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A literature review spanning January 1, 2010, to December 31, 2019, was conducted using the PubMed and ISI Web of Science 
databases to determine the breadth of publication activity in the area of gram-negative bacteria antimicrobial therapy. The number 
of articles was used as a reflection of scholarly activity. First, PubMed was searched using the following Medical Subject Headings 
(MeSH): antibacterial agents, Enterobacteriaceae, Acinetobacter, and Pseudomonas. A total of 12 643 articles were identified within 
PubMed, and 77 862 articles were identified within ISI Web of Science that included these terms. Second, these articles were categor-
ized by antibiotic class to identify relative contributions to the literature by drug category. Third, these studies were used to identify 
key trends in the treatment of gram-negative bacterial infections from the past decade. This review highlights advances made in the 
past 10 years in antibacterial pharmacotherapy and some of the challenges that await the next decade of practice.
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Gram-negative bacteria, specifically gram-negative rods 
(GNRs), are ubiquitous microorganisms that commonly feature 
a lipopolysaccharide-adorned outer membrane, a narrow pep-
tidoglycan layer, and an inner membrane that effectively serve 
as permeability barriers to exogenous chemicals, including 
antibiotics [1]. GNRs acquire a variety of resistance traits via 
horizontal gene transfer, including drug efflux permeases, 
antibiotic-modifying enzymes, bypass targets, and ribo-
some modification or mutation [1, 2]. While genes encoding 
drug efflux permeases and antibiotic-modifying enzymes (eg, 
β-lactamases) are often acquired through horizontal gene 
transfer, mutational events are known to produce new pheno-
types with modified antibiotic targets (eg, ribosomal mutation), 
resulting in diminished antibiotic–target interactions [3, 4]. 
In particular, β-lactamases play a critical role in catalyzing re-
sistance against β-lactam antibiotics. Through repeated expo-
sure, GNRs have developed extended-spectrum β-lactamases 
(ESBLs), which can confer resistance to penicillins and ceph-
alosporins, and carbapenemases, which can confer resistance to 
carbapenems [5].

Gram-negative bacteria are responsible for a multitude of 
infections, including bacteremia, device-associated infections, 

intraabdominal infections (IAIs), urinary tract infections 
(UTIs), community-acquired bacterial pneumonia (CABP), 
hospital-acquired pneumonia (HAP), and ventilator-associated 
pneumonia (VAP) [1]. Within these disease categories, GNRs 
compose a significant disease burden, causing upwards of 30% 
of hospital-acquired infections [6]. Multidrug-resistant (MDR) 
GNRs, including Pseudomonas aeruginosa, Acinetobacter 
baumannii, and ESBL-producing Enterobacteriaceae world-
wide are associated with poor patient prognosis [7]. (The family 
Enterobacteriaceae is a member of the reclassified phylogenetic 
order Enterobacterales [8].) The exponential growth of such 
MDR pathogens during the past decades demands a renewed 
interest in drug discovery and drug development in the search 
for antibiotics with novel mechanisms. For example, the emer-
gence of multidrug-resistant GNRs educed the repurposing of 
polymyxins and fosfomycin as antibiotics of “last resort” in the 
mid-2000s [9, 10]. Furthermore, the disease burden of MDR 
pathogens has precipitated advances in practice development 
and scholarly activity during the last decade.

