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Abstract

Intermittent theta burst stimulation (iTBS) delivered to the dorsolateral prefrontal

cortex (DLPFC) has been investigated as a promising treatment for stress and stress-

related mental disorders such as major depression, yet large individual differences in

responsiveness demand further exploration and optimization of its effectiveness.

Clinical research suggests that resting-state functional connectivity (rsFC) between

the DLPFC and the anterior cingulate cortex (ACC) can predict iTBS treatment

response in depression. The present study aimed to investigate whether rsFC

between the left DLPFC and ACC subregions could predict the degree to which the

stress system is affected by iTBS. After assessment of baseline resting-state fMRI

data, 34 healthy female participants performed the Trier Social Stress Test on two

separate days, each followed by active or sham iTBS over the left DLPFC. To evalu-

ate iTBS effects on the stress-system, salivary cortisol was measured throughout the

procedure. Our results showed that a stronger negative correlation between the left

DLPFC and the caudal ACC was linked to a larger attenuation of stress-system sensi-

tivity during active, but not during sham iTBS. In conclusion, based on individual rsFC

between left DLPFC and caudal ACC, iTBS could be optimized to more effectively

attenuate deregulation of the stress system.
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1 | INTRODUCTION

Modern life stress is taking its toll on mental health worldwide

(Hidaka, 2012). The burden of mood and stress-related disorders on

both individuals and society has been assuming alarming proportions

for decades, yet relatively little progress is being made regarding treat-

ment efficacy. Although noninvasive brain stimulation techniques

such as (repetitive) transcranial magnetic stimulation (rTMS) have

been showing promising effects on stress regulation and mood

improvement in both neuroscientific as well as clinical contexts

(Baeken et al., 2019; Blumberger et al., 2018b; Chen, Chang, Chen, &

Lin, 2013; Lefaucheur et al., 2020), a growing number of studies

report substantial interindividual variability in responsiveness toward

TMS, as its working mechanisms are not yet fully understood (Kapur,
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Phillips, & Insel, 2012; López-Alonso, Cheeran, Río-Rodríguez, &

Fernández-del-Olmo, 2014). Inconsistencies in responsiveness may

reflect individual differences in neurophysiological processes underly-

ing its mechanisms on the stress response. Therefore, taking individual

differences into consideration is essential for expanding our insight in

the working mechanisms of rTMS and possibly the further optimiza-

tion of its therapeutic efficacy.

Functional connections between brain regions may prove to be

important to understand TMS effects and add to heterogeneity in

responsiveness. Functional connectivity between different brain areas

can be quantified using resting-state fMRI. Correlations between spon-

taneous fluctuations of brain activation signify a functionally connected

brain network (Friston, 1994). Since rTMS treatment is technically lim-

ited to the direct stimulation of neocortical areas only—because the

magnetic field decays as a function of distance, the technique often

relies on connected brain regions and networks to manifest its effects.

The most commonly targeted area in stress-related psychopathology

research is the dorsolateral prefrontal cortex (DLPFC). The stimulated

DLPFC is thought to serve as an accessible node, projecting to

the deeper limbic regions (Baeken & de Raedt, 2011; Padberg &

George, 2009). Within this context, it has been proposed that resting-

state functional connectivity (rsFC) between this cortical target area

and more distant regions consistently affected by stress and mood dys-

regulations may play an important role in the working mechanisms of

rTMS, and represent a promising biomarker to explain and predict its

effectiveness in stress regulation (Cash et al., 2019; Fox, Buckner,

White, Greicius, & Pascual-leone, 2012; Li, Wang, Hirvonen, Hsieh, &

Bai, 2010; Weigand et al., 2018).

