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Geppetto is an open-source platform that provides generic middleware

infrastructure for building both online and desktop tools for visualizing

neuroscience models and data and managing simulations. Geppetto under-

pins a number of neuroscience applications, including Open Source Brain

(OSB), Virtual Fly Brain (VFB), NEURON-UI and NetPyNE-UI. OSB is

used by researchers to create and visualize computational neuroscience

models described in NeuroML and simulate them through the browser.

VFB is the reference hub for Drosophila melanogaster neural anatomy and

imaging data including neuropil, segmented neurons, microscopy stacks

and gene expression pattern data. Geppetto is also being used to build a

new user interface for NEURON, a widely used neuronal simulation

environment, and for NetPyNE, a Python package for network modelling

using NEURON. Geppetto defines domain agnostic abstractions used by

all these applications to represent their models and data and offers a set

of modules and components to integrate, visualize and control simulations

in a highly accessible way. The platform comprises a backend which can

connect to external data sources, model repositories and simulators together

with a highly customizable frontend.

This article is part of a discussion meeting issue ‘Connectome to

behaviour: modelling C. elegans at cellular resolution’.
1. Introduction
Investigations of fundamental questions in neuroscience, such as the mechanis-

tic basis of behaviour and cognition, generate large volumes of experimental

data as well as complex computational models spanning different levels of bio-

logical detail. These push the neuroscience applications available to researchers

to their limits. Visualizing and managing the heterogeneity of neuroscience

data and models in a way that is accessible and usable for both experimentalists

and modellers is crucial for driving the field forward. For example, it has been

challenging to visualize the data and models required to link the dynamics

of the nervous system of Caenorhabditis elegans to its behaviour [1], or to under-

stand how the sleep regulatory circuit in Drosophila melanogaster is affected by

the surrounding environment [2].
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In neuroscience, visualization and simulation tools exist

for many of the levels of detail involved [3–7], but it is

often far from trivial to use them in concert [8]. One popular

approach to solving this issue involves using general purpose

programming languages such as Python [9–11]. This

approach enables the rapid development of toolchains to

solve a specific visualization and integration problem,

gluing together multiple libraries and tools [12]. The problem

with this approach is that these toolchains are usually devel-

oped for a specific use case, e.g. processing data from a

specific source. Over time, as the application is modified to

solve different problems (e.g. deal with a new model or

with a new type of visualization), the specificity becomes

an obstacle and the codebase becomes a series of ad hoc

extensions that are difficult to maintain [13]. An even greater

problem comes from the fact that these tools, and even more

so their combination, are rather inaccessible to many

researchers. Such technological barriers have had a remark-

able effect in the neuroscience field as a whole, resulting in

modellers and experimentalists working as two different

communities separated by a technological divide. This has

resulted in computational models that are poorly validated

and has left model-generated hypotheses unexplored.

Data and models come in many different types, which are

subject to change as the field evolves. Handling such hetero-

geneities constitutes a significant challenge for neuroscience

applications, given that not all of the formats that will be

required to answer novel scientific questions will be known

at design time. Standard neuroscience formats that have

emerged to date include NeuroML [14,15] for computational

neuroscience and Neurodata Without Borders [16] for exper-

imental data. Dealing with an extensible set of formats in a

more generic yet customizable way requires decoupling the

software infrastructure from these domain-specific represen-

tations. Designing such system is not trivial considering

that both experimental and computational data and models

each come with their own set of challenges. The sheer size

of experimental datasets, particularly those arising from

connectomics and imaging, require specific visualization

capabilities and optimizations when handling them. Compu-

tational models need to be instantiated within an application

to let users interact with their state variables and parameters.

Different numerical solvers may be required for these models

to be simulated, but the user will not necessarily want to be

exposed to the complexity of the software solution and low-

level libraries involved [17]. In addition, as the biological

detail and scale of simulations increase, transparent access

to high-performance computing infrastructures [18] will be

required. Data and models are also likely to be stored in repo-

sitories and databases using disparate technologies, which

poses yet another challenge for applications.

To address the challenges posed by heterogeneous data

and models, as well as bridging the divide between users

with different fields of expertise, we have developed Geppetto,

an open source, modular middleware platform that can be

used to build different neuroscience applications. In order

to process diverse types of data and models in a reusable

way, the software infrastructure is decoupled from domain

data and model specification. This decoupling is achieved

through the Geppetto Model Abstraction, designed to represent

the underlying experimental and computational data and

models in a standard way, via reusable modules. Geppetto

is also optimized for coping with large amounts of data,
through automatic compression and loading on demand,

and is able to run simulations on remote supercomputers.

