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Abstract: In this study, we present a review on a useful approach, namely, immunoaffinity column
coupled with monoclonal antibodies (MAbs), to separate natural compounds and its application
for cell-based studies. The immunoaffinity column aids in separating the specific target compound
from the crude extract. The column capacity was stable even after more than 10 purification cycles
of use under the same conditions. After applying the crude extract to the column, the column was
washed with washing buffer and eluted with elution buffer. The elution fraction contained the target
compound bound to MAb, whereas the washing fraction was the crude extract, which contained all
compounds except a group of target compounds; therefore, the washing fraction was referred to as
a knockout (KO) crude extract. Cell-based studies using the KO extract revealed the actual effects
of the natural compounds in the crude extract. One-step separation of natural compounds using
the immunoaffinity column coupled with MAbs may help in determining the potential functions of
natural compounds in crude extracts.

Keywords: monoclonal antibody; immunoaffinity column; natural compound; one-step separation
method; crude extract; knockout extract; ginseng; ginsenoside; licorice; glycyrrhizin

1. Introduction

Since ancient times, herbal medicines have been widely used in many Asian coun-
tries. Despite the great advances observed in modern medicine in recent decades, herbal
medicines continue to make an important contribution to healthcare worldwide. The
World Health Organization (WHO) has stated that herbal medicines are still the primary
healthcare system for about 80% of the world’s population, especially in developing coun-
tries [1]. Based on the importance of herbal medicines, analytical methods for bioactive
natural compounds have been developed. Technical advances in instrumental analysis
have allowed the detection of a wide variety of natural compounds using highly sensitive
and selective methods. In addition, molecular approaches have revealed the mechanism of
action of natural compounds through both in vivo and in vitro studies.

Monoclonal antibodies (MAbs) targeting high-molecular-weight molecules, such as
proteins and peptides, have been widely used since 1975 [2]. A few decades ago, there were
few MAbs targeting small-molecular-weight compounds, including natural compounds
and synthetic drugs. However, the number of studies on MAbs against natural compounds
has increased since the 1990s. Recently, a variety of MAbs against natural compounds have
been developed, and some of them are commercially available. Our previous studies have
produced more than 40 kinds of MAbs targeting natural compounds and have reported
multiple applications based on these MAbs. Table 1 lists representative examples of MAbs
and their applications in our studies and those of others.
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Table 1. Example of applications using MAbs against natural compounds.

Target Compound Plant Resource Applications References

Monoterpene
Paeoniflorin, Albiflorin Paeonia lactiflora ELISA [3]

Immunostaining of plant section [4]

Sesquiterpenes
Artemisinin, Artemisia annua ELISA [5]
Artesunate

Diterpene
Paclitaxel Taxus sp. ELISA [6,7]

Time-resolved fluoroimmunoassay [8]
Forskolin Coleus forskohlii ELISA [9]

Immunoaffinity column [10]

Triterpene
Glycyrrhizin Glycyrrhiza sp. ELISA [11,12]

Eastern blot [13]
Double eastern blot [14]
Immunoaffinity column [15]
Selective breeding [16]

3-Monoglucuronyl-glycyrrhetinic
acid

Glycyrrhiza sp. ELISA [17]
Immunodetection in plasma and
urine of patients [17]

Eastern blot [18]
Ginsenoside Rb1 Panax sp. ELISA [19,20]

Immunodetection in rat serum [21,22]
Eastern blot [23]
Double eastern blot [24,25]
Immunoaffinity column [26]
Cellular localization [27]

Ginsenoside Rg1 Panax sp. ELISA [20,28]
Immunodetection in rat serum [21]
Double eastern blot [24,25]

Ginsenoside Re Panax sp. ELISA [20,29]
Eastern blotting [30]
KO extract [31]

Notoginsenoside R1 Panax notoginseng ELISA [32]
Saikosaponin a Bupleurum falcatum ELISA [33,34]

Time-resolved fluoroimmunoassay [35]

Tetraterpene
Crocin Crocus sativus ELISA [36]

Chroman
Tetrahydrocannabinolic acid Cannavis sativa ELISA [37]

Quinone
Sennoside A, Rheum sp., ELISA [38]
Sennoside B Senna sp. Eastern blotting [39]
Plumbagin Plumbago zeylanica ELISA [40,41]

Molecular breeding [42]

Alkaloid
Berberine Phellodendron amurense

Coptis japonica
ELISA [43,44]

Solamargine Solanum khasianum ELISA [45]
Eastern blotting [46]
Immunoaffinity column [47]
Molecular breeding [48]

Aristolochic acid-I, -II Aristolochia species ELISA [49]
Eastern blot [50]
Cellular localization [51]
Determination of target molecular [52]

Harringtonine genus Cephalotaxus ELISA [53]
Immunochromatographic strip
assay [54]

Cellular uptake [55]
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Table 1. Cont.