The Generating Antibiotics Incentives Now (GAIN) Act was 
signed into law on July 9, 2012, as part of the Food and Drug 
Administration Safety and Innovation Act (FDASIA) [7]. The 
purpose of the GAIN Act was to bolster drug development ef-
forts for the treatment of microorganisms that were growing re-
sistant to antimicrobials in the current formulary. The GAIN 
Act established the designation of certain new anti-infective 
agents as qualified infectious disease products (QIDPs) if they 
treated serious or life-threatening infections caused by emerging 
infectious disease pathogens or specific MDR pathogens iden-
tified by the FDA. In the past decade, 12 new antibiotics have 
been approved using the QIDP designation (Supplementary 
Appendix A). Eleven of the drugs that were approved using the 
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QIDP designation were approved after the publication of the 
GAIN Act. These agents have been approved for a variety of in-
fections including complicated urinary tract infections (cUTIs), 
CABP, HAP, VAP, acute bacterial skin and soft tissue infections 
(ABSSSIs), traveler’s diarrhea, and complicated intra-abdominal 
infections (cIAIs). Under the GAIN Act, new antimicrobials 
have been approved in virtually every drug class used for the 
treatment of gram-negative bacterial infections. Three of these 
agents are of the cephalosporin class or are novel cephalosporin/
β-lactamase inhibitors, including ceftolozane/tazobactam, 
ceftazidime/avibactam, and cefiderocol. The others include the 
carbapenem/β-lactamase inhibitors meropenem/vaborbactam 
and imipenem/cilastatin/relebactam, a new fluoroquinolone 
delafloxacin, tetracycline-family antibiotics eravacycline (a 
fluorocycline) and omadacycline (an aminomethylcycline), and 
a new aminoglycoside, plazomicin. Therefore, we conducted a 
literature review of publications and citations concerning the 
broad subject of antimicrobial pharmacotherapy of gram-neg-
ative bacteria. Using the identified publications, several 
topics were investigated: (1) trends in scholarship concerning 

treatment of infections caused by gram-negative bacteria; (2) 
popularity of drug classes by scholarly interest; (3) novel chal-
lenges, opportunities, and themes within prescribing practices; 
(4) how new drugs approved under the GAIN Act are used in 
clinical practice.

RESULTS AND DISCUSSION

Literature Review of Gram-Negative Antimicrobial Pharmacotherapy

First, search criteria were established for PubMed and ISI Web 
of Science to locate publications and citations about the use of 
gram-negative antimicrobials. Search criteria for PubMed were 
developed using Medical Subject Headings (MeSH) and included 
the following MeSH terms as major topics: “anti-microbial,” 
“Pseudomonas,” “Acinetobacter,” and “Enterobacteriaceae” 
(Supplementary Appendix B). Simultaneously, a similar set 
of criteria was developed to search ISI Web of Science for ar-
ticles with the same topical coverage (Figure  1). These initial 
search criteria resulted in the identification of 12 643 records 
in PubMed and 77 862 records in ISI Web of Science (Figure 2). 

Build search criteria for the
literature search.

• Antimicrobial
• Enterobacteriaceae
• Pseudomonas
• Acinetobacter

Limit search period from January 1,
2010, to December 31, 2019.

Search PubMed database
using search criteria as
major MeSH.

Search ISI Web of Science 
literature database using 
search criteria.

Records identified using 
MeSH and time period 
criteria (n = 12 643 articles).

Records identified using 
keyword and time criteria
(n = 77 862 articles).

Records further screened 
based on additional drug 
class search terms
(n = 9453 articles).

Review articles manually
searched and tallied to
identify major thematic
groupings for literature
review (n = 406 articles).

Citation analysis carried out
for the total number of citations,
citing articles, h-index, and
average citations per item.

Figure 1.  Literature search strategy and results. Abbreviation: MeSH, Medical Subject Headings.
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Importantly, it was noted that in both database searches, the 
total number of publications in this area increased linearly 
during the period of 2010–2018 (Figure 2). From the PubMed 
database, the number of publications increased per annum from 
901 publications in 2010 to 1715 publications in 2018. In the ISI 
Web of Science search, the number of publications increased 
from 5588 in 2010 to 9866 publications in 2018. Notably, there 
was a decrease in the number of reported publications in 2019, 
which is hypothesized to be due to the delay in indexing of arti-
cles. We observed a nearly 2-fold increase in publication activity 
in the field of gram-negative antimicrobial pharmacotherapy 
during the 2010s.