To improve accessibility, Geppetto facilitates building novel

interfaces by hiding the underlying technologies and by pro-

viding prebuilt user-friendly user interface (UI) components.

By abstracting and integrating experimental data, compu-

tational models and simulators, it is hoped that Geppetto

will enable the building of neuroscience applications that

can bring together theorists, modellers and experimentalists

to formulate and answer increasingly challenging scientific

questions related to brain function.
2. Methods
Geppetto is a modular, extensible open-source platform based on

a client–server architecture (figure 1) that provides a framework

for building neuroscience applications for visualization of data,

models and for controlling simulations. The Geppetto backend

architecture defines a set of abstract services for which specific

implementations can be provided for different domains. The

Geppetto frontend provides visualization capabilities that

encompass a wide range of what is typically needed for neuro-

science data visualization, be it experimental data or data

resulting from simulations. The Geppetto frontend is based on

a typical modern web stack based on JavaScript and React [19],

making use of npm [20] to manage dependencies and webpack

[21] to package the code into a browser-ready application.

The Geppetto Model Abstraction (figure 1, orange boxes)

enables the decoupling of domain-specific modelling formats

from the visualization components, by providing a meta-model

that can be used to represent them in a declarative way. To this

end, it defines a type system based on core concepts from

Object-Oriented Programming: Variables, Types and Values. By

supporting Type inheritance (any Geppetto Type can extend

another) and composition (Geppetto’s CompositeType can contain

Variables of other Types), the Geppetto Model Abstraction makes

it possible to represent hierarchical structures of data and

models. Geppetto uses the eclipse modelling framework (EMF)

[22] to specify its models’ abstractions. The EMF schema is

then used to programmatically generate an API for the Geppetto
Model Abstraction for each one of the supported (user domain)

languages [23,24]. Developers can build their own custom

Types using this API, and use them in combination with the

ones provided in the Geppetto Common Library (e.g. State Variable,

Parameter, etc.). Any model created using the Geppetto Model
Abstraction takes the name of a Geppetto Model. Once a domain-

specific model is described in terms of the Geppetto Model
Abstraction (e.g. by defining a custom Type), the entire platform

becomes capable of treating its constituent elements appropri-

ately. It is important to note that in Geppetto, Types are defined

using a domain agnostic meta-model: while an application

could, for example, create a Library of Types that represent compu-

tational models, another application might build one whose Types
represent sets of microscopy images. Inside a Geppetto Model,
developers can also specify the Data Source services used to

fetch data from remote repositories, along with the Queries avail-

able to interrogate them. The Geppetto Model Abstraction also

defines ImportTypes which can hold references to data and

models existing on the backend that have not yet been loaded.

Sending ImportTypes to the client, that will be fully loaded upon

a request triggered by the user’s actions, is what enables Geppetto

to load data on demand (i.e. lazy loading).

The entry point for a Geppetto application is the Geppetto
Project. Each Geppetto Project holds a reference to a single Geppetto
Model and in addition stores the current state of the application

(e.g. which components are open along with their content and
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position). Every Geppetto application can make use of one or

multiple Geppetto Projects. For example, in Open Source Brain

(OSB) (described below in the Results section), each compu-

tational neuroscience model (e.g. cell, network) loaded in from

a NeuroML file is mapped to a Geppetto Model and contained

within a Geppetto Project, through which the user will interact

with the model.

The Geppetto backend has a modular architecture that

defines multiple service abstractions (figure 1, dashed lines)

designed to perform different operations. The specific implemen-

tations of these services live in separate modules that can be

optionally used by the different applications. For instance,

Virtual Fly Brain (VFB) uses the OBJ and SWC [25] Model
Interpreters, while OSB uses the one for NeuroML (figures 2–4).

New modules that implement these service abstractions can be

contributed to expand Geppetto’s capabilities. The Geppetto

backend is responsible for loading in memory Geppetto Projects
and for delegating the user actions that require server-side oper-

ations to the appropriate services, as specified in the Geppetto
Model. In this regard, the main role of the Geppetto backend is

to orchestrate the interactions of all services available in a particu-

lar application. A Geppetto backend implementation exists for

both Java (the reference, fully featured, one) and Python. Different

application servers can be used to host the backend including

Virgo [27] for Java and Django [28] or Jupyter [29] for Python.