Target Compound Plant Resource Applications References

Flavonoid
Liquiritin Glycyrrhiza sp. ELISA [12,56]

Double eastern blot [14]
Quality control [56]

Baicalin, Baicalein Scutellaria baicalensis ELISA [57]
Kwakhurin Pueraria candollei

var. mirifica
ELISA [58,59]

Puerarin Pueraria lobata ELISA [60]
Immunoaffinity column [60]

Daidzin Glycine max ELISA [61]
Immunoaffinity column [61]

Naringin Citrus sp. ELISA [62]
Immunoaffinity column [62]

Enzyme-linked immunosorbent assay (ELISA) with MAbs targeting natural com-
pounds is useful for the quality control of natural products because of their high sensitivity.
Moreover, ELISA listed in Table 1 is rapid and does not require pretreatment and organic
solvent when compared to other analytical methods, such as high-performance liquid
chromatography (HPLC) and HPLC–mass spectrometry. We also developed “Eastern
blotting”, which is an on-membrane quantitative analytical system, using MAbs against
natural compounds [13,14,18,23–25,30,39,46,50]. Eastern blotting is a unique immunos-
taining method for detecting target natural compounds on a membrane, which has fixed
natural compounds transferred from TLC. Furthermore, we applied MAb for the molecular
breeding of medicinal plants. In the first step, a recombinant single-chain fragment variable
(scFv) antibody was constructed from hybridoma cells expressing MAb against natural
compounds. The scFv antibody gene was introduced into the host plant. The scFv anti-
body was found to express in transgenic plants and activate the biosynthesis of secondary
metabolites. This plant breeding methodology can be used as a potential tool to enhance
bioactive compounds [42,48].

Affinity chromatography is one of the most diverse and powerful chromatographic
methods for selective purification of a molecule or group of molecules from complex mix-
tures. For example, cell membrane chromatography is an efficient method for the detection
of bioactive components acting on a specific receptor from a complex biological system [63].
One of the applications of MAbs against natural compounds is immunoaffinity purifi-
cation and separation. Immunoaffinity purification using MAb is a useful methodology
for purifying larger molecules, such as proteins and peptides. However, there are only a
few studies on immunoaffinity purification targeting small-molecular-weight compounds,
such as natural compounds. An immunoaffinity column with MAb targeting natural com-
pounds has made it possible to carry out single-step purification and separation of target
compounds from crude drug extract. We have developed immunoaffinity columns against
forskolin [10], glycyrrhizin [15], ginsenoside Rb1 [26], and solamargine [47]. Additionally,
other groups have demonstrated immunoaffinity columns against puerarin [60], daizin [61],
and naringin [62]. In this review, we introduce the preparation of an immunoaffinity col-
umn with MAbs targeting natural compounds and carry out one-step separation of natural
compounds from crude extract using the column. Furthermore, we describe the application
of this approach for cell-based studies that use fractions, which are prepared by eliminating
one target compound from the crude extract using the immunoaffinity column.

2. Preparation of the Immunoaffinity Column with MAbs against Bioactive Natural
Compounds and One-Step Separation of Natural Compounds from Crude Extract
Using the Column

IgG contains approximately 3% carbohydrate in the Fc region (heavy chain) of the
antibody. Periodate oxidation of vicinal hydroxyl groups of these carbohydrates forms
aldehyde group, which can be coupled to Affi-Gel Hz hydrazide gel (Bio-Rad) to form
stable hydrazones. The purified MAb was treated with NaIO4, leading to the formation
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of a dialdehyde group on the sugar moiety, and the oxidized MAb was coupled with the
gel to form a hydrozone-type immunoaffinity gel (Figure 1) [15,26,47]. In the following
sections, we introduce immunoaffinity columns with MAbs against ginsenoside Rb1 and
glycyrrhizin, and their clinical application.

Figure 1. Scheme of the preparation of an immunoaffinity column with MAbs against natural compounds.