Second, using the same search criteria, citation analysis 
was conducted using the results from ISI Web of Science. 
Citation analysis differs from the number of total publica-
tions in that it identifies the number of times publications were 
cited in other peer-reviewed articles for a given period. This 

reflects the impact, or the extent of dissemination, of a group 
of peer-reviewed articles. The citation analysis quantified the 
total number of citations that articles received in a given year 
(Figure 3). Articles that were published earlier in the decade ac-
cumulated more total citations than articles that were published 
later in the decade, as older articles have had more time to be 
discovered and cited. For example, articles published in 2010 
were cited 183 032 times by 133 212 articles, as compared with 
fewer citations in 2019, in which 13 984 articles were cited by 
11 540 articles. Also, articles published during this time exhib-
ited an h-index of 139 in 2010 and 31 in 2019 (Figure 3). The 
h-index is a reflection of the number of publications “h,” which 
have “h” number of citations; this is a useful metric for discrim-
inating publications that are not yet cited and publications with 
a disproportionately high number of citations [11]. The average 
number of citations per item was 32.75 in 2010 and 3 in 2019. 
The data reveal broad dissemination and the high impact of 
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Figure 2.  Total number of publications about gram-negative antimicrobials published from 2010 to 2019. A, The total number of publications indexed in PubMed. B, The 
total number of publications indexed in ISI Web of Science.
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research in the field of gram-negative pharmacotherapy during 
the 2010s.

Third, an analysis of the total number of publications by drug 
class was also conducted (Figure  4). First, additional search 
terms for “penicillins,” “cephalosporins,” “aminoglycosides,” 
“fluoroquinolones,” “carbapenems,” and “polymyxins” were in-
cluded in the original search criteria in PubMed (Supplementary 
Appendix B). From these searches, the number of publications 
per drug class was quantified per annum over the course of 
the decade (Supplementary Appendix C). The data revealed a 
steady publication rate for aminoglycosides, fluoroquinolones, 
and penicillins over the course of the decade. There were 

notable increases in the number of publications for cephalo-
sporins from 2016 to 2018, carbapenems from 2014 to 2017, 
and polymyxins from 2014 to 2017. The polymyxins exhibited 
the most dramatic increase in publications, from 138 articles in 
2015 to 202 articles in 2016. This increase likely reflected the 
increase in use of these antimicrobial agents in practice. A pie 
chart was compiled reflecting the percentage of publications 
from each drug class that composed the body of work during 
the 2010s (Figure  4). Approximately 25% of the articles were 
not categorized using the drug class–specific search criteria. 
These data reflect an increase in scholarly activity for cephalo-
sporins, carbapenems, and polymyxins in the pharmacotherapy 
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of gram-negative bacterial infections during the last half of the 
decade and relatively constant scholarly activity for penicillins, 
aminoglycosides, and fluoroquinolones during the 2010s.

Thematic Analysis of Major Topics

Using the results of the literature review, the publications were 
narrowed down to review articles spanning January 1, 2010, to 
December 31, 2019, retrieved from PubMed to identify major 
publication themes. From this search, 407 review articles were 
identified and manually classified by publication themes via 
reading the title of the article and the abstract. From this, full-
text publications of articles that encapsulated major publication 
“themes” were retrieved (Table 1).

The most common theme identified was the study of and 
management of infections caused by MDR bacteria. Throughout 
the 2010s, researchers focused on studying and reporting on in-
herently resistant GNRs such as Pseudomonas aeruginosa and 

Acinetobacter baumanii [12–16]. These organisms display resist-
ance to antibiotics commonly used for community-acquired in-
fections such as ceftriaxone and amoxicillin/clavulanic acid and 
can become resistant to other broad-spectrum antibiotics such 
as aminoglycosides, carbapenems, and polymyxins. During this 
time, many manuscripts were also published that described 
organisms that produce carbapenemases, such as Klebsiella 
pneumoniae carbapenemases (KPCs) and New Delhi metallo-
β-lactamase (NDM) [17–23]. Treating Enterobacteriaceae that 
produce carbapenemases can offer a clinical challenge as they 
can also be resistant to non-β-lactam-class antibiotics due to the 
coexistence of other resistance mechanisms [24].

