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Summary 
Toxic shock syndrome (TSS) is a multi system disorder resulting from superantigen-mediated 
cytokine production. Nearly 90% of the clinical cases of TSS arise due to an exotoxin, toxic 
shock syndrome toxin-1 (TSST-1), elaborated by toxigenic strains of  Staphylococcus aureus. It is 
clearly established that besides antigen-specific signals a variety of costimulatory signals are re- 
quired for full T cell activation. However, the nature and potential redundancy of costimula- 
tory signals are incompletely understood, particularly with regards to superantigen-mediated T 
cell activation in vivo. Here we report that CD28-deficient mice ( C D 2 8 - / - )  are completely 
resistant to TSST-l-induced lethal TSS while CD28 ( + / - )  littermate mice were partially re- 
sistant to TSST-1. The mechanism for the resistance of the CD28 ( - / - )  mice was a complete 
abrogation of TNF-e~ accumulation in the serum and a nearly complete (90%) impairment of  
IFN-'y secretion in response to TSST-1 injection. In contrast, the serum level of lL-2 was only 
moderately influenced by the variation of CD28 expression. CD28 ( - / - )  mice retained semi- 
tivity to TNF-0r as demonstrated by equivalent lethality after cytokine injection. These findings 
establish an essential requirement for CD28 costimulatory signals in TSST-l-induced TSS. 
The hierarchy of TSST-1 resistance among CD28 wild-type (CD28+/+) ,  CD28 heterozy- 
gnus ( C D 2 8 + / - ) ,  and C D 2 8 - / -  mice suggests a gene-dose effect, implying that the levels 
of  T cell surface CD28 expression critically regulate superantigen-mediated costimulation. Fi- 
nally, as these results demonstrate the primary and non-redundant role of CD28 receptors in 
the initiation of the in vivo cytokine cascade, they suggest therapeutic approaches for superan- 
tigen-mediated immunopathology. 

T oxic shock syndrome (TSS) is characterized clinically 
by high fever, hypotension, erythroderma, skin desqua- 

mation, and in severe cases, multiple organ failure and 
death (1). TSS is induced by a number of bacterial superan- 
tigens (SAg) and among these SAgs, the toxic shock syn- 
drome toxin-1 (TSST-1) is the most common cause ofexo-  
toxin-induced TSS (1, 2). TSST-1, produced by several 
toxigenic strains of Staphylococcus aureus, binds to MHC 
class II molecules on antigen presenting cells (3) and stimu- 
lates V[32-bearing T cells in humans (4) and V[33-, V[315-, 
and V[317-bearing T cells in mice (5, 6). Upon activation, 
these T cells proliferate and produce a surge of proinflam- 
matory cytokines such as IL2, TNF-ci, and IFN-y (2), and it 
is these cytokines that eventuate in the clinical syndrome (2). 

For conventional antigens to trigger T cells, two signals 
are needed: the first signal is delivered by the TCR-Ag-Ia 
complex and the second signal by the interaction between 
a costirnulatory molecule on APC and its T cell counter- 
receptor (7-9). Recent observations in vitro also support a 
dependence on a costimulatory signal for SAg-mediated 

activation o f T  cells (10-13). However, one study has con- 
cluded that SAg-stimulated T cell proliferation in vitro is 
independent of  CD28 (14). Others have concluded that the 
requisite costimulatory signals for nominal antigen and su- 
perantigen may differ in studies using astrocytes as APC 
(15). Together, these data strongly suggest an in vitro re- 
quirement for costimulatory signals for TSST-l-induced 
T cell responses, however in vivo, a requirement for par- 
ticular costimulatory signals has not yet been established. 
To date only one study has addressed the requirement for 
CD28 costimulation in vivo. Muraille and coworkers dem- 
onstrated a partial amelioration with anti-B7-2 antibodies, 
but not anti-B7-1 antibodies in Staphylococcal enterotoxin B 
(SEB)-induced TSS (16). Since the CD28-mediated co- 
stimulatory signal is emerging as an important regulator of 
both endogenous and exogenous SAg-induced T cell re- 
sponses, C D 2 8 - / -  mice were used to assess the require- 
ment for CD28 involvement in TSST-l-induced TSS. 
The C D 2 8 - / -  mice were entirely resistant to TSST-1- 
induced TSS, providing genetic evidence to indicate that 
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CD28 provides an essential and non-redundant  costimula- 
tory signal for TSS. Our  results also demonstrated that dif- 
ferent levels of T cell CD28 expression in C D 2 8 + / + ,  
C D 2 8 + / -  and C D 2 8 - / -  mice correlated with TSST-1-  
induced lethality and with the serum TNF-ci  and IFN-~ 
levels. Surprisingly, TSST- l - i nduced  elevation in serum 
IL-2 levels were only moderately influenced by CD28 ex- 
pression. Finally, injection of  TNF-o~ entirely abolished 
TSST- 1 resistance of C D 2 8 - / -  mice, confirming a maj or 
role of TNF-o~ as an effector in TSS. 