The needs of the specific application will determine the most suit-

able backend to use, with the Java one currently targeting robust

client–server applications aimed at a multi-user deployment

(e.g. OSB, VFB) and the Python one also useful for lightweight

local deployments aimed at a single user (e.g. NEURON-UI,

NetPyNE-UI).

A central abstract service defined in the Geppetto backend is

the Model Interpreter. Specific Model Interpreter implementations
are used to let Geppetto essentially ‘understand’ a given

format representing concepts in the user’s original domain—i.e.

they allow building instances of the Geppetto Model Abstraction
from descriptions in the users’ domain language. Model
Interpreters for popular neuroscience formats such as LEMS

[15], NeuroML [14] and NetPyNE [6] are already available.

The abstract Simulator service is designed to wrap and control

simulators external to Geppetto. The Geppetto backend orches-

trates the interactions between Model Interpreter and Simulator
services, so that models can be loaded, converted and simulated

as result of user operations. Implementations of the Simulator ser-

vice can wrap simulators as external processes or as remote ones

running on external servers (e.g. the Neuroscience Gateway

supercomputing facilities [30]). A number of computational

neuroscience simulators such as NEURON [3] and NetPyNE

[6] have already been wrapped and are available for reuse.

Following this architecture, new simulators can be integrated

into Geppetto with relative ease.

Geppetto Data Source services are similarly implemented

extending the provided abstract Data Sources, and allow

Geppetto to pull in data by querying external systems. Multiple

Data Sources are configurable in the Geppetto Model, making it

possible to use Geppetto as a data integration platform. Data

fetched from external Data Sources can be post-processed to

create a representation of the data once again compatible with

the Geppetto Model Abstraction. VFB [31], a hub for D. melanogaster
nervous system data built using Geppetto (discussed in detail in

the Results section), uses two different implementations of the

Data Source service, one for Neo4j [32] and one for AberOWL

[33], to fetch data from their pre-existing data pipeline. Other

Data Source services for other types of remote servers could

be implemented following these existing examples and the

same architecture.
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For scenarios where user authentication is required and user

data need to be persisted, the Data Manager service can be used

by developers to configure the backend to enable authentication

and database persistence of the Geppetto Projects and simulation

results.

The Geppetto frontend is responsible for presenting the

models and data to the user and for allowing them to interact

with the application and its workflows. The Geppetto frontend

offers a set of controls and components (figure 1) to build the

UI of Geppetto-based applications. While controls (e.g. buttons,

dropdowns, dialogs, etc.) are generic and data agnostic building

blocks, components are more complex constructs that can be

used to display data (e.g. three dimensions (3D), time series,

connectivity, MRI, big images, stack, etc.) or to enable specific

workflows (e.g. Control Panel, Search, Query, etc.). Components

are built using various lower-level JavaScript open-source

libraries (e.g. [34–37]) and are designed to integrate with the

Geppetto Model using a specific API. Any component can be

optionally created inside a draggable dialogue window to

facilitate data presentation. Components inside these windows

are referred to in Geppetto as Widgets.

Geppetto Extensions let developers decide what controls and

components they need for their specific application, control the

layout and look and feel and also create additional domain-

specific custom components (Extensions are represented by the

black boxes in figure 1). Geppetto only loads the UI components

specified in the Geppetto Extension of a given application.

A default Extension is provided as an example and is accessible

via https://live.geppetto.org. By loading the components asyn-

chronously only once the interface needs them, Geppetto

optimizes the loading times of the application at start-up.

Upon receiving a Geppetto Model from the backend, when

loading a given Geppetto Project, the frontend will instantiate it.

Instantiated Geppetto Types are mapped to JavaScript objects

(e.g. a population of one cell Type would become a JavaScript

array containing Instances of that Type) and augmented with

specific Capabilities which confer on them the ability to be

accessed via a specific API. So, for instance, if a Model Interpreter
in the backend defined a custom Type including a State Variable,
upon instantiation in the frontend, this would become a Java-