The second most common theme was the management of 
pulmonary infection in patients with cystic fibrosis. Throughout 
the 2010s, several review articles evaluating the optimal method 
of antibiotic delivery in these patients were published. Inhaled 
antibiotics had been used before the 2010s, but the optimal use 
of this method of antibiotic delivery was further evaluated [25–
30]. Several oral and intravenous antibiotics were also inves-
tigated in inhaled formulations [31–35]. Additionally, the use 
of bronchoscopy-guided antimicrobial therapy was revisited 
throughout the decade [36–38]. Lastly, the management of 
P. aeruginosa specifically was the subject of many review arti-
cles, as it is one of the most common pathogens associated with 
acute and chronic cystic fibrosis infections [39–42].

The final theme identified during the review involved the 
use of antibiotics in animals and the subsequent develop-
ment of resistance [43–46]. Antibiotics are commonly used 
as a growth promoter in livestock that are not infected. This 
practice leads to prolonged antibiotic exposure, which may 
promote the continued evolution of antimicrobial resistance. 
As of January 1, 2017, the FDA forbade the use of medically 
important antibiotics to promote growth in food animals 
[47]. This ruling likely contributed to an overall decrease in 
the sales of antimicrobials for use in animal feed from 2015, 
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Figure 4.  Percent contribution of total publications per drug class from 2010–2019.

Table 1.  Evaluation of Literature Topics via Thematic Analysis

Topic No.

Pharmacotherapy of MDR bacteria 95

Generalized MDR gram-negative pathogens  
(KPC, NDM, OXA-48, VIM, IMP)

58

Pseudomonas 53

Acinetobacter 45

Cystic fibrosis management 32

Resistance mechanisms 24

Specific antimicrobial agents 22

Specific diseases 20

Animal topics 16

The table includes the evaluation of major themes of 407 review articles. As some review 
articles did not fit within any of these major themes, the numbers in the table will not add 
up to 407.

Abbreviations: KPC, Klebsiella pneumoniae carbapenemase-producing bacteria; MDR, 
multidrug-resistant; NDM, New Delhi metallo-β-lactamase 1-producing Enterobacteriaceae; 
OXA-48, oxacillinase/carbapenemase-producing Klebsiella pneumoniae; VIM, Verona 
integron-mediated metallo-β-lactamase-producing GNRs. 
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which was the year of peak use, but sales did increase between 
2017 and 2018 [47]. This theme is likely to receive further at-
tention in the coming decade.

An exceedingly important theme of the decade that was not 
captured by this evaluation was the increased focus on anti-
microbial stewardship. The Centers for Disease Control and 
Prevention (CDC) had a focus on antimicrobial stewardship be-
fore the 2010s with their “Get Smart” program, which was amp-
lified in the following decade [48]. Throughout the 2010s, the 
CDC produced several evidence-based guidance documents, 
starting with the original CDC Core Elements of Hospital 
Antibiotic Stewardship Programs in 2014 [49–51]. These docu-
ments outlined evidence-based strategies for the creation and 
maintenance of impactful antimicrobial stewardship programs 
in the inpatient and outpatient setting. In tandem, the Joint 
Commission created new requirements for health care organ-
izations to create and maintain inpatient and outpatient stew-
ardship programs in accordance with the CDC Core Elements 
in 2017 and 2020, respectively [52, 53]. This renewed focus on 
antimicrobial stewardship by the federal government was ac-
companied by research into the topic. In particular, treating 
infections for decreasing durations was investigated, with the 
prevailing conclusion being that shorter durations of therapy 
are as effective as longer durations of therapy [54, 55].