Materials and Methods  

Mice. Female C57BL/6 (H-2 u) mice (age 6-8 weeks) were pur- 
chased from The Jackson Laboratory (Bar Harbor, ME). C D 2 8 - / -  
mice were generated as previously described (17). A male 
C D 2 8 + / -  mouse, as produced by backcrossing the originally 
described C D 2 8 - / -  mice to a C57BL/6 mouse, was bred with 
a female C57BL/6 mouse to produce heterozygous offspring. 
The heterozygous litter mates were intercrossed to generate 
CD28+/+ ,  C D 2 8 + / -  and C D 2 8 - / -  mice. These mice were 
further backcrossed to the C57BL/6 background for five genera- 
tions. The mice were phenotyped for CD28 expression by FACS 
analysis of peripheral blood T cells and genotyped by a poly- 
merase chain reaction (PCtL) from genomic DNA obtained by 
tail biopsy using primers specific for either wild-type or knock- 
out CD28 constructs (17). The mice used as controls were the 
wild-type and heterozygous litter mates of the CD28-deficient 
mice. The experiments described herein were conducted accord- 
ing to the principles set forth in the Guide for The Care and Use 
of Laboratory Animals, NIH Publication, 85-23 (1985). 

Determination of CD28 Phenotype by Flow Cytometry. The CD28 
phenotype was determined by using a FITC-conjugated anti-CD3 
mAb (PharMingen, San Diego, CA), a phycoerythrin-conjugated 
anti-CD28 mAb. Background staining levels were determined by 
use of a FITC- or phycoerythrin-conjugated Leu-4 mAb (Phar- 
Mingen). For phenotyping, peripheral blood was collected from 
(C57BL/6 5< CD28 KO) F5 mice and PBMC were isolated by 
gradient centrifugation. 106 PBMC were incubated with a FITC- 
conjugated anti-CD3 mAb followed by phycoerythrin-conju- 
gated anti-CD28 mAb. The stained cells were analyzed by an Ep- 
ics flow cytometer (Couker Inc., Hialeah, FL) and an Excel-based 
curve smoothing program was used to describe the histogram. 

Monodonal Antibodies and Reagents. Fluorochrome-conjugated 
anti-CD3 and anti-CD28 antibodies were procured from Phar- 
Mingen. TSST-1 was purchased from Toxin Technology (Sarasota, 
FL). D-galactosamine (D-Gal) was purchased from Sigma Chemi- 
cal Co. (St. Louis, MO). 

Mortality Assay. CD28-deficient mice or their control wild- 
type and heterozygous litter mates were injected with 20 p.g of 
TSST-1 in their hind foot pads 30 rain after intraperitoneal injec- 
tion of D-Gal. 

Sera Preparation. The CD28-deficient or control mice, 12 in 
each group, were treated with D-Gal and TSST-1 as described 
above. Two mice from each group were euthanized at each of 
the indicated time-points and their blood was clotted on ice, then 
centrifuged at 10,000 rpm. The superuatants were collected and 
stored at -70~ for subsequent lymphokine assays. 

Lymphokine Assay. Using appropriate dilutions ofsera, TNF-Ix, 
IL-2, and IFN-~/ were assayed with Endogen (Cambridge, MA) 
ELISA kits according to the manufacturer's instructions. 

Statistical Analysis. Each experiment was performed two to 

four times and representative data are presented. Differences be- 
tween experimental groups in the mortality assay were analyzed 
using Fischer's exact test. ELISAs were analyzed using Student's 
t test. 

