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Abstract
Humans can easily understand other people’s actions through visual systems, while com-

puters cannot. Therefore, a new bio-inspired computational model is proposed in this paper

aiming for automatic action recognition. The model focuses on dynamic properties of neu-

rons and neural networks in the primary visual cortex (V1), and simulates the procedure of

information processing in V1, which consists of visual perception, visual attention and repre-

sentation of human action. In our model, a family of the three-dimensional spatial-temporal

correlative Gabor filters is used to model the dynamic properties of the classical receptive

field of V1 simple cell tuned to different speeds and orientations in time for detection of spa-

tiotemporal information from video sequences. Based on the inhibitory effect of stimuli out-

side the classical receptive field caused by lateral connections of spiking neuron networks

in V1, we propose surround suppressive operator to further process spatiotemporal infor-

mation. Visual attention model based on perceptual grouping is integrated into our model to

filter and group different regions. Moreover, in order to represent the human action, we con-

sider the characteristic of the neural code: mean motion map based on analysis of spike

trains generated by spiking neurons. The experimental evaluation on some publicly avail-

able action datasets and comparison with the state-of-the-art approaches demonstrate the

superior performance of the proposed model.

Introduction
It is a universally accepted fact that human can easily recognize and understand other peoples
action from complex natural scene. It attributes the success to hundreds or thousands of neu-
rons in visual cortex of the brain and neural networks formed by their connection in a certain
way, which perceive and process motion information of human action for action recognition
task. The question is how neurons and neural networks process motion information to perform
this task. Researchers have made many neurophysiological studies and obtained some impor-
tant findings to answer these problems. For example, the visual information is processed
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through two distinct pathways: the dorsal stream and the ventral stream, originating from pri-
mary visual cortex (V1). The majority of neurons in V1 are exquisitely sensitive to the orienta-
tion of a stimulus in a given position of the visual field, and their responses to a stimulus
presented in the classical receptive field (RF) are often suppressed by another stimulus simulta-
neously presented outside the classical RF, known as “surround suppression” [1]. Based on
these properties of neurons and neural mechanisms, some biophysically-plausible computa-
tional models for biological motion recognition are developed [2]. These models essentially
reproduce certain properties of visual systems and make predictions for neuroscience, but have
been relatively fewer reports on practical applications for human action recognition.

With the remarkable advances in the understanding of human action perception in psycho-
physics [3], many bio-inspired approaches of human action recognition [4]–[5] are proposed.
Most of them are based on the work of M. Giese and T. Poggio [2], which puts forward a bio-
logically plausible neural model separately to evaluate both visual pathways in biological
motion recognition. These approaches are built with feedforward architecture and by modeling
neural mechanism in intermediate and higher visual areas of the dorsal stream such as middle
temporal (MT) and lateral medial superior temporal (MST). However, these approaches largely
ignore some properties of neurons in V1 as a beginning area of visual cortex, such as insepara-
ble properties of the classical RF of many simple cells in space and time. It hampers the pro-
cessing of the shape information addressed in ventral stream and the analysis of motion
information involved in dorsal stream.

Moreover, biological motion recognition can be realized in the human visual cortex with
latencies of about 150ms and even faster [6], which, considering the visual pathway latencies,
may only be compatible with a very specific processing architecture and mechanism. There is a
neural computational theory support this mechanism, which pattern motion is computed in
V1 where end-stopped cells could be involved in encoding pattern motion because they
respond well to line terminators (or features) moving in their preferred direction and speed
[7], [8]. The network models incorporated with feedback mechanisms have also been proposed
to support the idea that pattern motion can be computed at the V1 stage [9]. In computer
vision, Kornprobst [10] demonstrated that early visual processes in V1 could be sufficient to
perform such task of human action recognition. Although computation of pattern motion is
dynamical over space and time and is limited in V1 to reduce computation load, it does not
achieve the better performance of human action recognition since many important properties
of cells in V1 are not considered. Thus, it still need further research of bio-inspired approaches
for human action recognition based on the properties of cells in V1.

In this paper, a new bio-inspired model is proposed for real video analysis and recognition
of human actions. It focuses on three parts: 1) perceiving the spatiotemporal information by
modeling properties of cells in V1 such as spatiotemporal properties of classical receptive field
(RF) and surround suppression; 2) automatically detecting and localizing moving object
(human) in the scene with visual attention built by the spatiotemporal information, and 3)
encoding spike trains automatically generated by spiking neurons for action recognition.

According to RF properties of single neuron in V1, there are three basic RF types [11]: ori-
ented RFs, non-oriented RFs, and non-oriented large field. In general, cells with oriented RFs
are broadly modeled with filter bands to detect information in a direction from images or vid-
eos, such as 2D Gabor bands in [12] and spatiotemporal filters in [13], whereas cells with non-
oriented RFs are not considered to do for it, but, by most accounts, respond optimally to mov-
ing stimuli over a restricted range of velocities. Furthermore, for a majority of cells, the spatial
structure of the RF changes as a function of time can be characterized in the space-time domain
[14]. These properties facilitates the detection of spatiotemporal information in different direc-
tions and at different speeds.
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In addition, neurophysiological studies have also shown that the responses of neurons in V1
are suppressed by stimuli provided by the region surrounding the RF [1]. It is known as sur-
round suppression, which is an useful mechanism for contour detection by inhibition of tex-
ture [15]. A similar mechanism has been observed in the spatiotemporal domain, where the
response of such a neuron is suppressed when moving stimuli are presented in the region sur-
rounding its classical RF. The suppression is maximal when the surround stimuli move in the
same direction and at the same disparity as the preferred center stimulus [8]. An important
utility of surround mechanisms in the spatiotemporal domain is to evaluate detection of
motion discontinuities or motion boundaries.

To recognize human actions from clustered visual field where there are multiple moving
objects, we need to automatically detect and localize every one in the actual application. Visual
attention is one of the most important mechanisms of the human visual system. It can filter
out redundant visual information and detect the most salient parts in our visual field. Some
research works [16], [17] have shown that the visual attention is extremely helpful to action
recognition. Many computational models of visual attention are raised. For example, a neurally
plausible architecture is proposed by Koch and Ullman [18]. The method is highly sensitive to
spatial features such as edges, shape and color, while insentitive to motion features. Although
the models proposed in [17] and [19] have regarded motion features as an additional conspicu-
ity channel, they only identify the most salient location in the sequence image but have not
notion of the extent of the attended object at this location. The facilitative interaction between
neurons in V1 reported in numerous studies is one of mechanisms to group and bind visual
features to organize a meaningful higher-level structure [20]. It is beneficial to detect moving
object.

To sum up, our goal is to build a bio-inspired model for human action recognition. In our
model, spatiotemporal information of human action is detected by using the properties of neu-
rons only in V1 without MT, moving objects are localized by simulating the visual attention
mechanism based on spatiotemporal information, and actions are represented by mean firing
rates of spike neurons. The remainder of this paper is organized as follows: firstly, a review of
research in the area of action recognition is described. Secondly, we introduce the detection of
spatiotemporal information with 3D Gabor spatial-temporal filters modeling the properties of
V1 cells and their center surround interactions, and detail computational model of visual atten-
tion and the approach for human action localization. Thirdly, the spiking neural model to sim-
ulate spike neuron is adopted to transfer spatiotemporal information to spike train, and mean
motion maps as feature sets of human action are employed to represent and classify human
action. Finally, we present the experimental results, being compared with the earlier introduced
approaches.

RelatedWork
For human action recognition, the typical process includes feature extraction from image
sequences, image representation and action classification. Based on image representation, the
action recognition approaches can be divided into two categories [21], i.e. global or local. Both
of them have achieved success for human action recognition to some extent, yet there are still
some problems to be resolved. For example, the global approaches are sensitive to noise, partial
occlusions and variations [22], [23], while the local ones sometimes suffer from heavy compu-
tational burden [24], [25] for extracting a sufficient amount of relevant interest points [26]. In
recent years, some approaches combine both global and local representations to improve rec-
ognizing performance [27–29]. However, they are mainly applied into some special situations.
Thus, some bio-inspired approaches emerge to perform the task of action recognition.
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The work of bio-inspired action recognition based on the feedward architecture of visual
cortex is related to several domains including motion-based recognition and local feature
detection. In the area of local feature detection, a large number of different schemes have been
developed based on visual properties and feature descriptors [4], [30], [31], [32]. In [4], a feed-
forward architecture modeling dorsal visual pathway was proposed by Jhuang, which can be
seen as an extension of model of ventral pathway architecture [12] according to similar organi-
zation of both ventral and dorsal pathways [33]. Jhuang mapped the cortical architecture,
essentially primary visual cortex (V1) (with simple and complex cells), but never claim any bio-
logical relevance for the corresponding subsequent processing stages (from S2 to C3) [13]. The
work in [31] is similar to Jhuang’s idea in concept, but uses different window settings. Schindler
and Van Gool [30] extend Jhuang’s approach [4] by combining both shape and motion
responses. Due to a collection of independent features obtained in matching stage, the
approach is suffering from heavy computation.