The most prevalent stress-related mental health problem is major

depressive disorder (MDD) (Burke, Davis, Otte, & Mohr, 2005). MDD

affects a large number of brain regions and is conceived as a malfunc-

tion of brain networks rather than a single area (Li, Friston, Mody, &

Hu, 2018). It comprises both cortical regions such as the lateral areas

of the prefrontal cortex and limbic regions including the amygdala,

hippocampus, and different parts of the anterior cingulate cortex

(ACC) (Fitzgerald, Laird, Maller, & Daskalakis, 2008; Oakes, Loukas,

Oskouian, & Tubbs, 2017). A handful of studies have pointed out the

importance of the ACC in the prediction of TMS effectiveness, and

demonstrated that the rsFC between the DLPFC and the ACC was

prognostic for its therapeutic response in MDD patients (Baeken

et al., 2009; Fox et al., 2012; Silverstein et al., 2015). More specifically,

it was demonstrated that the effects of rTMS on depressive symp-

toms were most potent in patients exhibiting a greater negative corre-

lation (anticorrelation) between the left DLPFC and the subgenual

part of the ACC (sgACC) at baseline (Baeken, Marinazzo, Wu, &

Van, 2014; Baeken, Vanderhasselt, et al., 2014; Fox et al., 2012). Con-

sistently showing abnormal activation in patients with clinical depres-

sion, the sgACC indeed proves to be a successful target for several

medical and neurostimulation therapies (Mayberg, 2009). Similarly,

activation in the perigenual and rostral divisions of the ACC has been

associated with a reduction in depressive symptoms as a result of

rTMS treatment (Hernández-ribas et al., 2013; Pizzagalli, 2011). On

the other hand, the more dorsal and caudal parts of the ACC may

contribute to treatment improvement as well (Fox et al., 2012; Rogers

et al., 2004; Tik et al., 2017). Whereas the ventral ACC is part of a

hyperactive affective network (within depression), the dorsal ACC

(dACC) shows attenuated connectivity with the DLPFC as part of

a disrupted cognitive control network (Li et al., 2018). Attenuated

connectivity in these areas—supporting and coordinating emotion

processing—may lead to a failure to control the assumed hyperactive

limbic areas (Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2019).

Supporting this rationale, Fox et al. (2012) equally revealed predictive

qualities of other regions, including dACC. Moreover, an exploratory

study from Tik et al. (2017) investigating the effects of rTMS on a

large set of resting-state (RS) networks in a healthy sample, found that

rTMS stimulation applied to the left DLPFC affected only one RS net-

work, including the DLPFC, dACC, and medial prefrontal cortex. Even

though this makes a strong case for the involvement of the ACC in

rTMS depression therapy, it thus remains unclear how parts of the

ACC may differentially underlie these rTMS effects, and how DLPFC–

ACC connectivity relates to other important correlates of depression

such as stress regulation.

Indeed, a long-term hyperactivity of the stress system is consid-

ered one of the leading determinants of stress-related disorders such

as major depression (e.g., Burke et al., 2005; Heinze, Lin, Reniers, &

Wood, 2016; Stetler & Miller, 2011; Wang et al., 2018). During stress

or increased negative affect, enhanced amygdala activity causes activa-

tion of the hypothalamic–pituitary axis (HPA), cascading toward an

increase of the stress hormone cortisol in the blood stream (Dedovic,

Duchesne, Andrews, Engert, & Pruessner, 2009). In a healthy brain,

the binding of corticotropic hormones then again leads to inhibition of

the HPA-axis, as such creating its own negative feedback-loop

(Herman, Cullinan, & Herman, 1997; Herman, Ostrander, Mueller, &

Figueiredo, 2005). Sustained stress and cortisol secretion are however

thought to dysregulate this feedback-system and disrupt homeostasis.

Patients with MDD frequently show disturbances in cortisol concen-

trations and HPA-activation (Pariante & Lightman, 2008), ultimately

affecting widespread networks in the brain including the default mode,

central, executive, and salience networks (Brakowski et al., 2017). This

leads to abnormal activations of these structures, causing for instance

hypoactivity in ACC and DLPFC, and further weakening emotion and

stress regulation (Morris, Compas, & Garber, 2012).

Of interest, it has been shown that rTMS applied to the DLPFC par-

ticipates in the regulation of HPA-activity and thereby impacts the neu-

roendocrine stress response, diminishing production of cortisol (Baeken,

Marinazzo, et al., 2014; Baeken, Vanderhasselt, et al., 2014). Moreover,

inducing sad or stressful experiences in healthy subjects was shown to

achieve a pattern of brain activations consistent with the ones observed

in depressed patients (Hermans, Henckens, & Joe, 2014; Ramirez-

mahaluf, Perramon, Otal, Villoslada, & Compte, 2018). The question

remains nonetheless how these effects are modulated by DLPFC–ACC

connectivity.

Consequently, the aim of the present sham-controlled within-

subjects study was to investigate whether the baseline rsFC between

the individual stimulation target area (the left DLPFC) and the subre-

gions of the ACC could be predictive for rTMS efficacy in (acute)
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stress regulation in healthy individuals. As such, we aimed to identify

a potential biomarker for rTMS-induced stress regulation based on

individual differences in neural patterns. To investigate this, we used

intermittent theta burst stimulation (iTBS), an rTMS protocol that

mimics endogenous theta rhythms, demonstrating similar or more

potent excitatory effects than conventional high frequency stimula-

tion (Blumberger et al., 2018a). We examined the effects of iTBS on

HPA-activity measured using cortisol concentrations. In order to

observe the effects of iTBS on HPA-axis functioning in a stressed

brain, all participants were stressed using the Trier Social Stress Test

(TSST) (Kirschbaum & Hellhammer, 1993).

We expected that individual differences in baseline rsFC between

the DLPFC and different parts of the ACC would be predictive for

HPA-system attenuation related to active iTBS only, as indicated by a

lower increase and faster recovery of cortisol levels following the TSST.