Script object with an injected StateVariableCapability containing

methods specific for state variables, e.g. getUnit(), getInitial-
Value(), etc. This has the advantage of giving developers the

ability to build UI components that can interact with the Geppetto
Model in an object-oriented way, and allow all the user operations

to be fully scriptable, reproducible and testable (e.g. a UI button

designed to plot a state variable would call Plot.plotData(myState-
Variable.getTimeSeries()). The same principles apply when a

custom Type defining a cell morphology (Values like Sphere and

Cylinder are available to this end in the Geppetto Model Abstrac-
tion) is sent to the frontend and passed to the 3D Canvas
component using its API for display. Geppetto has the ability

to either visualize a single instance of a Type (a cell morphology

in this example) or an entire population based on it, depending

on whether the Model Interpreter responsible for the creation of

the model instantiated the Type only once or multiple times

through an ArrayType. In some cases, as with the Stack Viewer
which connects directly to an IIP3D Server [38], it might be

preferable for the UI components to read directly a specific

format without requiring a mapping to the Geppetto Model,
which is also permitted by the architecture.
3. Results
In this section, we present four examples of neuroscience

applications that have been built using Geppetto. Thanks to

Geppetto’s open-source model, many of the features and

components described in the Methods section have evolved

in concert with the development of these applications in

order to satisfy their requirements. Each of the applications

have their own Extension, where their custom functionality

is specified, and a specific deployment configuration. While

the first two, OSB and VFB, use the Java backend and are

deployed on public web servers where multiple users can

https://live.geppetto.org
https://live.geppetto.org


(a)

(b)

Figure 3. (a) Screenshot of a reduced thalamocortical network model [26] on OSB showing analysis and simulation widgets provided by Geppetto and the Geppetto
frontend OSB extension. Centre of screen shows 3D rendering of the 12 populations of pyramidal cells and interneurons. Widgets shown are (clockwise from top-left):
plot showing recorded membrane potentials from three cells of a previously run experiment; run dialogue for selecting simulators and running experiments; widget
showing ion channels and their densities for a single-cell model; chord diagram showing connectivity between populations. (b) Visualization of the neuronal network
model of C. elegans being developed by the OpenWorm project. Centre of screen shows 302 neurons (red: interneurons; pink: sensory; purple: motor neurons) and
four quadrants of body wall muscles (green) located away from the body for clarity. Connectivity widget on lower right shows chemical synapses between individual
neurons/muscles. Inset on lower left illustrates interactive exploration of network; selecting a single motor neuron (RMED in head) highlights the neurons connected
to it, along with five muscles in two of the ventral quadrants.
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access them simultaneously, the last two, NEURON-UI and

NetPyNE-UI, use a Python backend and are designed to

be local deployments aimed at a single user, similar to
traditional client applications. Geppetto is currently being

used to build a total of seven neuroscience applications

[31,39–44].
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4. Open Source Brain
OSB (http://www.opensourcebrain.org) is a platform for

visualizing, simulating, disseminating and collaboratively

developing standardized, biophysically detailed models of

neurons and circuits [45]. OSB contains a range of published

neuronal and circuit models from multiple brain regions

including the neocortex, cerebellum and hippocampus as well

as invertebrate neuron models. Model components (e.g. point

neuron or morphologically detailed cell models including

membrane conductances, synapses, 3D network structures)

are contained in user-created projects, each linked to a public

code sharing repository (normally hosted on GitHub) that

holds the model source code, specified in NeuroML, a widely

used model description format for computational neuroscience

[14,15]. OSB provides an integrated browser-based workspace

that captures many of the infrastructural demands of projects

in computational neuroscience, and allows users to interact

with the underlying neuronal models through a graphical

interface, without requiring programming knowledge or

installing and configuring simulators.

Figure 2 shows how Geppetto is configured for OSB.

Many aspects of Geppetto’s functionality have been devel-

oped to provide the core functionality for OSB. The

NeuroML Model Interpreter and the LEMS Conversion services

were contributed to Geppetto to deal with the NeuroML and

LEMS formats, reusing previously developed libraries [15].

The NeuroML Model Interpreter allows standardized model

descriptions to be loaded into the OSB Geppetto deployment,

providing automatic 3D visualization of morphologies and

internal structure of models, such as state variables and

parameters (figure 5a) and connectivity within the network

(figure 5b). Structured metadata in the NeuroML files can

be extracted, as well as the underlying mathematical

expressions of dynamical components in the model (e.g.
kinetics of membrane conductances). These data are made

available in an accessible format to the user through a

custom Extension to the Geppetto frontend.

This OSB custom extension to Geppetto adds shortcuts and

menu options for interacting with models, running simulations

and visualizing their results. A summary of information

extracted from the NeuroML model can be accessed through

a ‘Model Description’ widget, which includes links to the

source file and original data sources, giving model provenance.

