterase activity to yield DCFH, which is subsequently oxi-
dized by a variety of ROS to form dichlorofluorescein
(DCF), which is fluorescent. Retinas were homogenized in
T-PER using a glass homogenizer. Samples containing
25 μg proteins diluted in PBS were incubated with 5 μM
DCFH-DA (Sigma) in the dark for 15 min. Fluorescence
was measured every 15 min for 1 h with excitation and
emission wavelengths of 488 nm and 525 nm, respectively,
using a SpectraMax Gemini EM microplate reader (Mole-
cular Devices, Sunnyvale, CA, USA). Values are expressed
as relative fluorescence units (RFU). For the measurement
of hydrogen peroxide (H2O2) and peroxidase activity in
the retinal samples, we used Amplex Red Hydrogen Per-
oxide/Peroxidase Assay according to the manufacturer’s
instructions (Invitrogen). In the presence of peroxidase,
the Amplex Red reagent reacts with H2O2 in a 1:1 stoi-
chiometry and produces the red-fluorescent oxidation pro-
duct, resorufin. Retinal homogenates of control and
cholesterol-fed rabbits were diluted in reaction buffer and
added into 96 well plates. For each well, 50 μL of working
solution of 100 μM Amplex Red reagent and 0.2 U/mL
HRP was added and fluorescence was measured after incu-
bation. For H2O2 Assay, a standard curve was generated
from 0 μM to 5 μM and H2O2 concentrations of retina
samples were deduced from the standard curve. Similarly,
for peroxidase activity determination, 100 μM Amplex
Red reagent containing 2 mM H2O2 was added to retinal
homogenates and after incubation fluorescence was mea-
sured. Peroxidase standard curve was generated in the
range from 0 to 2 mU/ml. Peroxidase activity of retinal
samples were deduced from standard curve. Resorufin
fluorescence was measured using a SpectraMax Gemini-
EM (Molecular Devices) with excitation at 530-560 nm
and emission at 590 nm.

Total cholesterol quantification
Total cholesterol levels in the control and cholesterol-fed
rabbit retina samples were quantified by colorimetric
detection using cholesterol/cholesteryl ester quantifica-
tion kit (BioVision Research Products, Mountain View,
CA) as per the manufacturer’s instructions. Cholesterol
was extracted from the retina samples in a solution con-
taining a mixture of chloroform: isopropanol: NP-40
(7:11:0.1). The extract was centrifuged at 15,000 × g and
the organic phase was transferred to a new tube. The
organic phase liquid was air dried at 50°C to remove
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chloroform and subjected to vacuum for 30 min to
remove trace organic solvents. The dried lipids were dis-
solved in 200 μL of cholesterol assay buffer provided with
the kit until the samples were homogeneous by either
sonicating or vortexing. Standards were prepared as per
the manufacturer’s instructions. 1 μL of the extracted
sample adjusted to 50 μL/well with cholesterol assay buf-
fer was used per assay. 50 μL of the reaction mix (con-
taining 44 μL of cholesterol assay buffer, 2 μL of
cholesterol probe, 2 μL of cholesterol enzyme mix and
2 μL of cholesterol esterase all provided in the kit) was
added to each well containing standards and samples.
After 1 h reaction at 37°C the absorbance was read at
570 nm. The concentration of cholesterol in each sample
was calculated using the standard curve and expressed as
mg/g tissue.

Oxysterol levels measurement
Oxysterols were quantified in retinas from control (n = 3)
and cholesterol-fed (n = 3) rabbits using a 4000 QTRAP
liquid chromatography mass spectrometer (Applied Bio-
systems) as previously described [31].

Statistical analysis
GraphPad Prism software 4.01 was used for statistical ana-
lysis. Quantitative data are presented as mean values ±
SEM. The significance of differences between the control
and cholesterol-treated group was assessed by unpaired
Student’s t test, with P < 0.05 considered statistically
significant.