Ginseng, the root of Panax ginseng, has been used for thousands of years in China,
Korea, and Japan as an important crude drug in traditional Chinese medicine and Japanese
Kampo medicine. Ginsenosides are the main pharmacologically active compounds in
ginseng. Basic and clinical studies have demonstrated that ginsenosides exert various
pharmacological activities, such as antioxidative and anticancer effects, which improves
immunity, energy and sexuality, cardiovascular diseases, diabetes, and neurological dis-
eases [64]. Ginsenosides are a special group of triterpenoid saponins that can be classified
into two groups: protopanaxadiol (PPD) and protopanaxatriol (PPT), which possess a
dammarane skeleton in their molecules. To date, more than 150 ginsenosides have been
isolated from the roots, leaves, stems, fruits, and flower heads of ginseng [64,65]. Ginseng
contains many ginsenosides with similar structures; thus, the separation of specific gin-
senosides from ginseng crude extract is difficult. Preparative HPLC can separate and purify
individual ginsenosides from crude extracts. However, the disadvantages of preparative
HPLC are the cost of the stationary columns, volume of solvents, and run times. In addition,
it is difficult to separate specific compounds from the crude extract and finally prepare the
specific compound-eliminated crude extract.

Ginsenoside Rb1 (G-Rb1, Figure 2a) is a PPD-type ginsenoside, and we established
anti-G-Rb1 MAb and performed ELISA [19,20]. The cross-reactivities of MAb with other
PPD-type ginsenosides Rc and Rd were 0.024% and 0.020%, respectively, compared to
that with G-Rb1 [19,20]. Thus, MAb may predominantly react with G-Rb1 but not with
its structurally related ginsenosides. We prepared an immunoaffinity column by coupling
MAb with an Affi-Gel Hz gel [26]. The purified 10 mg of IgG diluted in Affi-Gel Hz coupling
buffer (Bio-Rad, commercially available) was dialyzed against the coupling buffer. One
microliter of the IgG solution was reacted with 100 mL of NaIO4 solution (25 mg/1.2 mL
H2O), and stirred at room temperature for 1 h in a container covered with foil. To inactivate
NaIO4, glycerol was immediately added to the mixture at a final concentration of 20 mM
and stirred for 10 min. The mixture containing the oxidized MAb was dialyzed against the
coupling buffer again. After the Affi-Gel Hz hydrazide gel was washed with the coupling
buffer, the oxidized and desalted anti-G-Rb1-MAb was then coupled with the gel for 24 h
with gentle stirring at room temperature for 24 h. After completing the coupling reaction,
the gel was slurry-poured into a mini-column. The column was washed with 20 mM of
phosphate buffer (PB) containing 0.5 M NaCl (pH 7.0). The eluates were collected and
used for the determination of coupling efficiency by direct ELISA [19]. Finally, the column
was washed with phosphate buffer saline (PBS) until the ELISA value was equal to the
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background, then the column in PBS containing 0.02% sodium azide was stored at 4 ◦C
until ready for use.

Figure 2. (a) Chemical structure of G-Rb1. (b) Scheme showing the fractionation using the anti-G-Rb1 MAb-coupled
immunoaffinity column. (c) Elution profile of the P. ginseng crude extract separated using the immunoaffinity column.
ELISA using anti-G-Rb1 MAb determined the concentrations of G-Rb1 in each fraction (1–40). * Inhibition = (A0 − A)/A0,
where A0 is the absorbance in the absence of the test compounds and A is the absorbance in the presence of the test
compounds. (d) TLC profile of the fractions obtained from the immunoaffinity column. S1: G-Rd, G-Rc, and G-Rb1, S2:
G-Rg1 and G-Re, C: P. ginseng crude extract, W: washing fraction, E: eluted fraction.