Results  

The Level of CD28 Expression Is a Critical Determinant for 
TSST-1-induced Lethal Shock, To assess the role of the CD28 
costimulatory receptor in TSST- l - induced  shock, mice ho- 
mozygous for the disrupted CD28 gene ( C D 2 8 - / - )  were 
compared to their wild-type homozygous ( C D 2 8 + / + )  or 
CD28 heterozygous ( C D 2 8 + / - )  litter mates. These mice 
were obtained by intercross of mice subsequent to back- 
cross done five times of the original CD28 heterozygote by 
C57BL/6 strain. The CD28 genotype was defined by PCtk 
against genomic D N A  using primers specific for wild-type 
or disrupted CD28 (17) (data not  shown). In preliminary 
studies, we could not detect differences in the peripheral T 
cell repertoire of the C D 2 8 - / -  and C D 2 8 + / +  mice as 
determined by flow cytometric analysis of VJ33, V~36, and 
V[38 expressing T cells (data not shown), confirming previ- 
ous studies that have not revealed CD28-mediated differ- 
ences in thymic selection for nominal  and endogenous 
SAgs (17, 18). The phenotypic expression of CD28 on the 
surface of resting T cells in peripheral blood was assessed by 
flow cytometric analysis (Fig. 1 a). It was found that the 
surface staining with ant i -CD28-PE of T cells from 
C D 2 8 - / -  mice had background fluorescence intensity 
while T cells from C D 2 8 + / +  mice had a much higher 
fluorescence intensity. T cells from C D 2 8 + / -  mice dem- 
onstrated an intermediate staining intensity with anti- 
CD28. These results are consistent with the idea that CD28 
surface expression on T cells is controlled by a gene-dosage 
effect. 

To test the effect of  CD28 expression on TSST-1-  
induced lethal shock, C D 2 8 + / + ,  C D 2 8 + / -  and 
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Figure 1. (A) CD28 expres- 
sion on CD28+/+, CD28+/-,  
and CD28- / -  mice  after 
breeding onto the C57BL/6 
background as described in Ma- 
terials and Methods. The level of 
CD28 expression on the surface 
of peripheral blood T cells was 
measured by flow cytometry. (/3) 
TSST-l-induced mortality in 
CD28+/+ (circle), CD28+/- 
(triangle) and CD28- / -  (square) 
mice. The three groups (n = 6) 
of mice, were presensitized with 
40 t~g of D-galactosamine intra- 
peritoneaUy 30 rain before 20 p.g 
injection of TSST-1 in their 
hind foot pads. Mice were ob- 
served for 72 h to score the 
TSST-l-induced mortality. Sur- 
vival of the CD28- / - mice was 
significantly better than the 
CD28+/+ mice (P = 002, 
Fisher Exact Test). 
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C D 2 8 - / -  mice, 6 per experimental group, were injected 
with D-Gal and TSST-1 as described previously (2). D-Gal 
was used to abolish the natural resistance o f  the rodents to 
enterotoxins (2). All C D 2 8 + / +  mice showed signs o f  
TSST- l - induced  illness including shivering, piloerection, 
cessation o f  movement  and heaping up together within 2 h 
o f  TSST-1 injection. In striking contrast, none o f  the six 
C D 2 8 - / -  mice tested showed any sign of  illness. While 
six out o f  six C D 2 8 + / +  mice died within 36 h o f  TSST-1 
injection, all C D 2 8 - / -  mice survived (Fig. 1 b) indicating 
that functional expression of  the CD28 gene is required for 
TSST- l - induced  TSS. Interestingly, C D 2 8 + / -  mice dis- 
played an intermediate pattern o f  disease susceptibihty and 
showed a delayed dea th - -o f  the six mice injected, four died 
and two survived (Fig. 1 b). These mice also developed 
symptoms from TSS later, with onset ~ 4  h after TSST-1 
injection. This pattern o f  CD28-dependent TSSTq-resis-  
tance was reproduced in four independent experiments. Since 
C D 2 8 + / -  mice have intermediate T cell surface expres- 
sion o f  CD28 between C D 2 8 + / +  and C D 2 8 - / -  mice, 
the level o f  CD28 expression hkely determined the severity 
o f  symptoms and clinical course o f  the disease. It has been 
shown that CTLA4,  a related molecule that shares the same 
ligands with CD28 (19), is expressed in C D 2 8 - / -  mice 
(20). The association between CD28 expression and 
TSST-1 lethahty indicated that B7:CTLA4 interactions are 
not sufficient for the induction o f  TSS. 