Results
Ab levels were increased in retinas of cholesterol-fed
rabbits
Immunohistochemical analysis with laser scanning con-
focal microscopy showed increased immunoreactivity to
Ab peptide in retinas from the cholesterol-fed rabbits
compared to control rabbit as determined with 4G8
antibody (Figure 1A). Ab monoclonal antibody 4G8 is
reactive to amino acid residues 17-24 of Ab and also
reacts with APP. The increase in Ab staining is detect-
able in the photoreceptor outer segments (OS), outer
nuclear layer (ONL), inner nuclear layer (INL) and also
in the ganglion cell layers (GCL). Ab quantitation by
ELISA also showed an increase in both Ab40 and Ab42
forms in the retinal samples of cholesterol-fed rabbits
compared to normal chow-fed rabbits (Figure 1B, C).
Ab levels are regulated by generation from APP upon
initial cleavage by BACE-1 and degradation by IDE.
Western blot analyses demonstrate that BACE-1 and
IDE levels were increased in cholesterol-fed rabbit reti-
nas (Figure 1D, E). These results suggest that both for-
mation and degradation of Ab are enhanced by the
cholesterol-enriched diet and that the increase in

generation by BACE-1 exceeds the degradation rate of
Ab peptide by IDE.

Cholesterol-fed rabbit retinas show increased oxidative
stress
The nonfluorescent dichlorofluorescein (DCFH), upon
oxidation is converted to DCF and emits fluorescence.
Because DCFH can be oxidized by various ROS, the
increase of DCF fluorescence therefore reflects an overall
oxygen species index in cells. The cholesterol-enriched
diet significantly increased ROS levels in retinas com-
pared to control animals fed normal diet as demonstrated
by DCFH-DA (Figure 2A). Fluorimetric detection of
H2O2 and peroxidase by Amplex Red Assay showed an
increase in H2O2 levels and a decrease in peroxidase
activity in retinas from cholesterol-fed rabbits compared
to retinas from control rabbits (Figure 2B, C).

Figure 1 4G8 immunoreactivity and Ab levels were increased
in cholesterol-fed rabbit retina. A. Immunohistochemical analysis
of retinal sections with 4G8 (green), an antibody that detects Ab,
showed increased immunoreactivity in the cholesterol-fed rabbits
compared to control. DAPI (blue) is a nuclear counter stain. Bar =
20 μm. OS, ONL, INL, GCL are outer segments, outer nuclear layer,
inner nuclear layer and ganglion cell layers respectively. B, C. Ab
quantification by ELISA showed an increase in levels of Ab40 and 42
in the retinal samples of cholesterol-fed rabbits compared to normal
rabbits. D. BACE-1 and E. IDE levels are increased in retinas from
cholesterol-fed rabbits. *p < 0.05, ***p < 0.001 vs control.
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Levels of the oxidative stress sensor HO-1 were deter-
mined by Western blotting. The levels of HO-1 were
significantly higher in retinas of cholesterol-fed com-
pared to normal chow-fed rabbits (Figure 2D). All
together, these results show that retinas from choles-
terol-fed rabbits were subjected to oxidative stress.

Cholesterol- enriched diet caused retinal morphological
changes
Astrogliosis is one of the remarkable characteristics of
astrocytes to respond to oxidative stress insults. Confocal
microscopy analyses show significant astrogliosis, as
detected with increased immunoreactivity to GFAP in
retinas from cholesterol-fed rabbits compared to control
rabbits (Figure 3A). The increase in the number of astro-
cytes occurred in the outer nuclear, and the ganglion cell
layers. Western blot analyses also show that levels of
GFAP protein are dramatically increased in retinas from
cholesterol-fed rabbits compared to control rabbits (Fig-
ure 3B). Vitronectin, an adhesive glycoprotein, is a com-
mon component of extracellular matrices in adult tissues
including Bruch’s membrane [32] and is expressed in
retina. Confocal microscopy showed an increase in
immunoreactivity for vitronectin antibody in the retinas
of rabbits fed with cholesterol-enriched diet compared to
rabbits fed with normal chow (Figure 4A). H&E staining,
analyzed by light microscopy, showed necrotic debris
suggestive of drusen-like debris in retinas from choles-
terol-fed rabbits. These drusen-like debris are localized
under the retinal pigment epithelium (Figure 4B).