Review of New Antibiotics Approved Under the GAIN Act

Treatment of resistant Enterobacteriaceae poses a clinical chal-
lenge, and in the early 2010s, there were few effective anti-
biotics. For MDR GNRs that are resistant to carbapenems, 
treatment options included toxic antibiotics such as poly-
myxins and aminoglycosides or antibiotics with increased risk 
for mortality such as tigecycline. Unfortunately, there exist 
some strains of bacteria that are also resistant to these anti-
biotics. Before 2014, when the first QIDPs were approved 
under the GAIN Act, many researchers investigated the ef-
ficacy of combination antibiotic therapy. The specific com-
binations recommended depended on the species of bacteria 
and that strain’s specific susceptibility patterns. Possible regi-
mens included combinations of polymyxins, carbapenems, 
aminoglycosides, tigecycline, fosfomycin, and the β-lactamase 
inhibitor sulbactam [56–59]. As antibiotics with activity against 
carbapenem-resistant Enterobacteriaceae (CRE) were approved 
throughout the decade, combination therapy became necessary 
in fewer cases. In the latter half of the decade, there was less re-
search done into combination therapy and more investigation 
into repurposing older antibiotics to be used in combination 
therapy in the management of MDR bacteria, such as the use of 
minocycline in combination with carbapenems or polymyxins 
in the treatment of A. baumanii [60].

The reason for less interest in combination therapy in the 
latter half of the decade could be due to several new antibiotics 

with activity against MDR GNRs being approved between 2014 
and 2019 through the GAIN Act. A  large focus of research 
during this time was how to most effectively utilize these new 
antibiotics.

Ceftolozane/Tazobactam
Ceftolozane/tazobactam is a combination of the extended-
spectrum cephalosporin ceftolozane and the β-lactamase in-
hibitor tazobactam. Ceftolozane is unique in its ability to 
overcome several defense mechanisms of P. aeruginosa. When 
compared with the third-generation cephalosporin ceftazidime, 
ceftolozane has stability in the presence of AmpC β-lactamases, 
which are common in P.  aeruginosa, has 2-fold higher po-
tency against penicillin-binding proteins, and is not a sub-
strate for carbapenem-specific porins or efflux pumps found in 
P. aeruginosa [61–63]. Unfortunately, ceftolozane is susceptible 
to hydrolysis from some ESBLs, which is why it is packaged 
with tazobactam, to broaden ceftolozane’s activity [64]. Overall, 
ceftolozane/tazobactam’s main place in therapy is in the treat-
ment of infections caused by MDR P.  aeruginosa due to this 
cephalosporin combination’s unique resiliency against many of 
MDR P. aeruginosa’s common resistance mechanisms.

Ceftazidime/Avibactam
Ceftazidime is a third-generation cephalosporin with 
broad-spectrum activity against gram-negative aerobes, in-
cluding P. aeruginosa. Avibactam is a novel β-lactamase inhib-
itor with activity against a variety of β-lactamases including 
Ambler class A  (TEM-1, CTX-M, SHV, KPC-2, and KPC-3), 
class  C (AmpC), and certain class D (OXA-10 and OXA-
48) [65–69]. Avibactam does not have activity against class B 
metallo β-lactamases (eg, NDM-1, VIM, and IMP) [67]. When 
compared with ceftolozane/tazobactam, ceftazidime/avibactam 
has greater activity against carbapenemase-producing CRE but 
has less activity against MDR P. aeruginosa isolates [70]. Overall, 
ceftazidime/avibactam’s role in therapy is in the treatment of in-
fections caused by CRE that produce specific β-lactamases, such 
as KPC and OXA-48, that are effectively inhibited by avibactam.