Researchers also have developed a large number of different schemes based on various com-
binations of visual tasks and image descriptors [5, 13]. Escobar et al. [13] still used feedforward
architecture and simulated dorsal visual pathway to create a computational model for human
action recognition, called V1-MT model, in which the analysis of motion information is done
in V1 and MT areas [33]. The model not only combines motion-sensitive responses but also
considers connections between V1 cells and MT cells found in [34], [35], which allows them to
model more complex properties such as motion contrasts. The main difference from Jhuang’s
approach is that the approach is based on Casile and Giese theory [36], which augment that
biological motion recognition can be done in a coarse spatial location of the mid-level optic
flow features. The visual observation of human action is encoded as a whole with spiking neural
networks in [13], [5], and is considered as global representations. Although Escobar’s approach
satisfies biology plausibility, there are some key problems to be solved. For example, which
properties of the cells in V1 should be used to detect spatiotemporal information? how are
human actions detected and localized? and how is such task of human action recognition per-
formed through early visual processing in V1? Therefore, we aim to give some schemes to settle
these issues.

Visual Perception and Information Detection
Biological visual system is very complex. Physiological and psychological studies suggest four
crucial properties of biological vision: Fovea-periphery distinction on the retina, oculomotor,
image representation and serial processing [37]. In this paper, we propose a novel bio-inspired
approach for human action recognition according to these properties. Fig 1 shows the block
diagram of our approach from the input image sequence containing human action as stimulus
to its final classification. It contains four steps: 1) detecting spatiotemporal information in
form of responses of simple and complex cell in V1; 2) localizing moving object with computa-
tional model of visual attention by integrating spatiotemporal information sensitive to speed
and direction; 3) extracting features from spiking trains generated by spiking neurons with
leaky integrate-and-fire model [38], [39], and encoding them for action representation, 4) rec-
ognizing human action with the support vector machine (SVM).

1 Spatiotemporal Information Detection
In V1, many simple cells possess the property of the speed and direction selectivity (oriented-
cell), and their RF profiles are essentially modeled with spatiotemporal filters. However, most
of existing spatiotemporal filters often are non-causal, hence biologically implausible [4, 31].
To this end, we build a family of spatiotemporal filters to model the spatiotemporal RF profiles

Computational Model of Primary Visual Cortex

PLOS ONE | DOI:10.1371/journal.pone.0130569 July 1, 2015 4 / 34



of simple cells similar to [40], denoted by gv,θ,φ(x, t), which is causal and consistent with the V1
cell physiology. The formula of spatiotemporal filter is defined in Eq (1).

gv;y;φðx; tÞ ¼ exp �ð�x þ vtÞ2
2s2

� g2�y2

2s2
� ðt � utÞ2

2t2

� �

� g

ð2pÞ3=2s2t
cos

2p
l
ð�x þ vtÞ þ φ

� � ð1Þ

where ð�x; �yÞ ¼ ðxcosyþ y siny;�xsinyþ ycosyÞ, ε(t) is step function, and x = (x, y). The
parameters v, θ and φ respectively present the preferred speed, the preferred direction of
motion and the preferred spatial orientation, and the spatial symmetry of the filter. This filter is
composed of spatial Gaussian envelope and temporal Gaussian envelope. The spatiotemporal
RF profile is tilted to preferred direction of motion in space-time, originating the selectivity for
moving stimuli, and is qualitatively similar to the experimentally determined ones by DeAnge-
lis [14]. Considering the correlation between preferred spatial scale and preferred speed of spa-
tiotemporal RF profile, we use the following equation to describe the relation between the
preferred spatial wavelength λ and the preferred speed v:

l ¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p ð2Þ

where the constant λ0 is the spatiotemporal period of the filter, σ/λ = 0.56. So, v determines the
preferred wavelength and the receptive field size. The faster the filter speed v is, the larger the
receptive field will be. Moreover, τ in the temporal Gaussian envelope, set as constant of 2.75 in
[40], determines the temporal decay of gv,θ,φ(x, t) in time t. However, the temporal decay is
dynamic and a function of the speed. It causes different time correlation in different preferred
speeds. We therefore compute τ using the following function:

t ¼ �0:13v þ 2:73 ð3Þ

Fig 1. The architecture of the proposedmodel of visual primary cortex combining visual attention. It is consisted of four parts: visual perception,
visual attention, feature extraction and action recognition. Spatiotemporal information is detected by modeling properties of classical and nonclassical
receptive field of cells in V1; motion objects are detected with attention computational model by grouping spatiotemporal information; spike trains of spiking
neurons produced by stimulus-driven leaky integrate-and-fire are analyzed to extract action features; the mean motion map as feature sets is constructed for
action recognition with SVM classifier.

doi:10.1371/journal.pone.0130569.g001
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A gray-scale image sequence, I(x, t), is first analyzed by 3D Gabor filters corresponding to
the simple cells in V1. The response rv,θ,φ(x, t) to image sequence is computed by convolution:

rv;y;φðx; tÞ ¼ jIðx; tÞ � gv;y;φðx; tÞjþ ð4Þ

where j � j+ is an operator with half-wave rectification. From Eq (4), the response of the filer is
phase sensitive. A phase insensitive response as the one of a complex cell, called Gabor energy,
can be obtained by quadrature pair summation of the responses of two filters with a phase dif-
ference of π/2 as follows:

�rv;yðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2v;y;0ðx; tÞ þ r2v;y;p=2ðx; tÞ

q
ð5Þ

In form of Eq (5), the application for detection of spatiotemporal information is illustrated in
Fig 2 (Second Row).

Besides oriented cells in V1, there are also some insensitive simple cells to direction (non-
oriented cell). Watson et al. [41] suggested a causal temporal filter for non-oriented cell, which
is consistent with the electrophysiological studies and the psychophysical data. The speed tun-
ing properties are also studied by considering the responses of motion energy filters to motion

Fig 2. Motion information detection. First row shows the snapshots from a video sequence in KTH database. Second row shows the Gabor energy with 3D
Gabor filter in 0° orientation at 1ppF speed. Motion energy with correlation detection is shown in the third row and the fourth row is surround suppression
motion energy of third row. (reverse from 2nd to 4th row).

doi:10.1371/journal.pone.0130569.g002
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stimulus at different speeds without orientation selectivity. For the sake of computation, how-
ever, the response of non-oriented cell is approximatively computed with Gabor energy in all
directions:

�rvðx; tÞ ¼
1

Ny

X
y

�rv;yðx; tÞ ð6Þ

where Nθ is number of preferred orientations.
As spatiotemporal information for a specific range of speeds at each location x, local Gabor

energy, detected in Eqs (5) and (6), often is ambiguous [9]. To stabilize and disambiguate initial
spatiotemporal information, a modified detector defined by a shift @x = (@x, @y) along a spe-
cific speed between two successive frames is used to model complex cells to compute a spatio-
temporal correlation. Similar to [9], unambiguous or disambiguated motion information is
computed as following:

r̂ v;yðx; tÞ ¼ �rv;yðxþ @x; t � 1Þ � �rv;yðx; tÞ ð7Þ

r̂ vðx; tÞ ¼ �rvðx; t � 1Þ � �rvðx; tÞ ð8Þ
The resulting activities r̂ v;ðyÞðx; tÞ of different directions (including non-direction) at different
speeds indicate unambiguous motion at corners and line endings, ambiguous motion along
contrasts and no motion for homogeneous regions, as shown in Fig 2 (Third Row).

To characterize the motion in video scene, we compute the motion energy using 3D Gabor
filters with Nv different speeds and No different directions. At each speed v, No + 1 responses in
No directions and one non-direction are computed.