Cholesterol- enriched diet caused apoptotic cell death
Western blot results show that levels of the anti-apopto-
tic protein Bcl-2 were decreased and levels of the pro-
apoptotic protein Bax were increased in retinas of choles-
terol-fed rabbits in comparison to levels of these proteins
in retinas of control rabbits (Figure 5A). In addition to
Bcl-2 and Bax, levels of gadd 153 were increased in cho-
lesterol-fed rabbits (Figure 5B). Gadd 153 (also called
CHOP), a transcription factor that is activated by stress
to the endoplasmic reticulum, triggers cell death by
mechanisms that may include generation of ROS, down-
regulation of Bcl-2, and upregulation of Bax [33]. These
results indicate that stress to the endoplasmic reticulum
is involved in the deleterious effects of cholesterol-
enriched diet in retinas. TUNEL assay detects the frag-
mented DNA of apoptotic cells by catalytically incorpor-
ating fluorescein-12-dUTP at 3’-OH DNA ends using the
Terminal Deoxynucleotidyl Transferase, and apoptotic
cells fluoresce green color. TUNEL staining showed no
apoptotic cells in the control retinas whereas an extensive
staining was observed in the retinas of cholesterol-fed

Figure 2 Retinas of cholesterol-fed animal exhibit an increase
in oxidative stress. A. The cholesterol-enriched diet significantly
increased ROS levels in the retinas as demonstrated by DCFH-DA. B,
C. Fluorimetric detection of H2O2 and peroxidase activity by Amplex
Red Assay showed an increase in H2O2 levels in cholesterol-fed
rabbit retinas and decreased peroxidase activity. D. HO-1 levels were
increased in the retinas of cholesterol-fed rabbits as shown by
Western blotting. *p < 0.05;**p < 0.01; ***p < 0.001 vs control.

Figure 3 Cholesterol-enriched diet increased GFAP expression
in retina. A. Cholesterol-fed rabbit retinal sections showed an
increase in the expression of GFAP (Red). DAPI (blue) is a nuclear
counter stain. B. Western blot results also showed elevated GFAP
levels. ONL, INL, GCL are outer nuclear layer, inner nuclear layer and
ganglion cell layers respectively. ***p < 0.001 vs control. Bar =
20 μm.
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animals (Figure 5C). Propidium iodide was used as
nuclear counter stain. Yellow color is the merge of green
color which indicates fragmented DNA and red color
that indicates nucleus.

Cholesterol- enriched diet disturbed cholesterol
homeostasis in the retina
The extent to which cholesterol-enriched diet increases
the accumulation of cholesterol and major oxysterols
were determined in rabbit retinas (Table 1). Total cho-
lesterol levels were increased in cholesterol fed rabbit
retinas compared to control retina. The amount of cho-
lesterol in control retinas was 0.1024 ± 0.049 mg/g of
tissue, whereas in cholesterol-fed rabbit retina the con-
centration of cholesterol increased to 0.8427 ± 0.003
mg/g of tissue. Cholesterol is also eliminated through
enzymatic conversion to polar oxysterols that include
27-hydroxycholesterol, 24-hydroxycholesterol, and 22-
hydroxycholesterol by CYP27A1, CYP46A1, and
CYP11A1 respectively. All these enzymes were found to
be expressed in the retina [34]. Mass spectrometry ana-
lysis showed a marked increase in the levels of oxyster-
ols 27-hydroxycholesterol, 24-hydroxycholesterol, and
22-hydroxycholesterol in cholesterol-fed rabbit retinas

Figure 4 Cholesterol-enriched diet caused retinal morphological
changes. A. Confocal microscopy showed an increase in
immunoreactivity of vitronectin antibody (green) in the retinas of
rabbits fed with cholesterol-enriched diet compared to rabbits fed
with normal chow. B. Drusen like debris were detected under the
retinal pigment epithelium (arrow) of cholesterol-fed rabbits. GCL-
Ganglion Cell Layer; INL-Inner Nuclear Layer; ONL: Outer Nuclear Layer;
PR-Photoreceptors; RPE-Retinal Pigment Epithelium. Bar = 20 μm.

Figure 5 Cholesterol-enriched diet caused apoptotic cell death.
A. Western blot results showed a decrease in the levels of the anti-
apoptotic protein Bcl-2 and an increase in levels of the pro-
apoptotic protein Bax levels in the retinas of rabbits fed with
cholesterol-enriched diet compared to control rabbits. B. Levels of
the endoplasmic reticulum stress marker gadd153 were increased in
cholesterol-fed rabbits as shown by Western blotting. C. While no
TUNEL-positive cells were detected in retinas from control rabbits, a
large number of TUNEL-positive cells were observed in retinas of
cholesterol-fed rabbits. Propidium iodide (red) was used as a
counterstain for nuclei. Bar = 20 μm. *p < 0.05, ***p < 0.001 vs
control.