This widget also provides easy access to neuronal model-

specific functionality, such as plotting rates of activation and

inactivation for ion channels and overlaying locations and

densities of active conductances on neuronal morphologies

(bottom right, figure 5a). A shortcut to the Connectivity Widget
allows the user to see synaptic connectivity of models at a

glance: as a chord diagram (bottom left, figure 5a), connectivity

matrix with weights (bottom right, figure 5b), force-directed

graph or hive plot. Key parameters present on any given

model are thus automatically exposed in a format familiar

to neuroscientists.

The simulator agnostic NeuroML format can be converted

to simulator-specific formats such as NEURON [3] using a

suite of existing converters that implement the Geppetto

conversion service interface (figure 2). Geppetto’s external

simulator abstraction allows OSB to transparently interface

with these converters and their associated simulators, allow-

ing models to be simulated through a simple interface.

Geppetto can either dispatch simulator jobs to the Neuro-

science Gateway [30], a high-performance computing

facility or run them on OSB servers. The extension provides

assistance for simulation workflows; basic protocols can be

defined that create batched experiments with a given range

of parameters or the user can record all membrane potentials

with a single click. Upon completion, the data generated are

http://www.opensourcebrain.org
http://www.opensourcebrain.org


(a)

(b)

Figure 5. (a) VFB main view shows a reference template for the D. melanogaster from Janelia Research Campus using the 3D Canvas. Superposed on the template
are various gene expression patterns visualized as point clouds, reconstructed neurons and segmented neuropil regions. At the bottom right corner, the Stack Viewer
shows a frontal slice through the superposed confocal microscopy images. The Stack Widget is fully synchronized with the 3D Canvas and a moving 3D plane
indicates the specific slice currently displayed. On the top of the Stack Widget, a Geppetto viewer is used to display the ontological information associated
with the current selection. (b) Geppetto’s Query component is used to display the results of queries that can be executed from the UI, in this case, the UI
shows all the neurons with synaptic terminals in the saddle. By clicking on the thumbnails, the selected neuron is loaded on demand and visualized in the
3D Canvas, the Stack Viewer and the textual definition.
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sent to the browser for visualization using a Geppetto’s plot-

ting widget (top left, figure 5a), or recorded membrane

potentials or calcium concentrations can be visualized by

pseudocolouring the morphologies to show changes over

the course of a simulation, and the simulation can be

replayed at various speeds. Alternatively, the raw results

can be downloaded or automatically uploaded to Dropbox

via Geppetto’s dropbox interface functionality. Experiments

run asynchronously on remote servers, so users do not

need to keep their browser open.
The configurable functionality of Geppetto middleware

enables OSB to make models accessible, opening them up

to critical scientific scrutiny by a wide range of neuroscien-

tists. This supports the process of ongoing model

evolution, which is aided by OSB’s deep link to GitHub

[46], preventing model development from becoming

arrested at the point of publication. OSB therefore provides

a resource of robust models that can function as best

practice examples for model sharing for the neuroscience

community.



NetPyNE-UI
extension

Geppetto frontend

3D
canvas

MRI
viewer

UI controls Geppetto Model Abstraction

Geppetto Model Abstraction

abstract model
interpreter

NetPyNE model
interpreter

AberOWL
data source

Neo4j
data source

abstract
data source

Geppetto communication protocol (Websocket + REST)

stack
viewer

Geppetto backend

control
panel

search
plotting
widget

abstract
simulator

NEURON
simulator

NetPyNE
simulator

MySQL data
manager

NeuroML model
interpreter

abstract
data manager

abstract
conversion service

connectivity
widget

big image
viewer

Figure 6. Geppetto NetPyNE-UI configuration. Graphical representation of the components of Geppetto that are used on the NetPyNE-UI application (red). The ones
not used are coloured in grey.
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In addition to this research aspect, OSB also leverages

Geppetto’s tutorial component to provide interactive compu-

tational neuroscience tutorials aimed at students. These

tutorials allow users to run virtual experiments and protocols

through an easy-to-use web interface, allowing basic concepts

in neurophysiology and computational neuroscience to be

taught without installing simulators or writing code.
5. Virtual Fly Brain
VFB (http://virtualflybrain.org) is a hub for D. melanogaster
neuroscience research which was born from the need to

make the newly standardized fly neuroanatomy available

to the public [47–49]. Along with extensive curation of the

literature in collaboration with FlyBase [50], VFB v1 allowed

users to explore labelled confocal immunofluorescent slices of

the adult fly brain across the Internet. The user could step

through the brain and identify anatomy by hovering over

it. Later this expanded to include expression, transgene and

single neuron image data published by multiple laboratories

that was aligned to the same template brain enabling any of

the 40 000 images to be overlayed. While most researchers

were used to viewing slices through the brain, with more

single neurons appearing as tiny points in cross-section, inter-

preting the morphology was increasingly difficult without a

3D representation.