The crude extract of P. ginseng (3.8 mg) was dissolved in loading buffer (PBS), applied
to the immunoaffinity column, and completely washed with the washing buffer (PBS), and
then eluted with 100 mM HOAc buffer containing 0.5 M KSCN and 20% MeOH (pH 4.0)
(Figure 2b). Figure 2c shows the elution profile of the anti-G-Rb1 immunoaffinity column
with anti-G-Rb1 MAb using ELISA. The concentrations of G-Rb1 in each fraction could
be easily monitored by this system, so we can know when the column was completely
washed. The overcharged G-Rb1 was detected in fractions 1–8. G-Rc, Rd, Re, and Rg1
were also present in these fractions. After washing the column, G-Rb1 was eluted with
the elution buffer and detected around fractions 20–24. However, few malonyl G-Rb1
moieties were contaminated in fractions 20–24 because anti-G-Rb1 MAb also reacted with
malonyl G-Rb1. Thus, the eluted fraction was treated with a mild alkaline solution at room
temperature for 1 h to obtain pure G-Rb1. The washing fractions containing overcharged
G-Rb1 were repeatedly applied to the same columns, and G-Rb1 was finally separated from
the crude extract. These data demonstrated that G-Rb1, as target compounds, are stable
during the separation process. This anti-G-Rb1 immunoaffinity column had the capacity
for approximately 20 µg of G-Rb1/mL of gel [26].
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After collection, the washing and eluted fractions were deionized and lyophilized.
Figure 2d shows the TLC profiles of each fraction. A standard of ginsenosides was spotted
on S1 (G-Rd, G-Rc, and G-Rb1) and S2 (G-Rg1 and G-Re). All spots of ginsenosides were
detected in the crude extract (C). By contrast, the washing fraction (W) contained all
ginsenosides except G-Rb1, suggesting that the column selectively eliminated G-Rb1 from
the crude extract. Furthermore, G-Rb1 was detected in the eluted fractions (E). Due to the
washing fraction only containing G-Rb1 from the crude extract, this fraction was referred
to as the G-Rb1-knockout (KO) ginseng extract [26]. These data indicate the specificity and
high efficiency of the immunoaffinity column for eliminating the target compound from
the crude extract.

Licorice, the root of Glycyrrhiza sp., has long been used worldwide as an herbal
medicine. Licorice is registered in the United States Pharmacopoeia 43rd Edition [66], and
it is registered as Glycyrrhiza in the Japanese Pharmacopeia 17th Edition (JP XVII) [67].
Licorice is used in more than 70% of Japanese Kampo medicines for the treatment of
sore throats. Licorice is also used as a natural sweetener for food and confectionery. The
accumulated data on biological activity suggest that licorice exerts antibacterial, antiviral,
anti-inflammatory, anticancer, antioxidant, liver protection, neuroprotection, skin whiten-
ing, hypoglycemic, memory-enhancing, and other biological activities [68–71].

Numerous phytochemical studies have shown that licorice contains numerous bioac-
tive components, including more than 20 triterpenoids and nearly 300 flavonoids [72].
GC (Figure 3), also known as glycyrrhizic acid, is a major bioactive component of licorice
and belongs to the triterpene saponin. GC possesses many pharmacological properties,
such as antibacterial, antitumor, antiviral, anti-inflammatory, and immunostimulatory
activities [73]. In licorice crude extract, GC is present in the highest amount (>2%), and its
content in wild, high-quality licorice can be as high as 7% [74]. We previously established
anti-GC MAb and reported its application using ELISA and Eastern blotting [13,14]. The
cross-reactivity of anti-GC MAb with 3-monoglucuronyl-glycyrrhetinic acid (3MGA) and
glycyrrhetinic acid (GA) was 0.585% and 1.865%, respectively. The cross-reactivity of
anti-GC MAb with other related compounds including deoxycholic acid, ursolic acid, and
oleanolic acid was <0.005%. Thus, ELISA and Eastern blotting, which we established,
specifically reacted with GC [13]. To identify high-GC-producing plants, we screened
1025 samples of G. uralensis root using a combination of ELISA and Eastern blot and found
that the highest concentration of GC was 5.36 dw% among the screened samples [16].

Figure 3. Chemical structures of GC, 3MGA, and GA.

Similar to anti-G-Rb1 MAb, anti-GC MAb was coupled with an Affi-Gel Hz gel
to prepare an immunoaffinity column, which can extract GC from the licorice crude
extract [15]. The purified 50 mg anti-GC MAb was coupled with 25 mL of an Affi-Gel Hz
gel. In the same way as the G-Rb1, anti-GC MAb oxidized with NaIO4 by mixing gently
in the dark for 1 h, then glycerol was added for the inactivation of NaIO4. After dialysis,
the oxidized anti-GC-MAb was coupled to the Affi-Gel Hz hydrazide gel for 24 h with
gentle stirring at ambient temperature. The gel was poured into a plastic mini-column
and the column was washed with 20 mM PB containing 0.5 M NaCl (pH 7.0). The eluates
were collected and saved for coupling efficiency determination. The coupling efficiency of
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the anti-GC-MAb to Affi-Gel Hz was determined to be 95.21% using a sandwich ELISA to
measure uncoupled MAb.

