
Standardization of laboratory practices and reporting of biomarker
data in clinical nutrition research

Karen M O’Callaghan1 and Daniel E Roth1,2,3

1Centre for Global Child Health and SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; 2Department of Paediatrics, Hospital
for Sick Children and University of Toronto, Toronto, Ontario, Canada; and 3Department of Nutritional Sciences, Faculty of Medicine, University of Toronto,
Toronto, Ontario, Canada

Laboratory-derived measures of nutritional status and related
biochemical phenomena (e.g., inflammation and oxidative stress)
are critical tools in the nutritional sciences but have well-known
challenges and pitfalls (1, 2). Researchers routinely examine
biological sources of between- and within-person variation in the
analysis of biomarker concentrations (e.g., age, sex, pregnancy,
inflammation, etc.). However, close attention to the standardiza-
tion and validation of laboratory practices is required to reduce
the error variation that arises from inconsistencies in specimen
handling, assay selection, assay performance, and management
and statistical analysis of biomarker data (3–5). Furthermore,
complete disclosure of laboratory assay protocols, performance
characteristics, and technical limitations is essential to ensure the
interpretability of published findings and promote opportunities
for coherent pooling of biomarker data in meta-analyses.

In this issue of the Journal, 2 contributions from the Biomark-
ers Reflecting Inflammation and Nutritional Determinants of
Anemia (BRINDA) consortium (6, 7) revisit the real-world
challenges of inconsistent nutritional biomarker measurement
and reporting methods (2). In both studies, investigators used data
from multiple population-representative surveys to determine the
extent to which biomarkers of micronutrient status (folate and
vitamin B12 in 1 study, zinc in the other) are associated with 2
biomarkers of systemic inflammation—C-reactive protein (CRP)
and α-1 acid glycoprotein (AGP). As in prior BRINDA studies,
the fundamental idea is that if micronutrient and inflammatory
markers are consistently correlated, then estimates of the pop-
ulation prevalence of deficiency of that particular micronutrient
should include a correction for inflammation (8). However, in
both studies, the authors considered the wide variability in
laboratory methods used for the measurement of micronutrient
biomarkers to be a barrier to pooling of data across surveys (6,
7). For example, Young et al. (6) attributed their decision not to
conduct pooled analyses to unquantifiable differences in methods
used to assess folate and vitamin B12 status. Similarly, in their
application of BRINDA methods to correct zinc concentrations
for systemic inflammation, McDonald et al. (7) raised concerns
about variability in blood collection procedures and laboratory
analyses of plasma zinc, CRP, and AGP concentrations. The deci-
sion to forego meta-analyses was reasonable, but the unfortunate
consequence was a rather complicated multiplicity of survey-
specific analyses. Therefore, while the BRINDA project has
undoubtedly made important contributions to our understanding

of the role of inflammation in the interpretation of micronutrient
biomarker data, it also reminds us of other pervasive and potent
sources of variability in micronutrient concentrations—sample
collection and storage methods, assay selection and performance,
and other laboratory procedures.

The BRINDA authors acknowledged the scant information
available to them concerning the specific assays used for each
survey included in their studies (6, 7). Yet, for several of their
surveys, samples were analyzed at the VitMin lab (Juergen
Erhardt; http://www.nutrisurvey.de/blood_samples/), which uses
a sandwich ELISA method to measure ferritin, retinol-binding
protein, soluble transferrin receptor, CRP, and AGP (9). The
VitMin lab has been a valued resource in the global micronutrient
research community for many years; an initial validation study
of its ELISAs was promising (9), although recent comparisons
of the VitMin method to a new commercial assay showed poor
concordance (10). For the surveys for which samples were
analyzed at the VitMin lab, detailed measures of assay technique,
measures of precision, and limits of quantification could have
been feasibly obtained and assessed as part of the BRINDA
project. For example, for CRP—a biomarker of the acute-phase
response that is central to many BRINDA analyses—the VitMin
lab reports values down to and including zero. According to
published reports, prior BRINDA analyses have not routinely
taken into account varying precision of the assay at lower
concentrations or the VitMin laboratory’s stated limit of detection
(LOD) of 0.5 mg/L (11–15). The LOD was, however, considered
in a limited set of post hoc sensitivity analyses in the 2 recent
BRINDA studies in this supplemental issue of the Journal, and
was not found to affect their conclusions (6, 7). The LOD—
defined as the lowest concentration of an analyte that can be
feasibly and consistently detected—refers to the concentration
that is reliably distinguished from “analytical noise”; even
highly sensitive assays will rarely have the ability to measure
concentrations of a true null value (16, 17). The lower limit of
quantification (LLOQ) may be higher than the LOD and is the
lowest concentration that is acceptably quantified by a particular
assay, taking into consideration a desired level of accuracy and
precision, which typically vary across the assay’s reportable
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TABLE 1 Reporting of laboratory characteristics for C-reactive protein in original research publications in the
American Journal for Clinical Nutrition from June to December, 20191