Delafloxacin
Like the other fluoroquinolones, delafloxacin works by 
targeting DNA gyrase and topoisomerase IV to halt bacterial 
replication. For gram-negative bacteria, fluoroquinolones pri-
marily target DNA gyrase, while for gram-positive bacteria, 
fluoroquinolones primarily target topoisomerase IV [71]. 
Delafloxacin is unique among fluoroquinolones in that it is 
equally potent against both DNA gyrase and topoisomerase 
IV, which may contribute to increased potency against re-
sistant organisms [72]. While delafloxacin is effective against 
fluoroquinolone-resistant MRSA, it has limited efficacy against 
P.  aeruginosa, A.  baumanii, carbapenemase-producing E.  coli, 
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and carbapenemase-producing K. pneumoniae [73–75]. Overall, 
like other currently available systemic fluoroquinolones, 
delafloxacin is of limited clinical use in the treatment of infec-
tions caused by MDR GNRs.

Meropenem/Vaborbactam
As a carbapenem, meropenem is inherently resistant to degra-
dation by penicillinases and cephalosporinases. Meropenem 
also has activity against inherently resistant GNRs such 
as P.  aeruginosa and A.  baumanii [76]. Vaborbactam is a 
carbapenemase inhibitor with activity against Ambler class 
A  β-lactamases (KPC) and class  C β-lactamases (P99, MIR), 
but it does not exhibit activity against Ambler class B (NDM, 
VIM, IMP) or class D (OXA-48) β-lactamases [77, 78]. 
Overall, meropenem/vaborbactam’s role in therapy is similar 
to ceftazidime/avibactam in that the addition of vaborbactam 
restores the activity of meropenem against Enterobacteriaceae 
that produce KPCs. Unlike ceftazidime/avibactam, the addition 
of vaborbactam does not improve susceptibility in meropenem-
resistant bacteria that produce OXA-48  β-lactamases. 
Meropenem/vaborbactam is also of limited use in the treatment 
of MDR P. aeruginosa, as the addition of vaborbactam does not 
affect carbapenem-specific porin channels.

Plazomicin
Plazomicin has exhibited activity against Enterobacteriaceae 
isolates, with resistance against gentamicin, tobra-
mycin, and amikacin [79]. This retained activity is due to 
plazomicin’s unique structure, which confers resistance to 
most aminoglycoside-modifying enzymes (AMEs) that 
cause aminoglycoside resistance [80]. Plazomicin does not 
have any unique protection against other mechanisms that 
confer bacterial resistance to aminoglycosides such as efflux 
pumps or target site modification. As most strains of MDR 
P.  aeruginosa and A.  baumanii have additional mutations 
conferring aminoglycoside resistance along with producing 
aminoglycoside-modifying enzymes, plazomicin often has 
similar activity against these bacteria as other aminoglycosides 
[81]. Also, bacteria that produce carbapenemases such as NDM 
and OXA-type often have modified aminoglycoside target 
sites that confer resistance to all aminoglycosides, including 
plazomicin [82]. Despite this, Serio and colleagues showed that 
66% of NDM-producing Enterobacteriaceae, 89.6% of VIM-
producing Enterobacteriaceae, and 100% of IMP-producing 
Enterobacteriaceae were susceptible to plazomicin [83]. For 
susceptible isolates, plazomicin is an option in the treat-
ment of infections caused by metallo-β-lactamase-producing 
Enterobacteriaceae.

Omadacycline
Omadacycline is an aminomethylcycline in the tetracycline 
family of antibiotics with a unique structure that allows it to 

overcome many tetracycline-specific resistance mechan-
isms such as efflux pumps and target site protection [84]. 
Omadacycline does not exhibit activity against Pseudomonas 
spp., but it does inhibit some strains of A.  baumanii [85]. 
Omadacycline does carry a warning for increased mortality 
based on the results of the OPTIC trial, where more patients with 
community-acquired pneumonia treated with omadacycline 
(2.1%) than those treated with moxifloxacin (1.0%) died during 
the trial. The role of omadacycline in the treatment of MDR 
Enterobacteriaceae is currently unclear, but it could see use 
in the treatment of infections caused by bacteria-producing 
carbapenemases such as KPCs, NDM, and OXA-48 or by sus-
ceptible A. baumanii or Stenotrophomonas maltophillia [86, 87].