Secretion of Proinflammatory Cytokines Is Dependent on the 
Level of CD28 Expression. It has been shown previously that 
a cytokine cascade mediates the immunopathology of  TSS. 
Therefore, the role o f  CD28 in cytokine production, par- 
ticularly TNF-ci ,  IFN-',/, and IL-2 production during TSS 
was assessed (Fig. 2 a). Serum levels o f  TNF-{x were mea- 
sured at multiple time points after TSST-1 injection. While 
a sharp increase was observed within 1 h after TSST-1 injec- 
tion in C D 2 8 + / +  mice, C D 2 8 - / -  mice had a profound 
defect in TNF-e~ serum levels, The complete abrogation of  
TNF-c~ accumulation at all time points in the C D 2 8 - / -  
mice was in contrast to the level o f  TNF-oL in C D 2 8 + / -  
mice that was nearly half of  that observed in C D 2 8 + / +  mice 
(Fig. 2 a). Given the intermediate level o f  CD28 expression 
in these mice, these results indicate that the level o f  CD28 
expression determines the level o f  TNF-o~ secretion after 
TSST-1 injection. 

I F N - y  is also known to be involved in the acute inflam- 
mation and tissue damage characteristic o f  TSS pathology 
and therefore, serum levels o f  IFN-~/ from TSST-1-  
injected mice were examined (Fig. 2 b). In contrast to the 
early accumulation o f  TNF-cq the appearance o f  IFN-~/in 
the serum was delayed. C D 2 8 + / +  mice displayed a pro- 
nounced rise in the serum level o f  IFN-~/4 h after TSST-1 
injection, whereas only a marginal elevation of  IFN-~/was 
observed in C D 2 8 - / -  mice. Similar to TNF-eq C D 2 8 + / -  
mice displayed intermediate I F N - y  levels, indicating that 
the level o f  CD28 expression also determined TSST-1-  
induced IFN-'r  production. 

Previous reports indicated that CD28 can provide co- 
stimulation for SEB to result in increased IL-2 gene tran- 
scription in vitro (10). Consistent with this, serum IL-2 el- 
evation in vivo was significantly lower in C D 2 8 - / -  mice 
as compared to C D 2 8 + / +  and C D 2 8 + / -  mice after 
TSST-1 injection (Fig. 2 c). In contrast to the CD28 gene- 
dosage differences shown above for TNF-ot  and to a lesser 
extent for IFN-~/production, the level of  IL-2 in C D 2 8 + / -  
mice was not different from that found in C D 2 8 + / +  
mice. Apparently low-level CD28 expression is sufficient 
for full IL-2 secretion while the higher CD28 levels found 
in C D 2 8 + / +  mice are required for full T N F - a .  Further- 
more, the reduced but still appreciable IL-2 elevation in 
the C D 2 8 - / -  mice indicates the presence o f  CD28-inde-  
pendent mechanisms of  costimulation for IL-2, in contrast 
to an absolute requirement for CD28 in the case o f  T N F - ~  
(Fig. 2, a vs c). 

TNF-ee Is an Essential Cytokine Required for TSST-1-Induced 
Shock Syndrome. TNF-(x has been proposed to be a major 
cytokine in TSS as it is the first cytokine to peak after TSST-1 
injection, it effects the subsequent production o f  other cy- 
tokines and their receptors, and an t i -TNF-a  antibodies 
prevent TNF- induced  lethality (2). Thus, the TSST-1-  
resistant phenotype o f  the C D 2 8 - / -  mice could be ex- 
plained by the lack o f  TNF-o~ secretion. Alternatively, it 
was possible that the downstream cascade o f  TNF-med i -  
ated events was also disrupted in the C D 2 8 - / -  mice, and 
therefore, that C D 2 8 - / -  mice might be resistant to TNF-0c 
To  distinguish between these possibilities, TNF-o~ was in- 
jected at a sublethal dose along with TSST-1 in C D 2 8 + / +  
and C D 2 8 - / -  mice. As shown in Fig. 3 a, the TSST-1-  
resistant C D 2 8 - / -  mice succumb to TSST- l - induced  
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Figure 2. Serum concentrations of TNF-oL (A), 
IFN-y (/3), and IL-2 (C) at different time points af- 
ter injection of TSST-1 in CD28+/+ (circle), 
CD28+/-  (square), and CD28- / -  (triangle) mice. 
These mice, 12 in each group, were treated with 
D-galactosamine and TSST-1 as described in Fig. 1. 
Two mice from each group were euthanized at 
each of the indicated time-points and the sera were 
collected and stored at -70~ for subsequent cy- 
tokine assay. The cytoldnes were assayed by ELISA 
(Endogen, Inc., Boston, MA) and the mean value 
from the paired sera depicted. 