Laboratory assay characteristic
Publications reporting

characteristic, n (%) (n = 20)

LOD and/or LLOQ 4 (20%)
Data handling method below LOD/LLOQ 0
ULOQ 0
Data handling method above ULOQ 0
Inter-assay and/or intra-assay CV 7 (35%)
Specific analyzer and/or assay manufacturer 16 (80%)
Duplicate measurements performed for each sample 2 (10%)

1LLOQ, lower limit of quantification; LOD, limit of detection; ULOQ, upper limit of quantification.

range (16, 17). For analytes such as CRP, LODs and LLOQs are
critically important in epidemiological studies, as considerable
proportions of healthy populations can have unquantifiable
results even when relatively high-sensitivity assays are used (18).
The BRINDA investigators (6, 7) were likely faced with a wide
range of LODs/LLOQs for CRP assays included in their studies,
but for most surveys the LOD/LLOQ was unknown or could only
be inferred empirically based on the lowest nonzero value in the
dataset (assuming that in generating the dataset, the LLOQ was
imputed for all unquantifiable samples). Yet, the implications of
variable LLOQs may not be negligible; for example, in a survey
from Ecuador, the lowest CRP value in the dataset was 1.9 mg/L,
and a majority of preschool children had this value (suggesting
that the value was imputed for any child with a CRP value at or
below 1.9 mg/L) (7).

As with nearly all laboratory biomarkers, substantial between-
assay variations in CRP measurements have prompted unheeded
calls for assay standardization (19). To consider how nutritional
researchers generally handle the analysis and reporting of CRP,
we searched online publications in the American Journal of
Clinical Nutrition from the latter 6 mo (June to December)
of 2019 for articles that reported CRP. Not surprisingly, we
found wide variability in CRP assay selection (i.e., manufacturers
and platforms/kits) across the 20 studies identified (20–39).
All of the named methods were antibody based assays, and
most studies used commercially available kits; we found very
few (>2) articles that clearly used the same assay, but details
about the methods were usually sparse, and 5 of 20 articles
(35–39) did not specify the laboratory instrument or assay
used. The widespread reliance on antibody-based assays (i.e.,
immunoassay, ELISA) is common in nutritional research, yet
many (if not most) commercial immunoassay/ELISA kits on
the market lack adequate validation or standardization (40,
41). Reporting of laboratory characteristics, including detection
and/or quantification limits and quality control measures, also
varied widely among the 20 American Journal of Clinical
Nutrition articles that reported CRP. Notably, fewer than half
(7/20) of the identified articles reported precision estimates or
cited prior publications that provided intra- and/or interassay
CVs (Table 1). Multiple precision estimates across the full range
of the data analyzed were rarely described (24, 28, 33). Some
recent articles provide templates for good reporting practice that
could be followed by other investigators, such as the succinct but
detailed summary of assay performance characteristics presented
by Gustafsson et al. (42) and more recently by Hang et al. (43). In

these articles, we found that summary tables in the supplementary
material enabled relatively complete and transparent reporting of
relevant characteristics of the assays and laboratory practices and
were particularly useful where several biomarkers were studied.

Very few of the articles reporting CRP that we reviewed
provided information about assay limits of sensitivity or the
handling of values below such limits (Table 1). Given the
uncertainty surrounding values between the LOD and LLOQ
(16), the LLOQ is often of more concern in clinical and
epidemiological studies because all samples with results below
the LLOQ require careful consideration in data analysis.
Recognized approaches to handling these samples include the
simple substitution of unquantifiable/undetectable results with
an arbitrary value (e.g., half the LLOQ) and more sophisticated
approaches such as multiple imputation (4). Inappropriate
handling of unquantifiables/undetectables (e.g., excluding these
samples from the analysis) has the potential to generate biased
interpretations of study findings, particularly when there is a
high proportion of data below the LLOQ, as may occur with
biomarkers that circulate at low systemic concentrations relative
to the LLOQ of commonly used assays (4). A recent illustration
of thorough reporting of limits of sensitivity can be found in
Jones et al. (44), who provided detailed descriptions of LLOQs,
substitution of unquantifiable values, and sensitivity analyses.
Although LLOQs are more commonly encountered than the
corresponding upper limit of quantification (ULOQ), monitoring
of nutrient excess may be dependent on an assay’s ULOQ.
Samples can be readily diluted to measure high concentrations
(16, 45); however, assay precision may be compromised with
serial dilutions, particularly when performed using a solvent
other than the original biological matrix (e.g., water rather than
serum).