Eravacycline
Eravacycline is a fluorocycline in the tetracycline family of anti-
biotics that is similar to omadacycline in that its unique structure 
allows it to overcome common tetracycline resistance mech-
anisms such as ribosomal protection and efflux pumps [88]. 
Similar to omadacycline, eravacycline has no activity against 
Pseudomonas spp. but does inhibit some strains of A. baumanii 
and carbapenemase-producing Enterobacteriaceae [89]. 
While eravacycline did show noninferiority to ertapenem and 
meropenem in the treatment of complicated intra-abdominal 
infections, it was unable to achieve noninferiority compared 
with levofloxacin in the treatment of complicated urinary tract 
infections [88]. Overall, eravacycline’s role in the treatment of 
MDR Enterobacteriaceae is similar to that of omadacycline: It 
is an option to treat infections caused by bacteria-producing 
carbapenemases or susceptible A.  baumanii, but it may be 
particularly effective in the treatment of intra-abdominal 
infections.

Imipenem/Cilastatin/Relebactam
Imipenem, much like meropenem, is a carbapenem with a 
broad spectrum of activity against numerous bacteria in-
cluding P.  aeruginosa and A.  baumanii [76]. Cilastatin is a 
dehydropeptidase-1 inhibitor that prevents renal metabolism 
of imipenem to allow for therapeutic concentrations of the an-
tibiotic [90]. Relebactam is similar to avibactam in that it has 
activity against Ambler class A, C, and some D β-lactamases 
[91, 92]. As imipenem/cilastatin/relebactam has demonstrated 
activity against KPC-producing Enterobacteriaceae, the addi-
tion of relebactam did not restore imipenem’s activity against 
OXA-48-producing bacteria [93]. This is unlike ceftazidime/
avibactam, which is active against OXA-48-producing bac-
teria [69]. The role of imipenem/cilastatin/relebactam in clin-
ical therapy is similar to that of meropenem/vaborbactam. The 
trio can be considered in the treatment of infections caused by 
Enterobacteriaceae that produce KPCs, but not those that pro-
duce OXA-48 or Ambler class B β-lactamases.
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Cefiderocol
Cefiderocol is unique in that it chelates with ferric iron, which 
allows it to be brought into GNRs via iron transport systems 
instead of through passive diffusion via porins like other 
β-lactams [94, 95]. This unique mechanism allows cefiderocol 
to overcome resistance conferred by decreased porin expres-
sion. While chelated with iron, cefiderocol is also resistant to 
hydrolysis by all β-lactamases, including Ambler class B [96, 
97]. Cefiderocol has also shown in vitro activity against MDR 
Stenotrophomonas maltophilia, MDR A. baumannii, and MDR 
P. aeruginosa [98]. Cefiderocol is approved for the treatment 
of cUTI, but it has a labeled warning for increased mortality 
based on the results of the CREDIBLE-CR trial [99]. Overall, 
cefiderocol’s primary place in therapy is in the treatment of 
infections caused by MDR S. maltophilia, MDR A. baumanii, 
MDR P.  aeruginosa, and CRE that produce Ambler class B 
β-lactamases.

CONCLUSIONS

The treatment of gram-negative bacterial infections has ad-
vanced considerably over the course of the last decade. In this 
current report, the field has evinced an increasing number of 
scholarly publications and dissemination as the 2010s pro-
gressed. This work identified publication themes of clinical 
practice that underwent rapid development during the 2010s. 
These themes included the management of infections caused 
by MDR GNRs and pulmonary infections in patients with 
cystic fibrosis. Also, the literature provided information on 
the declining scholarly interest in combination therapy for the 
treatment of MDR GNRs, as newer antibiotics have been de-
veloped under the GAIN Act. Nine new antibiotics were cov-
ered in this literature review, most of which have niche roles 
in the treatment of MDR gram-negative bacterial infections. 
The 2010s were a decade of significant scholarship concerning 
the treatment of gram-negative bacterial infections, which 
portends further developments in this area of practice in the 
years to come.
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