TSS when TSST-1 was accompanied by a sublethal dose o f  
TNF-ot. Neither reagent alone reproduced the lethal ef- 
fects o f  TSS in C D 2 8 - / -  mice. 

The TNF-ot add-back experiment in the CD28-defi-  
cient mice was used to determine whether the TSS that 
occurred in these mice was associated with reconstitution 
o f  I F N - y  secretion. Wild type or C D 2 8 - / -  mice were 
injected with TSST-1 with or without TNF-tx as described 
above and sera were collected 4 h after TSST-1 injection, 
based upon the expected kinetics determined in Fig 2. IFN-~/ 
levels were about threefold lower in normal mice given 
TNF-c~ injections as compared to TSST-1 injection. 
C D 2 8 - / -  mice given TSST-1 only had levels sevenfold 
less than wild-type mice. It was found that TNF--~ co-  
injection with TSST-1 restored the levels o f  IFN-y  in 
C D 2 8 - / -  mice nearly to the level o f  C D 2 8 + / +  mice 
treated with TSST-1 (Fig. 3 b). Thus, conditions associated 
with eventual lethality had high I F N - y  levels while the 
conditions associated with ultimate survival had lower IFN-',/ 
levels. These results are consistent with the notion that the 
lethal effect o f  TNF-oe as observed in TSS is mediated 
through induction of  cytokines including IFN-y.  There-  
fore we concluded that CD28-transduced signals are essen- 
tial for production o f  TNF-ot in the context o f  TSST-1 
stimulation and further, that TNF-c~ can bypass the CD28-  
mediated signaling deficit to reconstitute the clinical fea- 
tures o f  TSS in C D 2 8 - / -  mice. 

Discussion 

Since costimulation through CD28 plays a critical role in 
a variety of  T cell responses against nominal foreign antigens, 
auto-, allo-, or xeno-geneic transplantation antigens (9, 18, 
21), we have studied the role o f  this costimulatory signal in 
superantigen-driven T cell activation by using C D 2 8 - / -  
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Figure 3. (A) Role of TNF-cl 
in TSST-l-induced mortality. 
CD28+/+ (square) and CD28-/-  
(circle) mice were injected with 
D-galactosamine and/or TSST-1 
as described in Fig. 1. The mice 
also received a sublethal dose of 
rTNF-ot (1 rig/mouse) intrave- 
nously. The control groups re- 
ceived only rTNF4x at the same 
dose (triangle). (B) Effect of TNF-et 
injection on serum IFN-y con- 
centration. Groups of ~rfice were 
treated as in (A), and sera ob- 
tained 4 h after TSST-1 injection 
to measure IFN-y by ELLS& 
The mean and range of paired 
serum samples is indicated. 

mice. The concordance o f  the level o f T  cell surface CD28 
expression with the severity and lethality o f  TSS confirm 
the pivotal role of  the CD28 molecule in TSST- l - induced  
TSS. The C D 2 8 - / -  mice had a striking defect in the 
ability to secrete TNF-0~, and reveal that there are no re- 
dundant costimulatory molecules for this form of  superan- 
tigen-mediated T cell activation. Furthermore, serum levels 
o f  TNF4x  and I F N - y  were also observed to be correlated 
to the CD28 surface expression and lethality. 

The pathogenesis o f  TSS by bacterial SAg is mediated by 
T cells as SCID mice are entirely resistant to TSST-1 and 
SEB but are rendered susceptible when reconstituted with 
syngeneic T cells (2, 22). The T cells which express the 
SAg-reactive V[3 TCRs,  e.g., V[33, V[315, and V[317 for 
TSST-1, V~8 for SEB are required for the onset o f  TSS. 
Although SAg can bind directly the M H C  class II mole- 
cules and activate the pertinent VI3 TCR-bear ing  T ceils 
by direct interactions with T C R ,  recent studies have dem- 
onstrated that ICAM-l-def ic ient  mice are resistant to SEB- 
induced lethal TSS (23), indicating the importance o f  ad- 
hesion molecules in TSS. Therefore, it is now evident that 
in addition to M H C  class II, T C R  and adhesion molecules, 
costimulatory molecules also play important roles in SAg- 
induced T cell responses. 