This affinity column specifically and completely eliminated GC from the crude licorice
extract. Twelve milligrams of crude extract containing 1275.0 µg of GC was dissolved in
loading buffer (5 mM PB–5% MeOH–50 mM NaCl, pH 7.0) and applied to the immunoaffin-
ity column. The loading buffer was mechanically circulated through the column to enhance
the binding efficiency of GC. After overnight circulation, the unbound fraction was col-
lected. The column was then washed with washing buffer (20 mL of 5 mM PB–50 mM NaCl,
pH 7.0) and eluted with elution buffer (20 mM PB–30% MeOH–500 mM NaCl, pH 7.0). Af-
ter deionization and lyophilization of the solvent in each fraction, the GC concentration was
determined using ELISA. The GC concentrations in the unbound and bound fractions were
3.50 µg (0.27% of the applied GC) and 1269.26 µg (99.55% of the applied GC), respectively
(Figure 4a). In other words, the anti-GC immunoaffinity column eliminated 99.55% of the
loaded GC and the capacity of the anti-GC immunoaffinity column was approximately
33.5 µg of GC/mL of gel. The obtained unbound fraction was the licorice crude extract
lacking only GC; therefore, this unbound fraction had the GC-KO licorice extract. TLC
analysis of the GC-KO licorice extract indicated that GC was specifically removed from the
GC-KO licorice extract (Figure 4b). In addition, eastern blotting using anti-GC MAb could
not detect GC in the GC-KO licorice extract. HPLC fingerprint analysis demonstrated that
although the GC-KO licorice extract contained three licorice flavonoids, namely, liquiritin,
liquiritigenin, and isoliquiritigenin, in the same pattern as that in the licorice extract, only
GC was undetectable in the GC-KO licorice extract (Figure 4c).

In order to determine the purity of target compounds, we analyzed the eluted fractions
by ELISA analysis and Eastern blotting, suggesting that the eluted fractions contained
only target compounds bound to MAbs. Although the preparation of the immunoaffinity
columns consumes a large amount of MAbs, the column is reusable after cleaning. The
column capacity was stable even after more than 10 purification cycles under the same
conditions, similar to the one-step separation of forskolin present in the crude extract
of Coleus forskohlii root [10]. According to the ELISA analysis of eluted fraction from the
anti-GC immunoaffinity column, this column could be regenerated in excess of 20 times
without an obvious loss of capacity (from about 33 µg/mL gel to about 29 µg/mL gel) [15].
Generally, the purification and separation of natural compounds have been performed
by HPLC and chromatographic techniques, but these are tedious and time-consuming
procedures. Compared with these conventional methods, the methodology using the
immunoaffinity column is simple and specific. In addition, once the column is prepared, it
is reusable several times without a loss in activity. Recently, molecular imprinted polymers
(MIP) have attracted wide attention and attained significant applications in the identifica-
tion and separation of various natural compounds [75]. MIP is useful tool to isolate natural
compounds, but MIP applications in the analytical determination of natural compounds
such as polyphenols metabolites have been limited and few used phenolic acid as a tem-
plate [76]. In addition, the preparation of KO extracts using MIP has never been reported
before. Thus, the immunoaffinity column with MAbs against natural compounds is only
tool to prepare KO extracts.
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Figure 4. (a) Scheme of the preparation of GC-KO extract using the anti-GC MAb-coupled immunoaffinity column and the GC
concentration in each fraction. (b) TLC profiles of the fractions obtained from the immunoaffinity column. C: licorice crude
extract; W: washing fraction. (c) HPLC profile of the washing fraction (upper panel), GC, and three licorice flavonoids (lower).

3. Cell-Based Studies Using the GC-KO Licorice Extract

The KO extract is a useful tool for evaluating the interaction or synergistic actions
between the target compound and other compounds present in the crude extract. In this
section, we present two previous reports that have performed cell-based studies using the
GC-KO licorice extract.