VFB v2 was designed to provide access to all the complex

queries and data an expert might require within an interface a

novice can easily navigate. Geppetto’s existing 3D browser

infrastructure atop a flexible modelling framework was

used to enable VFB to run complex queries across multiple

backend service APIs while maintaining an easy-to-use

UI. The Geppetto Model has been used to provide abstraction

of the specifics of third-party API configuration, query
construction and representation into a single simple

human-readable file.

Display of the original immunofluorescent confocal gene

expression data was implemented in Geppetto as point

cloud renderings, while the OBJ Model Interpreter was reused

to display anatomy regions as surface renderings (figure 5a).

A Model Interpreter for the SWC format [25] was added to

display segmented reconstructions of neuronal morphologies.

A Stack Viewer was contributed to display 2D confocal

microscopy data and synchronized with the pre-existing 3D

Canvas component. Geppetto’s ability to load data on

demand and to optimize the visualization of neurons as

tubes or traced lines was essential for VFB to efficiently display

larger amounts of imaging data on the screen. The ability to

query third-party RESTful APIs through the Data Source
services allowed VFB to fetch remote data running complex

queries (figure 5b) involving multiple configurable Data

Sources (figure 1). VFB currently pulls data via an ontology

reasoner (OWL-ELK [33]) as well as a graph database (Neo4j

[32]). Geppetto’s Control Panel and Search components were

reused and customized within VFB’s Geppetto Extension to

show custom fields and to provide autocompletion search

results utilizing a (SOLR [51]) indexing server.
6. NEURON-UI and NetPyNE-UI
NEURON is a widely used simulator in the neural multi-scale

modelling domain, allowing models to be built that link

reaction–diffusion dynamics at the molecular level, to neur-

onal electrophysiology, up to the large-scale network level

[3,6,52,53]. It has thousands of users, a model database [54]

with over 600 models, and over 1900 NEURON-based publi-

cations. NEURON is being used by major brain research

initiatives such as the Human Brain Project and the Allen

http://virtualflybrain.org
http://virtualflybrain.org
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Institute [18,55]. NEURON includes a native graphical UI for

model construction and control, which while fully functional

has limited usability and graphical capabilities and is based

on deprecated libraries (Interviews) originally developed in

the 1980s.

NetPyNE [56] is a high-level Python interface to

NEURON that facilitates the development, simulation and

analysis of biologically detailed neuronal networks. It pro-

vides a unique high-level declarative language designed to

facilitate the definition of data-driven multi-scale models

(e.g. a concise set of connectivity rules versus millions of

explicit cell-to-cell connections). The user can then easily gen-

erate NEURON network instances from these specifications,

run efficient simulations (including on high-performance

parallel computing resources) and exploit the wide array of

built-in analysis functions. Its standardized format—compati-

ble with NeuroML—makes it easier to understand, reproduce

and reuse models. NetPyNE is being used to develop models

of different brain regions—e.g. thalamus, cortex and hippo-

campus—and phenomena—e.g. neural coding and brain

disorders [6,57].

Geppetto has been used to build UIs for both NEURON

and NetPyNE. The two applications, designed to be installed

and used locally by a single user, have in common an archi-

tecture based on the Geppetto interactive Python backend.

This backend is implemented as a Jupyter Notebook [29]

extension which provides direct communication with the

Python kernel. By defining a set of component extensions,

Geppetto’s interactive Python backend makes it possible to

synchronize the data model underlying the UI with a

custom Python model. This functionality is at the heart of

both NEURON-UI and NetPyNE-UI and means any change

made to the Python kernel is immediately reflected in the

UI and vice versa.