The most likely explanation uncovered for the TSST- 
1-resistant phenotype of  the CD28-deficient mice was the 
impairment o f  TNF-~x secretion. It is notable that while the 
serum levels o f  TNF-ot and IFN-~/ in TSST-l- injected 
C D 2 8 + / -  mice were almost half the level of  those in 
C D 2 8 + / +  mice, the IL-2 levels were not different be- 
tween C D 2 8 + / +  and + / -  mice. Three different possi- 
bilities may account for this difference in TNF4x  and IL-2 
regulation. First, the threshold o f  CD28-mediated signaling 
required for the production o f  these cytokines may differ 
and thus, signaling through V ~ - T C R  and engagement of  
fewer CD28 molecules on T cells would be sufficient for 
triggering IL-2 but not TNF-c~ and IFN-y.  The second 
possible mechanism would involve CD28-mediated stabili- 
zation o f  cytokine m R N A  (24). Since TNF-e~ is tran- 
scribed at a substantial rate in resting T ceils (25) but steady 
state m R N A  levels o f  TNF-o~ remain low due to rapid de- 
gradation (26), it is possible that CD28 signaling may be 
more important for stabilizing TNF-~x m R N A  than IL-2 
m R N A  (24). Finally, it is possible that CD28 has effects at 
a posttranslational level. There are two forms of  tumor ne- 
crosis factor, a type II membrane protein o f  relative molec- 
ular mass 26 kD and a soluble, 17-kD form generated from 
the cell-bound protein by metalloproteinase-mediated pro- 
teolytic cleavage. Inhibition o f  the metalloproteinase pro- 
tects mice from endotoxic shock (27, 28). It is possible that 
the activity o f  this enzyme which has been shown to be es- 
sential for the release o f  TNF-ot from its precursor is in 
some manner regulated by CD28. Further studies will be 
required to define the mechanism of  the TNF-ot  defect in 
CD28-deficient mice. 

Our  results confirm previous studies using other experi- 
mental approaches indicating that TNF-ci  appears to be a 
major cytokine in TSS because not only is it the first cyto- 
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kine to peak after TSST-1 injection, TNF-0~ also initiates a 
self-amplifying cascade o f  cytokine interactions that even- 
tuates in a lethal outcome (2, 22). The cascade may start 
with TNF-oL which stimulates T cell IL-2 receptor expres- 
sion and thereby, confers IL-2 responsiveness to result in an 
enhanced T cell proliferation (29). In support o f  this, we 
have found that the T cells from C D 2 8 - / -  mice prolifer- 
ate much less in response to TSST-1 than the T cells from 
C D 2 8 + / §  mice. This low T cell proliferation can be re- 
stored by TNF-ci  and is sensitive to anti-IL2 receptor anti- 
body (data not shown). Thus, although C D 2 8 - / -  mice 
have significant levels o f  IL-2 in response to stimulation by 
nominal antigen as shown by Lucas and coworkers (18) and 
as shown here after SAg stimulation, the T cells may not be 
fully responsive due to low IL2-receptor expression result- 
ing from the absence o f  TNF-ci  (data not shown). H o w -  
ever, after being induced by TNF-oL, IFN-% in its turn, 
signals through TNF-Ix-induced IFN-'y receptors on mac- 
rophages to augment M H C  class II expression (30). This 

may effect a more ef/icient presentation o f  TSST-1 t o  

T cells as T cell proliferation is known to be directly pro- 
portional to the product o f  antigen concentration and the 
density o f l a  molecules (31). The primary role o f  TNF-ci  in 
TSS is also supported by studies indicating that neutralizing 
TNF-0~ in vivo by injection o f  anti-TNF-cx antibody also 
rescues mice from TSST- l - induced  death (2) and that 
TNF-oL receptor (p55) knock out mice are entirely resistant 
to SEB-induced TSS (32). 

In conclusion, CD28 is essential for TSST-1 induced 
TNF-ct  production and the subsequent fatal pathological 
sequelae. Disruption o f  CD28 gene abrogates TNF-oL pro- 
duction and thereby prevents the onset of  the syndrome. 
Therefore, knowing that the CD28-mediated costimula- 
tory signal is non-redundant  for T cell superantigens pro- 
vides a rationale for novel therapeutic interventions for 
toxic shock syndrome and potentially for other states o f  
immunopathology caused by dysregulation o f  T cell lym- 
phokine secretion. 
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