The first example of a study using the GC-KO licorice extract is to clarify the role of GC
in the suppression of nitric oxide (NO) production [77]. The licorice extract suppressed NO
production in lipopolysaccharide-treated murine RAW264 macrophages (inhibition ratio
(IR) = 57.7%). On the contrary, single treatment of GC could not significantly inhibit NO
production. Therefore, it seems that the GC-KO licorice extract can inhibit NO production
to a level similar to that of the licorice extract because single treatment of GC did not
inhibit NO production. Interestingly, although GC alone did not block NO production, the
inhibitory effect of the GC-KO extract (IR = 17.8%) was weaker than that of the licorice
extract (IR = 57.7%). Moreover, co-treatment with the GC-KO extract and GC strikingly
improved the inhibitory potency (IR = 33.5%). A similar pattern was found for the protein
expression levels of inducible NO synthase, which produces NO from L-arginine. These
data indicate that GC alone cannot attenuate NO production, but GC suppresses NO
production with the other constituents of licorice. Moreover, a similar phenomenon was
observed when we compared the antiproliferative activity and apoptosis induction of
licorice extract and GC-KO extract on antiproliferative activity and apoptosis induction in
human leukemia HL-60 cells [78]. These data imply the synergistic interactions of GC and
other constituents in the licorice extract.
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In the second study, GC-KO licorice extract was used to explore the effect of licorice
extract on high glucose-induced tubular epithelial-to-mesenchymal transition (EMT) [79].
In renal tubular NRK-52E cells exposed to high-glucose, GC-KO extract provided equiv-
alent efficacy compared with that of the licorice extract in suppressing EMT via Notch2
signaling pathway. By contrast, GC had little influence on EMT. Although GC is a major
bioactive component, licorice extract contains various other bioactive components [69,72].
Thus, these data indicated that GC was not directly involved in the suppression of EMT,
and both licorice and GC-KO extracts could prevent renal tubular EMT and fibrosis in
diabetic nephropathy. Future studies are needed to elucidate the role of GC on EMT.

The two previous studies demonstrated that the KO extract is helpful for identifying
the potential role of target compounds in crude extract in cell-based studies. Similar to
the G-Rb1-KO extract and the GC-KO extract, several immunoaffinity columns and KO
extracts were reported by our group and other groups (Table 1) [60–62]. The selectivity
of the column is dependent on the MAbs conjugated with Affi-Gel Hz gel. The MAb
against solasodine has wide cross-reactivity. The immunoaffinity column coupled with
anti-solamargine MAb could separate total solasodine glycosides from the crude extract
of Solanum khasianum seeds [46]. In other words, this column can concentrate the total
solasodine glycosides from plant materials. Therefore, this methodology can be available
for the detection of higher yielding solasodine glycosides plantlets in vitro of S. khasianum
by the combination with ELISA because the regenerated plantlets contain a small amount
of solasodine glycosides. Qu et al. prepared the immunoaffinity column by coupling the
MAbs against daizin and naringin to CNBr-activated Sepharose 4B. The immunoaffinity
column coupled with anti-daizin MAb can efficiently and specifically extract daidzin,
glycitein, and genistin from numerous structurally similar soy isoflavones in leguminous
plants [61]. On the other hand, the column coupled with anti-naringin MAb can capture
approximately 250 µg of naringin without cross reacting with its structurally similar
compounds [62]. Taken together, these studies imply that various immunoaffinity column
having different cross-reactivity against natural compounds can be established and applied
for the preparation of KO extracts.

4. Conclusions

This review discusses the one-step purification of bioactive natural compounds from
crude extracts using an immunoaffinity column coupled with MAbs against natural com-
pounds. G-Rb1 and GC were selectively separated from P. ginseng and licorice crude extract
by the column using MAbs against G-Rb1 and GC, respectively. The obtained washing
fractions were eliminated only target compound from the crude extract; therefore, this
fraction is referred to as KO extract. This immunoaffinity column selectively separated
target compounds from the original extract without time-consuming and complicated
procedures. Once the column is prepared, the column is stable and reusable for more than
10 cycles under the same conditions. This methodology may be applied to other kinds of
natural compounds not yet been developed. The selectivity of the column is dependent
on the MAbs, thus when the column is coupled with a broad cross-reactive MAb, it is
possible to separate a group of target compounds, not only one kind of compound, from
the extract. Indeed, we demonstrated that total ginseng saponins were separated by the
column using anti-G-Re MAb, which has a broad cross-reactivity with ginsenosides [29].
The immunoaffinity columns can be applicable for a high-sensitivity detection of the target
compounds by combination with ELISA. In our previous study, the combination of column
and ELISA using anti-G-Rb1 detected G-Rb1 in Kalopanax pictus Nakai, which was not
previously reported to contain ginsenosides [23]. We also applied KO extract for investi-
gating the functions of natural compounds in cell-based studies. The KO extracts may be
useful tool to clarify the actual effects of the bioactive compound and elucidate interactions
between the target compound and the other compounds in the crude extracts, including
Japanese Kampo medicines and traditional Chinese medicines.
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