2 Center Surround Interaction
To further process motion information, center surround interactions are used. Surround inter-
actions observed in V1 [1] originate from horizontal interconnections between neurons in
spiking neural networks according to results of some anatomic studies, which often are antago-
nistic for RFs of many cells in V1. The response of such a neuron is suppressed when moving
stimuli are presented in the region surrounding its classical RF.

In the purely spatial domain, a model with a 2D difference of Gaussian (DoG) functions is
used to compute the spatial summation properties of a center-surround cell [42]. In spatio-
temporal domain, due to RF dynamics, we define the surround suppression weighting function

wðk1 ;k2Þ
v;y with the half-wave-rectified difference of two concentric Gaussian envelopes:

wðk1 ;k2Þ
v;y ðx; tÞ ¼ jGv;k1 ;y

ðx; tÞ � Gv;k2 ;y
ðx; tÞjþ

kjGv;k1 ;y
ðx; tÞ � Gv;k2 ;y

ðx; tÞjþk1

ð9Þ

where k � k1 denotes the L1 norm and Gv,k,θ(x, t) is similar to RF function gv,θ,φ(x, t), but without
the cosine factor, decaying with time:

Gv;k;yðx; tÞ ¼
g

2pðksÞ2 exp �ð�x þ vtÞ2 þ g2�y2

2ðksÞ2
" #

� 1ffiffiffiffiffiffiffiffi
2pt

p exp �ðt � utÞ2
2t2

� �
εðtÞ

ð10Þ
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Moreover, the non-oriented cells also show characteristic of center surround [43]. There-
fore, the non-oriented term Gv,k(x, t) is similarly defined as follows:

Gv;kðx; tÞ ¼
1

2pðks0Þ2 exp � x2 þ y2

2ðks0Þ2
" #

� 1ffiffiffiffiffiffiffiffi
2pt

p exp �ðt � utÞ2
2t2

� �
εðtÞ

ð11Þ

where σ0 = σ + 0.05σt. To be consistent with the surround effect, the value of the surround
weighting function should be zero inside the RF, and be positive outside it but dissipate with
distance. Therefore, we set k2 = 1 and k1 = k, k> 1. In order to facilitate the description of ori-

ented and non-oriented terms, we use wðkÞ
v;ðyÞðx; tÞ to denote wðk1 ;k2Þ

v;y ðx; tÞ and wðk1 ;k2Þ
v ðx; tÞ.

Thus, for each point in the (x, t) space, we compute a surround suppressive motion energy

RðkÞ
v;ðyÞðx; tÞ as follows:

RðkÞ
v;ðyÞðx; tÞ ¼ jr̂ v;ðyÞðx; tÞ � ar̂ v;ðyÞðx; tÞ � wðkÞ

v;ðyÞðx; tÞjþ ð12Þ

where the factor α controls the strength with which surround suppression is taken into
account. The proposed inhibition scheme is a subtractive linear mechanism followed by a non-
linear half-wave rectification (results shown in Fig 2 (Fourth Row)). The inhibitory gain factor
α is unitless and represents the transformation from excitatory current to inhibitory current in
the excitatory cell. It is seen that the larger and denser the motion energy r̂ v;ðyÞðx; tÞ in the sur-

roundings of a point (x, t) is, the larger the center surround term r̂ v;ðyÞðx; tÞ � wðkÞ
v;ðyÞðx; tÞ is at

that point. The suppression will be strongest when the stimuli in the surroundings of a point
have the same direction and speed of movement as the stimulus in the concerned point. Fig 3
shows spatiotemporal behavior of the corresponding oriented and non-oriented center sur-
round weighting function.

Attention Model and Object Localization
Visual attention can enhance object localization and identification in a cluttering environment
by giving more attention to salient locations and less attention to unimportant regions. Thus,
Itti and Koch have proposed an attention computational model efficiently computing a

Fig 3. Spatiotemporal behavior of the corresponding oriented and non-oriented surround weighting function. The first row contains the profile of
oriented weighting functionwv,θ(x, t) with v = 1ppF and θ = 0, and the second row contains the profile of non-oriented weighting functionwv(x, t) with v = 1ppF

doi:10.1371/journal.pone.0130569.g003
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saliency map from a given picture [44] based on the work of Koch and Ullman [18]. Although
some models [17] and [19] try to introduce motion features into Itti’s model for moving object
detection, these models have no notion of the extent of the salient moving object region. There-
fore, we propose a novel attention model to localize the moving objects. Fig 4 graphically illus-
trates the visual attention model. The model is consistent with four steps of visual information
processing, i.e. perception, perceptual grouping, saliency map building and attention fields.

Fig 4. Flow chart of the proposed computational model of bottom-up visual selective attention. It presents four aspects of the vision: perception,
perceptual grouping, saliency map building and attention fields. The perception is to detect visual information and suppress the redundant by simulating the
behavior of cortical cells. Perceptual grouping is used to build integrative feature maps. Saliency map building is used to fuse feature maps to obtain saliency
map. Finally, attention fields are achieved from saliency map.

doi:10.1371/journal.pone.0130569.g004
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In the proposed model, visual perception is implemented by spatiotemporal information
detection in above section. Because we only consider gray video sequence, visual information is
divided into two classes: intensity information and orientation information, which are pro-
cessed in both time (motion) and space domains respectively, forming four processing chan-
nels. Each type of the information is calculated with the similar method in corresponding
temporal and spatial channels, but spatial features are computed with perceiving information
at low preferred speeds no more than 1ppF. The conspicuity maps can be re-used to obtain
motion object mask instead of only using the saliency map.

1 Perceptual Grouping
In general, the distribution of visual information perceived generally is scattered in space (as
shown in Fig 2). To organize a meaningful higher-level object structure, we should refer to
human visual ability to group and bind visual information by perceptual grouping. The percep-
tual grouping involves numerous mechanisms. Some of computational models about percep-
tual grouping are based on the Gestalt principles of colinearity and proximity [45]. Others are
based on surround interaction of horizontal interconnections between neurons [46], [47].

Besides antagonistic surround described in above section, neurons with facilitative surround
structures have also been found [1], and they show an increased response when motion is pre-
sented to their surround. This facilitative interaction is always simulated using a butterfly filter
[46]. In order to make the best use of dynamic properties of neurons in V1 and simplify

computational architecture, we still use surround weighting function wðkÞ
v;ðyÞðx; tÞ defined in Eq

(9) to compute the facilitative weight, but the value of θ is repaced by θ + π/2. For each location
(x, t) in oriented and non-oriented subbands {v,(θ)}, the facilitative weight is computed as fol-
lows:

hðkÞ
v;ðyÞðx; tÞ ¼ RðkÞ

v;ðyÞ � wðnÞ
v;ðyÞ ð13Þ

where n is the control factor for size of the surrounding area. According to the studies of neuro-
science, the evidence shows that the spatial interactions depend crucially on the contrast,
thereby allowing the visual system to register motion information efficiently and adaptively
[48]. That is to say, the interactions differ for low- and high-contrast stimuli: facilitation mainly
happens at low contrast and suppression occurs at high contrast [49]. They also exhibit con-
trast-dependent size-tuning, with lower contrasts yielding larger sizes [50]. Therefore, The spa-
tial surrounding area determined by n in Eq (13) dynamically depends on the contrast of

stimuli. In a certain sense, RðkÞ
v;ðyÞ presents the contrast of motion stimuli in video sequence.

Therefore, according to neurophysiological data [48], n is the function of RðkÞ
v;ðyÞ, defined as fol-

lows:

nðx; tÞ ¼ exp ½zð1� RðkÞ
v;ðyÞðx; tÞÞ� ð14Þ

where z is a constant and not more than 2, RðnÞ
v;ðyÞðx; tÞ is normalized. The n(x, t) function is

plotted in Fig 5. For computation and performance sake, set z = 1.6 according to Fig 5 and
round down n(x, t), n = bn(x, t)c.

Similar to [46], the facilitative subband OðkÞ
v;ðyÞðx; tÞ is obtained by weighting the subband

RðkÞ
v;ðyÞ by a factor κ(x, t) depending on the ratio of the local maximum of the facilitative weight

hðkÞ
v;ðyÞðx; tÞ and on the global maximum of this weight computed on all subbands. The resulting
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subband is thus given by

Ok
v;ðyÞðx; tÞ ¼ RðkÞ

v;ðyÞðx; tÞ þ kðx; tÞhðkÞ
v;ðyÞðx; tÞ ð15Þ

with

kðx; tÞ ¼ max xh
ðkÞ
v;yðx; tÞ

max ð�Þ½max xh
ðkÞ
v;yðx; tÞ�

ð16Þ

where (�) is θ for oriented subband and v for non-oriented subband.