Table 1 Total cholesterol and oxysterol levels in control
(n = 3) and cholesterol-fed rabbit retina (n = 3)

Control retina Cholesterol-fed retina

Total cholesterol
mg/g tissue

0.1024 ± 0.028 0.8427 ± 0.002 ***

4b-hydroxycholesterol
ng/g tissue

2491 ± 236 9046 ± 1015**

7a-hydroxycholesterol
ng/g tissue

344.1 ± 49.51 14378 ± 1504 **

22-hydroxycholesterol
ng/g tissue

7.893 ± 1.59 105.6 ± 24.71 *

24-hydroxycholesterol
ng/g tissue

405.3 ± 173.9 1815.32 ± 313.5 *

25-hydroxycholesterol
ng/g tissue

24.39 ± 0.20 835.5 ± 29.77***

27-hydroxycholesterol
ng/g tissue

29.38 ± 8.4 697.2 ± 161.4 *

Values are expressed as mean ± SEM. * p < 0.05; ** p < 0.01; *** p < 0.001 vs
control.
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(Table 1). We also measured the other enzymatically-
generated oxysterols, 7a-hydroxycholesterol, 4b-hydro-
xycholesterol and 25-hydroxycholesterol, and found an
increase in their levels in retinas from cholesterol-fed
rabbits.
As we have previously shown that 27-hydroxycholes-

terol is toxic to RPE cells [30], we determined levels of
CYP27A1, the enzyme that converts cholesterol to 27-
hydroxycholesterol. CYP27A1 immunoreactivity was
dramatically increased in retinas from cholesterol-fed
rabbits compared to control rabbits (Figure 6A). Wes-
tern blotting also showed a significant increase in
CYP27A1 levels in retinas from cholesterol-fed rabbits
compared to those in retinas of control rabbits (Figure
6B). The cholesterol transporter ATP-binding cassette
sub-family A member 1 (ABCA-1) shuttles cholesterol
between various cells. Levels of ABCA-1 were dramati-
cally increased in retinas of cholesterol-fed rabbits in
comparison to levels in retinas of control rabbits (Fig-
ure 6C). All together, these results demonstrate accu-
mulation of cholesterol and increased conversion to
oxysterols in retinas as a result of cholesterol-enriched
diet.

Discussion
Strong evidence linking AD and retinal degeneration [12]
is the reason behind this study. Retina is an extension of
the brain, and has the potential to reflect AD brain
pathology. Extracellular Ab deposition, oxidative stress,
and inflammation are implicated in both AD and AMD
[4,5]. Ganglion cell death has been recently documented
in retinas of AD mouse models [35]. AMD is character-
ized by the abnormal, extracellular deposits of cellular
debris called drusen that are located between Bruch’s
membrane (BM) and the RPE. Drusen contain various
components including amyloid-b peptides [7,36].
Amyloid misfolding-inducing inflammation has been
suggested to mediate retinal neurodegeneration [37].
Cholesterol dyshomeostasis has been implicated in the
pathogenesis of AD [38] and high-fat diet rich in satu-
rated fatty acids and cholesterol is suggested to be asso-
ciated with AMD [17]. We determined here the extent to
which the cholesterol-fed rabbit model for AD also exhi-
bits retinal pathology relevant to AMD. We demonstrate
that cholesterol-enriched diet increased Ab levels and
oxidative stress, induces apoptotic cell death and mor-
phological changes, and alters cholesterol metabolism in
rabbit retinas.
Ab steady state levels are determined by the balance

between its production and clearance. Ab is generated
from APP and degraded by several enzymes. Initial clea-
vage of APP involves BACE-1 enzyme to yield Ab
(Ab40 and Ab42). Ab40 and Ab42 are then degraded by
various enzymes including IDE. We demonstrate here
that feeding rabbits a diet rich in cholesterol increased
Ab peptide levels as well as levels of BACE-1. These
results suggest that increased Ab levels in rabbit retinas
are derived from an increased production from APP by
BACE-1. It may also be possible that increased Ab
transport from the circulation to retinas contributes to
the elevated levels of Ab peptide in retinas. In AD
brains, while some studies showed an increase in IDE
[39-42], others have showed reduction of IDE in AD
[43,44]. In one of the studies, it was suggested that the
reduction in IDE activity is not the primary cause of Ab
accumulation but rather is a late stage phenomenon sec-
ondary to neurodegeneration [39]. We found here that
retinal IDE levels were increased in the cholesterol-fed
animals. The increase in IDE levels may have been a
mechanism for coping up with the Ab overload.
As Ab is a neurotoxic peptide and its accumulation in

the retina may promote oxidative damage and cell
death, we determined the extent to which accumulation
of Ab peptide is associated with increased ROS and
apoptotic cell death. We demonstrate that cholesterol-
enriched diet-induced Ab accumulation is associated
with increased oxidative stress. Proteins, carbohydrates,