Although NEURON-UI and NetPyNE-UI share the same

architecture (figure 4 gives an overview of the Geppetto com-

ponents used in NetPyNE-UI), they differ in certain aspects. In

NEURON-UI, the graphical interface is created using a custom

Python API meant to mimic NEURON’s Interviews-based

API. The panels, buttons and text boxes in the UI are therefore

created from Python and mapped to Geppetto UI components

(figure 7a). These components are then connected to the

internal Geppetto API to visualize the cells and the networks,

run the simulations and plot the results. The idea behind this

approach was to retain backward compatibility with the

numerous existing NEURON interfaces built with Interviews

for various models. Our future aim is to fully map the

NEURON API to our NEURON-UI, therefore providing a

comprehensive alternative to the traditional UI.

By contrast, in NetPyNE-UI, the UI is defined entirely in

JavaScript inside its Geppetto extension. This offers a flexible

and intuitive way to create advanced layouts while still

enabling each of the elements of the interface to be synchro-

nized with the Python model. The UI splits the workflows

in three tabs: network definition, network exploration and

network simulation and analysis (figure 7b). From the first

tab, it is possible to define—or import via Python—the

high-level network parameters and rules that will be used

for its generation. In the second and third tabs, Geppetto’s

3D Canvas is used to visualize the instantiated network.

The third tab lets the user simulate the instantiated model

(this tab is selected in figure 7b). Geppetto allows

NetPyNE-UI also to display on the browser a number of
plots that are defined in NetPyNE using matplotlib for

network analysis and simulation. Both NEURON-UI and

NetPyNE-UI can be installed via pip [58] or used inside

provided Docker images.

The new Geppetto-based UIs will make NEURON and

NetPyNE accessible to a wider range of researchers and stu-

dents, including those with limited programming experience.

This will enable experimentalists to better collaborate with

modellers, or to directly reproduce and explore their own

experiments via computational simulations.
7. Discussion
We have developed Geppetto, an open-source middleware

platform for building accessible neuroscience applications.

Geppetto facilitates the development of complex applications

by providing a well-tested, reusable set of building blocks to

integrate diverse neuroscience data, models and simulators.

Geppetto provides a modular frontend, where multiple cus-

tomizable UI components and Widgets make it possible to

visualize and analyse models and data, as well as a backend

capable of connecting to multiple data sources and lower-

level, domain-specific descriptions and simulators. This was

made possible by designing the Geppetto Model Abstraction
that can be used to represent a variety of neuroscience

domain models, linked to a modular web-based architecture

engineered using various open-source libraries. Geppetto has

been used as the basis of a number of online and desktop

applications in neuroscience: OSB, VFB, NEURON-UI and

NetPyNE-UI described here, as well as Patient H.M. [39],

WormSim [41] and SciDash [44].

Neuroscience applications are typically developed inde-

pendently, to address a specific requirement. This leads to

considerable redundancy with the same functionality being

redesigned and implemented over and over again [59–65].

This approach is only justifiable when the shared set of fea-

tures is negligible. In this paper, we have shown that even

for applications whose requirements were specified indepen-

dently and had minimal overlap, there can be a significant

degree of shared infrastructure. Geppetto proposes an

alternative approach by exploiting this fact, allowing neuro-

science applications to be built from reusable modules—as

illustrated by the overlapping blocks in figures 2–4. This

strategy fits naturally into the open-source model—

components and modules are more likely to be reusable

compared to monoliths—making Geppetto a flexible and

extensible solution for multiple applications in neuroscience.

As middleware that factors out commonalities between

different domains, Geppetto’s modular structure enables a

high level of reuse, allowing developers to skip to writing

only code specific to their neuroscience application resulting

in a considerable saving of time. As with all software

platforms, Geppetto has its own learning curve required

for developers to understand its architecture and become

familiar with its components. While at first this initial invest-

ment might be seen as a complication compared to the

apparent ease of starting from a blank slate, developers

associated with the applications described above, with no

previous experience on Geppetto, have found it only takes

from one to four weeks1 to become productive. This time

investment is outweighed by the subsequent savings made

in avoiding common pitfalls, replicating solutions to



(a)

(b)

Figure 7. (a) Screenshot of NEURON-UI while in edit mode, a simplified cell builder (bottom left) lets the user edit any selected section (in yellow) while the Run
control panel (right) is used to control the simulation. (b) NetPyNE-UI showing the result of a simulation of a large-scale M1 microcircuit model with widgets
showing a raster plot (top left), individual cell membrane potentials (bottom left), population spiking statistics (middle) and the power spectral densities for
two populations (right).
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common problems and rewriting entire software components

and workflows. There is also a significant advantage in inter-

acting with the active community of Geppetto developers,

who can assist with any queries. The net time saving com-

pared to an approach that starts from scratch is difficult to

estimate but is likely to range from six months to five

years2 depending on the targeted scope—the more the

features required that overlap with Geppetto’s the bigger

the savings—and on the size and experience of the team of

developers involved. Moreover, extensive sharing of modules

between applications results in them being thoroughly tested
[66], while having a shared infrastructure that undergoes

regular release cycles ensures maintenance is less burden-

some for each specific application. Furthermore, the

distributed nature of the Geppetto code base and the fact

that updates are made independently of any specific project

ultimately increases the longevity of any application built

with this platform.