2 Saliency Map Building
To integrate all spatiotemporal information, similar to Itti’s model [44], we calculate a set of
the intensity (non-orientd) feature maps Fv(x, t) in terms of each feature dimension as follows:

F vðx; tÞ ¼ �kðOðkÞ
v ðx; tÞÞ ð17Þ

where we set k 2 {2, 3, 4} in term OðkÞ
v ðx; tÞ, and� is point-by-point plus operation through

across-scale addition.
Another set of the orientation feature maps also are computed by similar method as follows:

F v;yðx; tÞ ¼ �kðOðkÞ
v;yðx; tÞÞ ð18Þ

Fig 5. The control factor of standard deviations of the Gaussian envelopes as a function of
normalized surround suppression motion energy used to compute range of perceptual grouping and
weight facilitative interaction.

doi:10.1371/journal.pone.0130569.g005
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Each set of feature maps computed are divided into two classes in according to speeds. One
class includes spatial feature maps obtained at speeds no more than 1ppF, and another class
contains the motion feature maps. To guide the selection of attended locations, different fea-
ture maps need to be combined. The feature maps are then combined into four conspicuity
maps: spatial orientation Fo and intensity F; motion orientationMo and intensityM:

F ¼
X
v�1

F vðx; tÞ and M ¼
X
v>1

F vðx; tÞ ð19Þ

Fo ¼
X
v�1

X
y

F v;yðx; tÞ and Mo ¼
X
v>1

X
y

F v;yðx; tÞ ð20Þ

Because modalities of the four separative maps above contribute independently to the saliency
map, we need integrate them together. Due to different dynamic ranges and extraction mecha-
nisms, a map normalization operator,N(�), is globally employed to promote maps. The four
conspicuity maps are then normalized and summed into the saliency map (SM) S:

S ¼ N ðFoÞ þN ðFÞ þN ðMoÞ þN ðMÞ ð21Þ

3 Salient Object Extraction
Although the saliency map S defines the most salient location in image, to which the attentional
focus should be directed, at any given time, it does not give the regions of suspicious objects.
Thus, some methods with adaptive threshold [51] are proposed to obtain a binary mask (BM)
of the suspicious objects from the saliency map. However, these methods only are suitable for
simple still images, but not for the complex video. Therefore, we propose a sampling method to
enhance BM. Let a windowW slide on the saliency map, then sum up the values of all pixels in
the window as the ‘salient degree’ of the window, defined as follows:

SW ¼
X
x2W

Sðx; tÞ ð22Þ

where S(x, t) represents the saliency value of the pixel at position x. The size ofW is determined
by the RF size in our experiments. Consequently, we obtain r salient degree values SWi

, i = 1,
� � �, r. Similar to [51], the adaptive threshold (Th) value is regarded as the mean value of a given
salient degree:

Th ¼ k
Xr

i¼1

hðiÞSWi
ð23Þ

where h(i) is a salient degree value histogram, k is a constant. Once the value of salient degree
SWi

is greater than Th, the corresponding region is regarded as a region of interest (ROI).
Finally, morphological operation is used to obtain the BM of the interest objects, BM1 = {R1,1,
� � �, R1,q1}, where q1 is number of the ROIs.

Because motion of interest objects is often nonrigid, each region in BM1 may not comprise
complete structure shapes of the interest objects. To settle such deficiencies, we reuse conspicu-
ity spatial intensity map to get more completed BM. The same operations are performed for
conspicuity spatial intensity map (S1 =N(Fo) +N(F)) to obtain BM including structure shapes
of the objects, BM2 = {R2,1, � � �, R2,q2}. Then, BM of moving objects, BM3 = {R3,1, �, R3,q3}, is
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achieved by the interaction between both BM1 and BM2 as follows:

R3;c ¼
R1;i [ R2;j if R1;i \ R2;j 6¼ F

F others
ð24Þ

(

To further refine BM of moving objects, conspicuity motion intensity map (S2 =N(Mo) +N
(M)) is reused and performed with the same operations to reduce regions of still objects.
Assume BM from conspicuity motion intensity map as BM4 = {R4,1, �, R4,q4}. Final BM of mov-
ing objects, BM = {R1, � � �, Rq} is obtained by the interaction between BM3 and BM4 as follows:

Rc ¼
R3;i if R3;i \ R4;j 6¼ F

F others
ð25Þ

(

It can be seen in Fig 6 an example of moving objects detection based on our proposed visual
attention model. Fig 7 shows different results detected from the sequences with our attention
model in different conditions. Although moving objects can be directly detected from saliency
map into BM as shown in Fig 7(b), the parts of still objects, which are high contrast, are also
obtained, and only parts of some moving objects are included in BM. If the spatial and motion
intensity conspicuity maps are reused in our model, complete structure of moving objects can
be achieved and regions of still objects are removed as shown in Fig 7(e).

Spiking Neuron Network and Action Recognition
In the visual system, perceptual information also requires serial processing for visual tasks [37].
The rest of the model proposed is arranged into two main phases: (1) Spiking layer, which
transforms spatiotemporal information detected into spikes train through spiking neuron

Fig 6. Example of operation of the attentionmodel with a video subsequence. From the first to final column: snapshots of origin sequences, surround
suppression energy (with v = 0.5ppF and θ = 0°), perceptual grouping feature maps (with v = 0.5ppF and θ = 0°), saliency maps and binary masks of moving
objects, and ground truth rectangles after localization of action objects.

doi:10.1371/journal.pone.0130569.g006
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model; (2) Motion analysis, where spiking train is analyzed to extract features which can repre-
sent action behavior.

1 Neuron Distribution
Visual attention enables a salient object to be processed within the limited area of the visual
field, called as “field of attention” (FA) [52]. Therefore, the salient object as motion stimulus is
firstly mapped into the central region of the retina, called as fovea, then mapped into visual cor-
tex by several steps along the visual pathway. Though the distribution of receptor cells on the
retina is like a Gaussian function with a small variance around the optical axis [53], the fovea
has the highest acuity and cell density. To this end, we assume that the distribution of receptor
cells in the fovea is uniform. Accordingly, the distribution of the V1 cells in FA bounded area is
also uniform, as shown Fig 8. A black spot in the distribution map represents single spiking
neuron and the color circle indicates its CRF.

Due to non-rigid motion and scale change of the salient object in sequence, the size and cen-
ter of the FA change with its BM. We consider FA area as a square with sides of length L and
central position xc. The length of L is defined as follows:

L ¼ maxflx; lyg þ DL ð26Þ

where lx and ly are width and height of the BM bounded area, respectively. ΔL is extending spa-
tial extent, which is set n1 times of a constant r, thus ensuring the BM completely embedded in

Fig 7. Example of motion object extraction. (a) Snapshot of origin image, (b) BM from saliency map, (c) BM from conspicuity spatial intensity map, (d) BM
from conspicuity motion intensity map, (e) BM combining with conspicuity spatial and motion intensity map, (f) ground truth of action objects. Reprinted from
[http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm] under a CC BY license, with permission from [Weixin Li], original copyright [2007]. (S1 File).

doi:10.1371/journal.pone.0130569.g007
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FA, as shown in Fig 8. In generally, due to the continuous movement of the salient object in
sequence, L(t) is a time-varying function. To avoid frequent changes, L(t) is constrained by fol-
lows:

LðtÞ ¼ Lðt0Þ þ bðmax
t
flx; lyg �max

t0
flx; lygÞ=ðn2rÞc ð27Þ

where t is present time and t0 is last time when L(t) is updated. n2 is a factor constant, con-
strained by n2 < n1.

On the other hand, the visual attention is able to track the salient object in motion and to
keep it in the foveal region, known as smooth pursuit [17]. It makes FA center position xc be
almost identical with BM geometer center xb. Similar to above method, xc can be determined
by xb as follows:

xcðtÞ ¼
xbðtÞ if jxbðtÞ � xcðt0Þj 	 n3r

xcðt0Þ others
ð28Þ

(

where n3 is another factor constant. The constraint of n2 + n3 < n1 ensures BM within FA
bounded area. In this paper, n1, n2, n3 are respectively set as 7, 2 and 2.