Figure 6 Cholesterol-enriched diet disturbed cholesterol
homeostasis in the retina. A. Cholesterol-fed rabbit retinal
sections showed an increase in the expression of CYP27A1 (green).
DAPI (blue) is a nuclear counter stain. ONL, INL, GCL are outer
nuclear layer, inner nuclear layer and ganglion cell layers
respectively. B. Western blotting further confirmed an increase in
the expression of CYP27A1. C. Western blotting results showed that
ABCA-1 levels were increased in the retinas of cholesterol-fed
rabbits for facilitating excess cholesterol efflux. *p < 0.05, **p < 0.01
vs control. Bar = 20 μm.
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membrane lipids and nucleic acids are all vulnerable to
reactive oxygen species damage, and this damage is
believed to contribute to the pathogenesis of many dis-
eases. Oxidative injury to cells is associated with several
diseases, including AD [45] and AMD [46]. DCFH-DA
assay indicated that there is an increase in ROS in the
retinas of cholesterol-fed rabbits. Hydrogen peroxide,
which is also considered as reactive oxygen species, was
increased and peroxidase activity is decreased in choles-
terol-fed rabbit retinas. HO-1 is a sensor of oxidative
stress that degrades heme, leading to formation of bili-
verdin and carbon monoxide [47,48]. HO-1 has been
shown to be increased in RPE of AMD-affected macula
[49]. HO-1 induction is suggested to be an early event
in the pathogenesis of sporadic AD [50] and has been
demonstrated to be closely associated with neurofibril-
lary pathology in AD [51]. Neurons of the AD temporal
cortex and hippocampus has significantly more HO-1
immunoreactivity than corresponding tissues derived
from non-demented controls [52]. We have previously
shown that cholesterol-fed rabbits exhibit increased
levels of ROS and HO-1 in addition to increased Ab in
the brain [53]. Here we show that HO-1 levels are
increased in the retinas of cholesterol-fed rabbits.
Pathogenesis of many retinal and ocular diseases

involves apoptosis. Histopathological studies suggest that
the retinal pigment epithelium damage occurs first, fol-
lowed by death of photoreceptors [54], with rod photore-
ceptor cell loss preceding that of cone photoreceptor
cells [55,56]. Photoreceptors underwent apoptosis in 4 of
16 eyes with AMD [57]. It was shown that apoptosis is
the cause of photoreceptor cell death in three mouse
models of Retinitis pigmentosa [58]. It was also shown
that photic exposure triggers apoptosis of photoreceptor
cells [59]. Retinal ganglion cells also undergo apoptosis in
glaucoma [60,61]. As apoptosis may be involved in AMD
and other retinal diseases and cholesterol-enriched diet
has been shown to induce apoptosis in rabbit brains [53],
we determined the extent to which cholesterol induces
apoptotic cell death in retinas. The B-cell lymphoma-2
family of proteins includes both pro- and anti-apoptotic
members. Bcl-2 is the most prominent anti-apoptotic
member and is an important regulator of photoreceptor
cell death in retinal degenerations [62]. Bcl-2 has been
shown to decrease apoptosis by facilitating recovery of
mitochondrial DNA damage [63]. Our results show that
levels of the anti-apoptotic protein Bcl-2 were decreased
and levels of the pro-apoptotic protein Bax were
increased in retinas of cholesterol-fed rabbits. We also
show that cholesterol-enriched diet increased levels of
gadd153, a protein that induces cell death and upsets the
cellular redox state by depleting cellular glutathione and
exaggerating the production of ROS [64].