The diversity of applications that have been built so far

with Geppetto illustrates the flexibility of its model abstrac-

tion capabilities, which can encompass different domains,

data and scientific modelling formalisms. Also, as the



Figure 8. Prototype of the integration between a nervous system model (top-left widget) and a fluid mechanics – based simulation of a worm body (background 3D
Canvas) within Geppetto, currently under development. The mechanical model of the body of the worm, which includes musculature, is shown immersed in a
simulated fluid environment. Both worm body and fluid are made of particles. Different colours on the worm body highlight different groups of particles
(e.g. elastic particles for each of the worm muscles, liquid particles for the surrounding fluid, etc.). All around the fluid and the worm is the experiment bounding
box, made of an impermeable layer of particles. The calcium concentrations in the muscles (four rows separated from the main body cells in top-left widget)
simulated by the model are translated into activation signals for the muscles cells in Sibernetic ultimately driving the locomotion of the worm.
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platform keeps evolving, new solutions added for a specific

application become immediately available to all the other

applications. Examples of this include many of the features

contributed by OSB being reused by multiple applications

(e.g. Control Panel, Search Bar or the Experiments table); the

SWC [25] Model Interpreter contributed by VFB, which is

reused in OSB; and the 3D Canvas, originally built for the

first deployment of the platform and reused by every other

application to date. Geppetto combines a model-driven

design with a service-oriented architecture to enable reuse

across multiple applications. Its modularity, a centrepiece of

both the backend and the frontend, is obtained by engineer-

ing together a unique set of technologies [19,21,22,67,68] to

provide novel functionality. By allowing different neuro-

science applications to use the same technologies, Geppetto

provides well-tested solutions that bring closer together

otherwise disjoint research groups—both computational

and experimental, thereby fostering collaboration.

The Geppetto applications described in the Results

section are in active development. Some of the planned and

ongoing projects include: extending OSB to bring together

models and the experimental data used to build and test

them, by adding standardized data interpreters (e.g. v. 2 of

the Neurodata Without Borders format); extending VFB

to cover all stages/regions of the fly CNS, incorporating

synapse level connectomics data with the extensive light

level image and literature knowledge; releasing a new version

of WormSim, currently being developed within the Open-

Worm project [1] that will integrate the Sibernetic [69] fluid

dynamics simulator (see [70]) with the NeuroML-based

nervous system model (see [71]). The latter will be the first
instance of a Geppetto application providing a non-compu-

tational neuroscience-specific numerical engine, used for

fluid dynamics simulations (figure 8).

Thanks to its open, modular, web-based architecture,

Geppetto ultimately enables the engineering of a new breed

of neuroscience applications that can be used in a collabora-

tive way by theoreticians, modellers and experimentalists to

formulate new scientific hypotheses, build and validate

new models, and help gain insights into the most pressing

questions in neuroscience.

Data accessibility. Geppetto is open source (http://git.geppetto.org) and
released under the MIT licence. Documentation is available at http://
docs.geppetto.org. A live demo application to showcase the latest
release of Geppetto (0.4.0 at the time of writing, new versions are
released monthly) is available at http://live.geppetto.org. Docker
images are available for Geppetto at http://docker.geppetto.org,
which simplify creation of a local instance of the application with
all required libraries preconfigured. Integration tests for the full
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tests are automatically executed after every commit.
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Endnotes
1Depending on the background and level of experience of the
developer.
2Estimate based on the actual time that was spent designing
and implementing various reusable components, e.g. 3D Canvas
6 months, MRI Viewer 3 months, Plotting widget 6 months, Connec-
tivity Widget 5 months, Stack Viewer 6 months, Control Panel
3 months, Geppetto Model Abstraction 9 months, etc. Building of the
infrastructure in its current form took 3 years. All these figures
consider 1 Senior Development Engineer FTE.
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