Finally, the original video streams are resized and centered to produce sequences of
120 × 120 pixels according to FA bounded areas. The spatiotemporal information falling in the
FA is further processed by V1 cells. We consider Nv layers of organized V1 cells, each of which
is built with the V1 cells with the same properties of spatial-temporal tuning. The RF of V1 cell
at the physical position xi is defined by its properties of spatial-temporal tuning. Each layer is
consist of No + 1 sub-layers with No different orientations and non-orientation. In the physical

Fig 8. Distribution schematics for spiking neuron. L is maximum size of attentional visual field, in which neurons connect to each other to form a network.
A block point is a center position of a receptive field, range of which is represented by a color circle.

doi:10.1371/journal.pone.0130569.g008
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position, where RF of cells is centered, one column is formed in each layer, which has as many
elements as No + 1 orientations defined. Therefore, for all layers, there are Nv × (No + 1) cells
along Nv layers in xi.

2 Spiking Neuron Model
A typical neuron is synaptically linked with hundreds of thousands of others. To capture func-
tional properties and realistic dynamic behaviors, a spiking neuron is always described by
computational model according to biological plausibility and the computational efficiency. So,
many models have been proposed to simulate the entity in the literature [54].

In this paper, we use conductance-driven integrate and fire neuron model (IF model) [38]
to simulate spiking neurons. The formula is as follows:

duiðtÞ
dt

¼ GE
i ðtÞðVE � uiðtÞÞ þ GI

i ðtÞðVI � uiðtÞÞ
þgLðVL � uiðtÞÞ þ IiðtÞ

ð29Þ

where GE
i ðtÞ is the normalized excitatory conductance directly associated with the pre-synaptic

neurons connected neuron i, and GI
i ðtÞ is an inhibitory normalized conductance; The conduc-

tance gL is the passive leaks in the cell’s membrane; Ii(t) is an external input current. When the
normalized membrane potential ui(t)	 u0, spiking neuron i will emit a spike and the voltage
reset to the resting potential. As some properties of the cells in V1 are used to detect spatiotem-
poral information, the first and second terms corresponding to GI

i ðtÞ and GE
i ðtÞ in Eq (29) as

internal current are integrated into Ii(t) here. Eq (29) is rewritten as

duiðtÞ
dt

¼ gLðVL � uiðtÞÞ þ IiðtÞ ð30Þ

The typical values for VL is -70mv.

3 Neuron’s Input
Objective of the spiking neuron model described above is to transform the analogous response
of V1 cell defined in Eq (12) to the spiking response so as to characterize the activity of a neu-
ron. From Eq (30), the activity of a neuron is determined by external input current Ii(t) of the
the spiking neuron and the membrane potential threshold.

First, let us consider input of a spiking neuron i in V1 whose center is located in xi. Its exter-
nal input current Ii(t) associates with the analogous response of V1 cell defined in Eq (12).
However, the activation of the cell is in range of classical RF. The computational operator over
RF in a sub-layer (e.g. same preferred motion direction and speed) is needed [55]. Thus, the
input current Ii(t) of the ith neuron is modeled in Eq (31) as follows:

IiðtÞ ¼ Kexcmax
i
fRv;ðyÞðx; tÞg ð31Þ

where Kexc is an amplification factor, Rv,(θ)(x, t) refers to V1 cell response defined in Eq (12)
with k = 4 and maxi is a operator of local maximum [56].

4 Spike Train Analysis for Action Recognition
According to above description, every spiking neuron in V1 generates a series of spikes corre-
sponding to stimuli of human action over time, called spike train ηi(t). To recognize human
action, we only need to analyze the activity of spiking networks built by spiking neurons in V1
cortex, so that features representing human action can be extracted from spike trains. For a
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spike train, it comprises of discrete events in time, can be described by succession of emission
times of a spiking neuron in V1 as ZiðtÞ ¼ f� � � ; tni ; � � �g, where tni corresponds to the nth spike
of the neuron of index i.

Since our main purpose focuses on action recognition based on the proposed framework
rather than strategies of spike-based code, some methods about high-level statistics of spike
trains [57] are not considered in this paper. Similar to [13], mean firing rate over time, which is
one of the most general and effective methods, is used.

For a spiking neuron, its mean firing rate over time is computed with the average number of
spikes inside a temporal window, Eq (32) defined as:

T iðt;DtÞ ¼
Ziðt � Dt; tÞ

Dt
ð32Þ

where ηi(t − Δt, t) counts the number of spikes emitted by neuron i inside the glide time win-
dow Δt. Fig 9 displays the spike train of a neuron and its mean firing rate map, where Δt = 7.

Fig 9. Spike train (upper) and its Mean firing rate (bottom).

doi:10.1371/journal.pone.0130569.g009
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Fig 10 shows raster plots obtained considering the 1400 cells of a given orientation in two dif-
ferent actions: walking and handclapping.

In Eq (32) and Fig 9, the estimation of the mean firing rate depends on the size of the glide
time window. A wider window Δt can reduce the individual spike generated by noise stimuli
resulting in smooth curve of mean firing rate, but it simultaneously degrates the significance in
time. Although the smaller can highlight instantaneous firing rate, it also emphasizes the
uncertainty of the spike train corresponding to dynamic stimulus. To do this, we will select a
suitable size of the glide time window to measure the mean firing rate according to our given
vision application.

Another problem for rate coding stems from the fact that the firing rate distribution of real
neurons is not flat, but rather heavily skews towards low firing rates. In order to effectively
express activity of a spiking neuron i corresponding to the stimuli of human action as the pro-
cess of human acting or doing, a cumulative mean firing rate Ti(t, Δt) is defined as follows:

T i ¼
Ptmax

t¼1 T iðt;DtÞ
tmax

ð33Þ

where tmax is length of the subsequences encoded.
Remarkably, it will be of limited use at the very least for the cumulative mean firing rates of

individual neuron to code action pattern. To represent the human action, the activities of all
spiking neurons in FA should be regarded as an entity, rather than considering each neuron
independently. Correspondingly, we define the mean motion mapMv,(θ) at preferred speed
and orientation corresponding to the input stimulus I(x, t) by

Mv;ðyÞ ¼ fT pg; p ¼ 1; � � � ;Nc ð34Þ

where Nc is the number of V1 cells per sub-layer. Because the mean motion map includes the
mean activities of all spiking neuron in FA excited by stimuli from human action, and it repre-
sents action process, we call it as action encode.

Due to No + 1 orientation (including non-orientation) in each layer, No + 1 mean motion
maps is built. So, we use all mean motion maps as feature vectors to encode human action. The
feature vectors can be defined as:

HI ¼ fMjg; j ¼ 1; � � � ;Nv 
 ðNo þ 1Þ ð35Þ

where Nv is the number of different speed layers, Then using V1 model, feature vector HI

extracted from video sequence I(x, t) is input into classifier for action recognition.
Classifying is the final step in action recognition. Classifier as the mathematical model is

used to classify the actions. The selection of classifier is directly related to the recognition
results. In this paper, we use supervised learning method, i.e. support vector machine (SVM),
to recognize actions in data sets.

Materials and Methods

1 Database
In our experiments, three publicly available datasets are tested, which are Weizmann (http://
www.wisdom.weizmann.ac.il/vision/SpaceTimeActions.html), KTH (http://www.nada.kth.se/
cvap/actions) and UCF Sports (http://vision.eecs.ucf.edu/data.html). Weizmann human action
data set includes 81 video sequences with 9 types of single person actions performed by nine
subjects: running (run), walking (walk), jumping-jack (jack), jumping forward on two legs
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Fig 10. Raster plots obtained considering the 1400 spiking neuron cells in two different actions shown at right: walking and handclapping under
condition 1 in KTH.

doi:10.1371/journal.pone.0130569.g010
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(jump), jumping in place on two legs (pjump), galloping-sideways (side), waving two hands
(wave2), waving one hand (wave1), and bending (bend).

KTH data set consists of 150 video sequences with 25 subjects performing six types of single
person actions: walking, jogging, running, boxing, hand waving (handwave) and hand clapping
(handclap). These actions are performed several times by twenty-five subjects in four different
conditions: outdoors (s1), outdoors with scale variation (s2), outdoors with different clothes
(s3) and indoors with lighting variation (s4). The sequences are down-sampled to a spatial res-
olution of 160 × 120 pixels.