Development of drusen is one of the earliest clinical
features of AMD. Drusen are extracellular deposits of
lipids, proteins, glycoproteins, and cellular debris that
accumulate between collagenous layer of Bruch’s mem-
brane and basal lamina of the retinal pigment epithelium.
Recent studies found many drusen constituents including
cholesterol, apolipoproteins, and complement compo-
nents [24,65]. In our study, we detected debris-like mate-
rial between RPE and choroid capillaries in retinas of
cholesterol-fed rabbits. The debris-like material known
as drusen is regarded as a hallmark of AMD. In addition,
GFAP is strongly upregulated in glial cells in response to
neuronal damage and is best known marker for gliosis.
Retinal macroglial cells (astrocytes and Müller cells) have
been shown to have an active role in normal retinal func-
tion [66] as well as in pathology [67]. Upregulation of
GFAP expression, an indicator of reactive gliosis, has
been demonstrated in response to various retinal pathol-
ogies including mechanical injury [68], retinal detach-
ment [69], diabetic retinopathy [70], glaucoma [71],
retinal ischemia [72] and photoreceptor degeneration
[73]. Increased GFAP expression in macroglia has also
been described in retinas with AMD [74-76]. We also
found that retinas of cholesterol-fed rabbits exhibit astro-
gliosis as determined with GFAP immunostaining. Vitro-
nectin has regulatory roles in inflammation and
phagocytosis [77]. Increased vitronectin deposition in
retina is suggested to participate in the pathogenesis of
AMD [32]. Our results also show a marked increase in
vitronectin immunoreactivity in retinas from cholesterol-
fed rabbits.
All together, our data demonstrate that cholesterol-

enriched diets cause structural and morphological
changes relevant to AMD. However, the mechanisms by
which dietary cholesterol cause these changes in retinas
are not well known. Recent genome wide association stu-
dies implicated cholesterol metabolism involvement in
AMD [78,79]. Cholesterol is constantly taken up by
retina via LDL receptors from the circulation in addition
to endogenous cholesterol synthesis. Here we found out
that cholesterol-enriched diet caused an accumulation of
cholesterol in the retina. As excess cholesterol in cells is
detrimental, various mechanisms are necessary for cho-
lesterol efflux from cells. These mechanisms include pas-
sive diffusion, conversion to oxysterols, and reverse
cholesterol transport. ABCA-1 has been shown to play a
role in the transport of cholesterol, and was detected in
the retina of various organisms [80,81]. ABCA-1 levels
are increased in the cholesterol-fed rabbits, implying an
increase in the cholesterol content in cells and efflux
through ABCA-1. Cholesterol can be oxidized by enzy-
matic and non-enzymatic pathways. One of the most
important enzymatically generated side-chain oxysterol is
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27-hydroxycholesterol. This oxysterol is formed from
cholesterol by cytochrome P450’s CYP27A1 [82]. We
found that CYP27A1 expression was increased in retinas
of cholesterol-fed rabbits as shown by laser scanning con-
focal microscopy and Western blotting. We further show
an increase in 27-hydroxycholesterol and other oxysterols
concentrations in retinas by mass spectrometry. We
found that 27-hydroxycholesterol, 22- hydroxycholesterol
and 24- hydroxycholesterol levels were increased in cho-
lesterol-fed rabbit retinas providing evidence that elimi-
nation of excess cholesterol to oxysterols takes place in
the retina. In contrast to our results in rabbit, a recent
study could not detect 27-OHC in the bovine and human
retinas, but found that its oxidation product, 5-choleste-
noic acid is the most abundant oxysterol [83]. We did
not measure 5-cholestenoic acid in our study. We also
measured other enzymatically generated oxysterols
including 7a-hydroxycholesterol, 4b-hydroxycholesterol
and 25-hydroxycholesterol catalyzed by CYP7A1,
CYP3A4 and cholesterol 25-hydroxylase respectively.
These enzymes oxidize cholesterol for various purposes
including cholesterol elimination. Even though none of
these enzymes were reported to be expressed in the
retina, their oxysterol products were found in retinas,
most probably coming from blood circulation as retina
has access to blood borne lipids [84]. These finding sug-
gest an increase in cholesterol in retinas as well as an
increase in cholesterol oxidizing enzyme metabolites.
Numerous studies suggested cytotoxic effects of oxyster-
ols are associated with human diseases including AD and
AMD (see for review [85]). Increased oxysterol concen-
trations subsequently to increased cholesterol levels may
contribute to the generation of AMD-like pathological
hallmarks.

Conclusions
AMD and AD share many pathological features including
accumulation of Ab, increased oxidative stress, and apop-
totic cell death. The causes of AMD and AD are not well
known but dietary and environmental factors may contri-
bute to the pathogenesis of these diseases. We demon-
strate here that cholesterol-enriched diet induces changes
that are relevant to AMD. We further suggest that
increased conversion of cholesterol to oxysterols might be
a potential mechanism linking high cholesterol to AMD
pathology.
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