The extent to which variations (or outright errors) in laboratory
practices and assays affect inferences in nutritional research
seems relatively unknown and probably underappreciated, which
is particularly concerning in an era in which public confidence
in nutritional research is fragile (46). In addition to efforts to
formally standardize assay selection and laboratory practices
(47, 48), open communication between laboratory personnel and
the investigators who analyze the data is essential to ensure
that data management and analysis appropriately accounts for
assay characteristics, including LODs and LOQs. Peer-reviewed
journals could encourage improved practices by instituting
checklists and guidelines for describing specimen handling
and laboratory assays, or even consider minimum reporting
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TABLE 2 Assay quality and performance indicators that may be considered standard reporting requirements of laboratory practices and characteristics in
nutritional research1

Category Definition Explanations and examples

Protocols for specimen collection and
handling and laboratory procedures

Detailed outline of procedures and materials
sufficient to enable another investigator to
replicate the analysis.

• Specimen information should include
special considerations where appropriate
(e.g., trace mineral–free blood collection
materials) and details of specimen
storage relevant to analyte stability (e.g.,
number of freeze–thaw cycles).

• Specific information about commercial
kits should include the manufacturer and
product number.

• Detailed protocols and procedures,
including QA and QC methods, may be
included in supplemental file(s).

LOQs and reportable range LLOQ and ULOQ-lowest and highest
concentrations, respectively-of analyte that
can be repeatedly measured with acceptable
accuracy and precision (17). Reportable
range is the range of values across which
results may be quantified and reported for a
specific assay in a particular laboratory,
including values generated by any
standardized pretreatment procedures (e.g.,
sample dilution) (16).

• LLOQ typically refers to the
concentration of lowest standard on the
calibration curve.

• LLOQ is distinguished from the LOD,
which is lowest concentration of analyte
that can be reliably and feasibly
differentiated from an acknowledged
blank concentration. LLOQ can be
≥LOD but not <LOD (17).

• Approaches for defining, imputing, or
otherwise handling values above/below
LOD/LLOQ and ULOQ should be
reported.

Precision Closeness of individual repeated
measurements of the same sample, usually
described empirically as a measure of
imprecision (45), and determined by both
within- and between-assay comparisons of
results of 2 or more replicates.

• SDs and CVs (inter- and intra-assay) of
individual repeated measurements under
controlled conditions may be used to
express precision.

• CVs may be used to convey within-run
as well as between-run variation across
batches, personnel, etc.

• Single CV values for each analyte are
less informative than multiple estimates
spanning detectable or clinically relevant
ranges (e.g., low-, medium- and
high-concentration control materials).

Accuracy Extent to which assay produces “true” results
relative to the gold-standard. Bias is average
systematic difference between the test result
obtained and accepted reference value; also
known as systematic measurement error, as
distinguished from random error (49).

• Accuracy/bias is typically estimated by
use of external reference material for
which a “true” assigned value is known
for the sample.

• Generally accepted range for variation
from true value is ≤5%.

Participation and performance in
external quality assessment program

Where applicable, participation in
accuracy-based performance testing and/or
external quality assurance schemes is
encouraged and should be reported.

• Results of any proficiency tests should
be reported, e.g., VITAL-EQA program
(48), DEQAS (50).

1DEQAS, Vitamin D External Quality Assessment Scheme; LLOQ, lower limit of quantification; LOD, limit of detection; LOQ, limit of quantification;
QA, quality assurance; QC, quality control; ULOQ, upper limit of quantification; VITAL-EQA, Vitamin A Laboratory—External Quality Assurance.

requirements of laboratory-related parameters and performance
(Table 2). Yet, reporting of standards can only go so far,
and greater attention to the optimization and standardization
of laboratory activities is essential to promote the validity and
reproducibility of clinical and epidemiological research.
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