UCF Sports data set includes diving, golf swinging, kicking, lifting, horseback riding, run-
ning, skating, swinging a baseball bat, and pole vaulting. The dataset contains over 200 video
sequences at a resolution of 720 × 480 pixels. The collection represents a natural pool of actions
featured in a wide range of scenes and view points.

2 Parameter setting
Our proposed model is constructed with Nv layers of preferred speeds and each layer is com-
posed of five sub-layers corresponding to five orientations (0°, 45°, 90°, 135°, and a non-orien-
tation). As the preferred speeds at which the model runs are associated with spatial-temporal
frequency and computing load, their number and values will be determined by experimental
results. The parameter settings can be seen in Table 1. The model has a total of 5Nv sub-layers,
formed by 5 orientations (including a non-orientation) and Nv different spatial-temporal tun-
ings. There is a total of 1600 cells in a sub-layer, being distributed in the whole FA. It is noted
that the FAs generated by our attention model are resized and centered in 120 × 120 pixels,
forming new FA sequences. The sizes of receptive field patch and surrounding area are 2σ and
8σ respectively.

To compare the performance with other methods, we conduct experiments on all of the
three given datasets under the following three experimental setups:

• Setup 1 is that one sequence of a subject is selected as the testing data while the sequences of
other subjects are employed as the training data, called leave-one-out cross validation similar
to [31].

• Setup 2 uses the sequences of more than one subjects for testing and others for training [13]
and [5]. We select 6 random subjects as a training set and the remaining 3 subjects as a test-
ing set for Weizmann dataset, and 16 subjects randomly drawn from KTH dataset for train-
ing and the remaining 9 subjects for testing. We run all the possible training sets (84) for
Weizmann and do 100 trails for KTH

Table 1. Parameters Used for V1 Mode.

Parameters Values

FA size 120 pixels

Number of preferred speeds Nv

Number of preferred orientations 5

Neuron density 0.33 per pixel

Size of receptive field patch 2σ pixels

Size of surrounding area 8σ pixels

Number of neurons per sub-layer 1600

doi:10.1371/journal.pone.0130569.t001
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• Setup 3 is similar to setup 2, but only do five random trails, following the same experimental
protocol described in Jhuang et al. [4].

Each setup examines the ability of the proposed approach to recognize human actions in vid-
eos. The performance is based on the average of all trails. It is noted that this is done separately
for each scene (s1, s2, s3, or s4) in KTH dataset.

Experimental Results
Extensive experiments have been carried out to verify the effectiveness of the proposed
approach. The following describes the details of the experiments and the results.

1 Effects of Different Parameter Sets on the Performance
In our model, the feature vector HI computed in Eq (35), is dependent on different parameters,
including subsequence length tmax, size of glide time window4t, number of preferred speeds
Nv and their values, et al. To evaluate the performance of our model for action recognition, the
following test experiments are firstly performed with different parameter settings. Moreover,
all experiments are implemented under Setup 1 in order to ensure the consistency and
comparability.

Frame length. Firstly, to examine the impact of the frame length of the selected subse-
quence tmax on the recognition results, we apply the classifier SVM to assess the proposed
model on all subsequences randomly selected from all original videos of Weizmann and KTH
datasets. Note that all tests are performed at five different speeds v, such as 1, 2, 3, 4 and 5 ppF,
with the size of glide time window4t = 3. The classifying results with different parameter sets
are shown in Fig 11, which indicates that: (1) the average recognition rates (ARRs) increase
with increment of subsequence length tmax from 20 to 100; (2) ARR on each of test datasets is
different at different preferred speeds; (3) ARRs on different test datasets are different at each
of the preferred speeds.

How long subsequence is suitable for action recognition? We analyze the test results on
Weizmann dataset. From Fig 11, it can be clearly seen that the ARR rapidly increases with the
frame length of selected subsequence at the beginning. For example, the ARR onWeizmann
dataset is only 94.26% with the frame length of 20 at preferred speed v = 2ppF, whereas the
ARR rapidly raises to 98.27% at the frame length of 40, then keeps relatively stable at the length
more than 40. In order to obtain a better understanding of this phenomenon, we estimate the
confusion matrices for the 81 sequences fromWeizmann dataset (See in Fig 12). From a quali-
tative comparison between the performance of the human action recognition at the frame
length of 20 and 60, we find that ARRs for actions are related to their characteristics, such as
average cycle (frame length of a whole action), deviation (see Table 2). The ARRs of all actions
are improved significantly when the frame length is 60, as illustrated in Fig 12. The reason
mainly is that the length of average cycles for all actions is not more than 60 frames. Certainly,
it can be observed that the larger the frame length is, the more information is encoded, which is
helpful for action recognition. Moreover, it is relatively significant that the performance can be
improved for actions with small relative deviations to average cycles.

The same test on KTH dataset is performed and the experimental results under four differ-
ent conditions are shown in Fig 11(b)–11(e). The same conclusion can be obtained: ARRs
increase with increment of the frame length and keep relatively stable at the length more than
60 frames. It is obvious for overall ARRs under all conditions at different speeds shown in Fig
11(f). Considering the computational load increasing with the growing frame length, as a
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compromise plan, maximum frame length of the subsequence selected from original videos is
set to 60 frames for all following experiments.

Size of glide time window. Secondly, to evaluate the influence of the size of glide time
window Δt in Eq (33) on the recognition results, we perform the same test on Weizmann and
KTH datasets (s2, s3 and s4). It is noted that the maximum frame length is 60 for all subse-
quences randomly selected from original videos for training and testing and the SVM based on
Gaussian kernel is used as a classifier which discriminates action classes from others.

Fig 13 shows experimental results with different size values of glide time window at different
preferred speeds. It is seen that the ARRs at different speeds on each dataset (including each
condition) vary with size of glide time window. Considering performance at all speeds used in
test, we find that the optimal window size value is 3 in most cases. It also indicates that the fea-
tures computed with different sizes of glide time window also affect the recognition perfor-
mance. The mean motion maps are easily interrupted by undesired stimulus when the window
size is small, whereas the distinctiveness of feature vectors among human actions are degraded
in large window size. According to the average ARRs at all speeds from the experimental results
shown in Fig 13, the size of glide time window is set to 3.

Number of the preferred speeds and their values. The experimental results shown in Figs
11 and 13 exhibit distinct recognition performance at different speeds. For example, the highest
ARR on KTH dataset (s2) is provided at the preferred speed of v = 3ppF (Δt = 3), whereas the

Fig 11. The average recognition rates proposedmodel with different frame lengths and different speeds for different datasets, which size of glide
time window is set as a constant value of 3. (a)Weizimann, (b)KTH(s1),(c) KTH(s2), (d) KTH(s3), (e) KTH(s4) and (f) average of KTH (all conditions).

doi:10.1371/journal.pone.0130569.g011
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actions on KTH dataset (s3) are more accurately classified at the preferred speed of v = 2ppF.
As the different human actions operate at the different speeds and the same action in different
scales also does with different speeds, number of the preferred speeds and their values
employed to compute action features will greatly affect the recognition results.

However, it is impossible to detect features at all different speeds to evaluate the influence of
preferred speeds on human action recognition due to huge computational cost. Moreover, only
choosing one preferred speed for action recognition is not reasonable because of the

Fig 12. Confusionmatrices obtained using two different frame lengths at preferred speed v = 2ppF: Left 20 frames, andRight 60 frames on
Weizmann dataset.

doi:10.1371/journal.pone.0130569.g012

Table 2. Average Cycles of Actions in Weizmann and KTH Dataset.

Weizmann KHT

Class Cycle Num.(	 40) Class Cycle Num.(	 40)

runn 20.3 ±3 0 walking 27.7 ± 4 0

walk 26.9 ±2 0 jogging 29.9 ± 4 0

jack 27.2 ±3 0 running 17.0 ± 4 0

jump 13.4 ±3 0 boxing 31.7 ± 20 5

pjump 16.1 ±3 0 handwave 41.5 ± 28 1

side 15.0 ±2 0 handclap 27.8 ± 16 12

wave2 29.2 ±4 0

wave1 29.0 ±4 0

bending 60.9 ±7 9

average 25.0 27.6

doi:10.1371/journal.pone.0130569.t002
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complexity of action. To obtain more accurate recognition performance, we need to evaluate
how many and which preferred speeds should be introduced into our model to extract motion
features for human action recognition in general videos. It is known that most real-world video
sequences have a center-biased motion vector distribution. More than 70 to 80% of the motion
vectors can be regarded as quasi-stationary and most of the motion vectors are enclosed in the
central 5 × 5 area [58]. Therefore, we opt to evaluate the performance of our model with com-
bination of different speeds of which the value is no more than 5. For simple computation, the

Fig 13. The average recognition rate of proposedmodel with different sizes of glide time window and different speeds for various datasets, where
maximum frame length is set as constant value of 60. From upper left to lower right, the sub-figures correspond to the cases of Weizimann, KTH(s2),
KTH(s3), KTH(s4), respectively.

doi:10.1371/journal.pone.0130569.g013
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speed is set to integer value. Because the combinations of different speeds are too more, the
experimental results on Weizmann and KTH datasets at some combinations are shown in Fig
14. It is clearly seen that the different combinations in our model have an important effect on
the accuracy of action recognition. For example, the recognition performance at the combina-
tion of two speeds 1+3ppF is the best one datasets except KTH (s3) dataset, and is better than
that at most combinations on KTH (s3) dataset. The average recognition rate at this combina-
tion on all datasets achieves 95.16% and is the best. In view of computation and consideration
for overall performance of our model on all datasets, action recognition is performed with the
combination of two speeds (1 and 3ppF) for all experiments.

2 Effects of Different Visual Processing Procedure on the Performance
In order to investigate the behavior of our model with real-world stimuli under two conditions:
(1) surround inhibition and (2) field of attention and center localization of human action, all
experiments are still performed onWeizmann and KTH datasets with a combination of 2 levels
of V1 neurons (Nv = 2, v = 1, 3ppF), 4 different orientations per level, Δt = 3 and tmax = 60. To
evaluate robustness of our model, input sequences with perturbations are used for test under
same parameter set. Training and testing sets are arranged with Setup 1.

3D Gabor. 3D Gabor filers modeling the spatiotemporal properties of V1 simple cells are
crucial to detection of spatiotemporal information from image sequences, which directly affect
subsequent extraction of the spatiotemporal features. To examine the advantage of inseparable
properties of V1 cells in space and time for human action recognition, we compare the results

Fig 14. The average recognition rates of the proposedmodel at combination of different speeds. A. Weizmann, B. KTH(s1), C. KTH(s2), D. KTH(s3),
and E. KTH(s4). The labels from 1 to 8 represent the speed combinations of 2+3, 2+3+4, 1+2+3, 1+3, 1+2+3+4+5, 2+3+4+5, 1+2+4, and 1+2+5,
respectively.

doi:10.1371/journal.pone.0130569.g014
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of our model to those of our model using traditional 2D Gabor filters to replace 3D Gabor fil-
ters. In all experiments, to keep the fairness, the spatial scales of 2D Gabor filters are the results
computed by Eq (2), other parameters in the model remain the same. The experimental results
are listed in Table 3. Results show that our model significantly outperforms the model with tra-
ditional 2D Gabor, especially on datasets including complex scenes, such as KTH s2 and s3.

Surround inhibition. To validate the effects of the surround inhibition on our model, we
use r̂ v;ðyÞðx; tÞ in Eqs (7) and (8) as input of integrate-fire model in Eq (29) to replace Rv,(θ)(x, t)

in Eq (31). For each training and testing sets, the experiment is performed two times: only con-
sidering the activation of the classical RF, and the activation of RF with the surround inhibition
proposed. We construct a histogram with the different ARRs obtained by our approach in two
cases (Fig 15). As we can see in Fig 15, the values of ARR with the surround inhibition are
much higher than no surround inhibition on Weizmann and KTH datasets. At the same time,
ARR values with no surround inhibition have a strong variability and the recognition perfor-
mance highly depends on the sequences used to construct the training set, while the values
with surround inhibition are relatively stable.

Field of attention and center localization. The attention computational model described
in the preceding section is introduced in our action recognition model. The binary masking
(BM) of an action object is obtained to determine the center position and size of FA based on
our attention model. There are many methods to evaluate the performance of the attention
model in terms of correct detections, detection failures, matching area, and so on. In our case,
the aim is not to emphasize the performance of action object detection, but the effect of action
object detection on the action recognition performance. From another perspective, ARRs
reflect the performance of moving object detection to a certain extent.

The inaccurate detection of action object will lead to the inaccuracy of the size and position
of FA so that the recognition performance decreases. For example, the larger FA size causes
useless features to be encoded by neurons in V1. To evaluate performance of our attention
model and verify the effect of the center localization on action recognition, we implement
exhaustive experiments under different conditions: BM obtained by manual and automatic
methods, the FA size with fixed value and adaptive value determined by the binary mask of
action object. All experiments on Weizmann and KTH datasets are performed four times. The
experimental results are shown in Table 4.

According to these results, it is clearly seen that the recognition rates under manual BM are
higher than that under automatic BM, and the recognition rates under FA size with adaptive
value are higher than that with fixed value. But, the recognition performance on different data-
sets under automatic BM condition is close to one under manual BM condition except for
KTH s3. Even though the bags and clothes of the action object in KTH s3 directly impact on
detection of the moving objects, resulting in low performance of action recognition, the recog-
nition rate is still acceptable. It represents that our attention model is effective.

Moreover, it can also be seen from Table 4 that the recognition rate on KTH s2 under FA
size with adaptive value is much higher than that with fixed value. The main reason is that the
proposed method with automatically adjusting FA size satisfies scale variation of action object,

Table 3. Performance Comparison with the Model Using 2D Gabor.

Dataset Weizmann KTH(s1) KTH(s2) KTH(s3) KTH(s4) Avg.

3D Gabor 99.02 96.77 91.13 91.80 97.10 95.16

2D Gabor 96.31 93.06 85.18 84.42 93.22 90.44

doi:10.1371/journal.pone.0130569.t003

Computational Model of Primary Visual Cortex

PLOS ONE | DOI:10.1371/journal.pone.0130569 July 1, 2015 26 / 34



the size of the action objects in KTH s2 changes greatly due to the zoom shots. It indicates that
the our model is robust.

3 Comparisons with Different Approaches
Comparison I-With Bio-inspired Approaches. The purpose of this comparison is to find

which bio-inspired approach proposed is more effective. It is more meaningful and fair to
make comparison of different approaches on the same dataset. Tables 5 and 6 show the

Fig 15. Histograms representing the average recognition rates obtained by our model with 2 conditions: (1) surround inhibition and (2) no
surround inhibition onWeizmann and KTH datasets. A. Weizmann, B. KTH(s1),C. KTH(s2), D. KTH(s3), E. KTH(s4)

doi:10.1371/journal.pone.0130569.g015

Table 4. Average Recognition Rates (%) under Field of Attention.

BM FA Size Weizmann(ARR/std) KTH(ARR/std)

s1 s2 s3 s4

Automatic Fixed 98.89/0.53 96.56/1.10 84.10/2.20 89.56/1.10 96.38/1.20

Adaptive 99.02/0.62 96.77/0.85 91.13/1.15 91.80/1.06 97.10/0.79

Manual Fixed 99.11/0.52 96.93/0.56 85.12/1.66 92.02/1.45 97.17/1.18

Adaptive 99.30/0.40 97.47/0.85 91.45/0.96 93.20/0.83 97.37/1.05

doi:10.1371/journal.pone.0130569.t004
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performance comparisons of some bio-inspired approaches on both Weizmann and KTH
datasets respectively.

OnWeizmann dataset, the best recognition rate is 92.81% under experiment environment
Setup 2 by Escobar’s approach [13] which uses the nearest Euclidean distance measure of syn-
chrony motion map with triangular discrimination method, while the best performance of
Jhuang’s [4] achieves 97.00% using SVM under experiment environment Setup 3. However, we
can draw more conclusions from Table 5. Firstly, no matter what kind of approaches, sparse
feature is beneficial to the performance improvement. It is noted that the effective sparse infor-
mation is obtained by center-surround interaction. Secondly, the comprehensive and reason-
able configurations of center-surround interaction can enhance the performance of action
recognition. For example, more accurate recognition can achieved by the approach [5] using
both isotropic and anisotropic surrounds than the model [59] without these. Finally, our
approach obtains the highest recognition performance under different experimental environ-
ment even if only isotropic surround interaction is adopted.

From Table 6, it is also seen that the recognition performance of the proposed approach on
KTH dataset is superior to others in different experimental setups. For each of four different
conditions in KTH dataset, we can obtain the same conclusion. Moreover, our approach is
only simulating the processing procedure in V1 cortex without MT cortex, and the number of
neurons is less than that of Escobar’s model. The architecture of proposed approach is more
simple than that of Escobar’s and Jhuang’s. As a result, our model is easy to implement.

Table 5. Comparison with Bio-inspired Approaches onWeizmann Dataset.

Approaches Setup1(%) Setup2(%). Setup3(%) Years

Ours (CRF+surround) 99.02 98.76 99.36 –

Ours (CRF) 94.65 93.38 95.19 –

Escobar (TD) [5] – 96.34 98.53 2012

Escobar (SKL) [5] – 96.48 99.26 2012

Escobar (CRF) [13] – 90.92 – 2009

Escobar (CRF+surrounds) [13] – 92.68 – 2009

Jhuang(GrC2 dense features) [4] – – 91.10 2007

Jhuang(GrC2 sparse features) [4] – – 97.00 2007

doi:10.1371/journal.pone.0130569.t005

Table 6. Comparison with Bio-inspired Approaches on KTH Dataset.

Approaches Setup s1 s2 s3 s4 avg.

Ours Setup1 96.77 91.13 91.80 97.10 94.20

Setup2 (100trails) 96.71 91.06 90.93 97.02 93.93

Setup3 (5trails) 97.06 91.24 91.87 97.45 94.41

Escobar [5] Setup2 (100trails) 83.09 – 69.75 83.84 78.89

Setup3 (5trails) 92.00 – 84.44 92.44 89.63

Ning [31] Setup1 – – – – 83.79

Setup2 (100trails) – – – – 92.31

Setup3 (5trails) 95.56 87.41 90.66 94.74 92.09

Jhuang [4] Setup3(dense) 94.30 86.00 85.80 91.00 89.30

Setup3(sparse) 92.70 86.80 87.50 93.20 90.00

doi:10.1371/journal.pone.0130569.t006
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Comparison II—Compendium of Results Reported. Due to the lack of a common data-
set and standardized evaluation methodology, the development of action recognition algo-
rithms obviously has been limited even if a large number of papers reported good recognition
results on individual datasets which contains various human actions. Due to the real difficulties
of making such quantitative comparison, the comparison among various different approaches
seldom is made cross datasets. Here, in order to ensure consistency and comparability, we sim-
ply list some representative studies in terms of the same datasets, and approximate accuracies
in Table 7. To some extent, these approaches reflect the latest and best work in human motion
or action recognition.

In Table 7, we report the experimental results on the KTH dataset. Our experiment setting
is consistent with the respective setting in [4], [5], [31], [29], [60], and we train and test the pro-
posed method with Setup1 and Setup3 on the entire dataset. The experimental results of our
approach under Setup 2 are also provided. From Table 7, we can see that performance of pro-
posed approach demonstrated here is comparable to others with respect to recognition rates.
Moreover, we have also found that recognition rates of our approach are relative stable under
different setups in the comparable data set, and the difference between them is not more than
0.5%.

Fig 16 represents the confusion matrices of the classification on the KTH dataset using our
approach. The column of the confusion matrix represents the instances to be classified, while
each row represents the corresponding classification results. The main confusion occurs

Table 7. Comparison of Our approach with Others on KTH Dataset.

Methods Setup1(%) Setup2(%). Setup3(%) Years

Ours 94.20 93.93 94.41 -

Yuan [61] 95.49 - - 2013

Zhang&Tao [29] - - 93.50 2012

Wang [62] - - 94.20 2011

Gilbert [60] 95.70 - 94.50 2011

Kovashka [27] - - 94.53 2010

Yuan [63] - - 93.30 2009

Leptev [64] - - 91.80 2008

doi:10.1371/journal.pone.0130569.t007

Fig 16. Confusionmatrices on KTH dataset. From left to right: s1, s2, s3 and s4.

doi:10.1371/journal.pone.0130569.g016
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between jogging and running in four different scenarios. It is a difficult challenge to distinguish
the jogging and running because the two actions performed by some subjects are very similar.

We also use two cross-validation strategies under Setup1 and Setup3 for UCF Sports dataset
used in the computer vision. Again, our performance shown in Table 8 is at 90.82% accuracy,
and it is better than other contemporary approaches except Wu’method, which achieves at
best 91.3%. These results clearly demonstrate that our approach is a notable new representation
for human action in video and capable of robust action recognition in a realistic scenario.

Discussion and Conclusions
In this paper we propose a bio-inspired model to extract spatiotemporal features from videos
for human action recognition. Our model simulates the visual information processing mecha-
nisms of spiking neurons and spiking neural networks composed with them in V1 cortical
area. The core of our model is the detection and processing of spatiotemporal information
inspired by the visual information perceiving and processing procedure in V1. The dynamic
properties of V1 neurons are modeled using 3D Gabor spatiotemporal filter which can detect
spatial and temporal information inseparately. To further process spatiotemporal information
for effective features extraction and computation of saliency map, we adopt the center sur-
round interactions, inhibition and facilitation based on horizontal connections of neurons in
V1. The visual attention model is then integrated into the proposed approach for better action
recognition performance. Then the bio-inspired features generated by neuron IF model are
encoded with the proposed action code based on the average activity of V1 neurons. Finally the
action recognition is finished via a standard classification procedure. In summary, our model
has several advantages:

1. Our model only simulates the visual information processing procedure in V1 area, not in
MT area of visual cortex. So our architecture is more simple and easier to implement than
the other similar models.

2. The spatiotemporal information detected by 3D Gabor, which is more plausible than other
approaches, is more effective for action recognition than the spatial and temporal informa-
tion detected separatively.

3. Salient moving objects are extracted by perceptual grouping and saliency computing, which
can blind meaningful spatiotemporal information in the scene but filter the meaningless
one.

Table 8. Comparison of Our approach with Others’ on UFC Sports Dataset.

Methods Setup1(%) Setup3(%) Years

Rodriguez [65] 69.20 - 2008

Varma & Babu [66] 85.20 - 2009

Kovashka [27] 87.30 - 2010

Wu [67] 91.30 - 2011

Wang [62] 88.20 - 2011

Yuan [61] 87.33 - 2013

Ours 90.82 90.96 -

doi:10.1371/journal.pone.0130569.t008
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4. A spiking neuron network is introduced to transform the spatiotemporal information into
spikes of neurons, which is more biologically plausible and effective for the representation
of spatial and motion information of the action.

Although extensive experimental results have validated the powerful abilities of the pro-
posed model, further evaluation on a larger dataset, with multivaried actions, subjects and sce-
narios, needs to be carried out. Both shape and motion information derived from actions play
important roles in human motion analysis [2]. Fusion of the two information is, thus, prefera-
ble for improving the accuracy and reliability. Although there have been some attempts for this
problem [30], they usually use the linear combination between shape and motion features to
perform recognition. How to extract the integrative features for action recognition still remains
challenging.

In addition, the recognition result of our model suggests that the longer subsequences may
be more helpful for information detection. However, in many practical applications, it is
impossible to recognize action for long time. Most of the application focus on the short
sequences. Thus, the feature extraction should be as fast as possible for action recognition.

Finally, surround suppressive motion energy can be computed from video scene based on
the definition of the surround suppression weighting function, stimulating biological mecha-
nism of center surround suppression. We can find that the response of texture or noise in one
position is inhibited by texture or noise in neighboring regions. Thus, the surround interaction
mechanism can decrease the response to texture while not affecting the responses to motion
contours, and is robust to the noise. However, as a particular V1 excitatory neuron identified
as the target neuron, its surround inhibition properties are known to depend on the stimulus
contrast [50], with lower contrasts yielding larger summation RF sizes. To fire the neuron at
lower contrast, the neuron has to integrate over a larger area to reach its firing threshold. It
requires that the surround size can be automatically adjusted according to local contrast.
Therefore, there are still problems to be solved in the model, for instance, the dynamical adjust-
ment of summation RF sizes and further processing of motion information in MT.
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