2 | METHODS

2.1 | Participants

Thirty-eight healthy female volunteers in their young adulthood (aged

18–27 years old; M = 23.38 years old; SD = 3.06) were recruited

through Ghent University student fora as well as social media, based

on the following inclusion criteria: (a) no current/history of psychiatric

disorders, as evaluated by the Mini-International Neuropsychiatric

Interview (Sheehan et al., 1998) based on DSM-IV and ICD-10;

(b) Beck Depression Inventory (Beck, 1996, Dutch translation by van

der Does, 2002) scores were below 14 points; (c) no implanted metal

objects in the body; (d) no current use of psychotropic medications;

(e) right handed; and (f) not pregnant. All participants were using hor-

monal contraceptives. Four participants were excluded for analyses

either because of incomplete rsFC scans or missing cortisol data. The

final sample included in the rsFC analyses was 34 participants (mean

age = 23.38, SD = 3.06).

2.2 | Procedure

This sham-controlled within subject designed study was approved by

the ethics committee of the Ghent University hospital. All participants

gave a signed informed consent and were given a financial compensa-

tion for their participation.

The procedure took three different days to complete. First, an

individual neuroanatomical MRI was collected to accurately localize

the left DLPFC, followed by a resting-state functional magnetic

resonance imaging (rsfMRI) scan for the rsFC analysis. Thereafter, all

participants were randomly assigned to active-first or sham-first

stimulation. To avoid carry-over effects between active and sham stim-

ulation, a time delay of at least 1 week was respected. On each stimu-

lation day, after an initial 25 min resting period, participants performed

the TSST, followed by two iTBS or sham sessions with a 5 min inter-

session interval.

Cortisol levels were measured immediately after the stress task,

after the first iTBS/sham session, before and after the second iTBS/

sham session, and 5 minutes after the second iTBS/sham session.

(Although cortisol levels were also measured at the end of the habitu-

ation phase, after the preparation phase of the stress task but, for our

research question, we only used the samples after the stress task for

analyses.) Furthermore, to assess changes in mood, six Visual Ana-

logue Scales (VAS; McCormack, de Horne, & Sheather, 1988) were

used to detect subtle mood changes (“fatigue,” “vigor,” “anger,”

“tension,” “depression,” and “cheerfulness”) during the sessions. For

an overview of the study protocol, see Figure 1. Of note, the influence

of psychological factors (personality, state anxiety, and rumination) on

the effects of iTBS was also assessed and published in Pulopulos

et al. (2019) and de Witte et al. (2020).

2.3 | MRI acquisition parameters

A 3 T Siemens Magnetom TrioTim MRI scanner was used for the

resting-state scans on Day 1 of the protocol. First, a T1-weighted 3D

MPRAGE sequence was acquired for each participant (TR = 2,250 ms;

TE = 4.18 ms; flip angle = 9�; field of view = 256 mm; 176 slices; slice

thickness = 1 mm). Resting-state functional images were acquired

using a gradient echo T2*-weighted sequence, while participants were

awake and instructed to keep their eyes closed (TR = 2,500 ms;

TE = 35 ms; flip angle = 80�; field of view = 224 mm; 38 slices; slice

thickness = 3 mm). The resting-state scan lasted for 7 min.

2.4 | Stress task

To induce stress in our participants we evoked an acute stress

response using the TSST (Kirschbaum & Hellhammer, 1993), and

investigated the effect of active versus sham stimulation on cortisol

levels after the stress task. All participants were informed they had

3 min of preparation and 5 min of speech delivery, followed by a

5 min mental arithmetic discounting task. In this variant of the TSST,

the participants were positioned in front of a one-way mirror, and

they were informed that a jury was present at the other side. The jury

was able to talk to the participants via the connecting sound system.

The participants were told their performance was recorded with a

video camera for a subsequent behavioral analysis. Previous studies

using a similar version of the TSST have shown a robust stress

response (e.g., Pulopulos, Baeken, & de Raedt, 2020).

2.5 | Visual Analogue Scale

Six horizontal 10 cm VAS (McCormack et al., 1988) were used to

detect changes in mood. Feelings of “fatigue,” “vigor,” “anger,”

“tension,” “depression,” and “cheerfulness” were rated. The VAS sub-

scale scores ranged from 0 to 10. Participants were asked to rate their

mood at the end of the habituation phase, immediately after the TSST,
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after the first iTBS/sham session, right before and right after the

second iTBS/sham session, and 5 min after the second iTBS/sham

session.

2.6 | Cortisol assessment

Saliva samples for cortisol assessment were collected using salivettes

(Sarstedt, Germany), containing a sterile polyester swab for collecting

saliva, yielding a clear and particle-free sample. Saliva cortisol levels

(μg/L) were determined by Cortisol Saliva Luminescence immunoassay

(IBL International GmbH, Germany). Limit of Quantification was

0.12 μg/L and the within-run and between-run variation coefficients

were less than 5%. The intraindividual stability of baseline salivary

cortisol levels was reported to be more stable in women (Kirschbaum,

Wust, & Hellhammer, 1992). To limit the influence of the circadian

rhythm (Goodman, Janson, & Wolf, 2017) on the activity of the

HPA axis, the sessions started after 1 p.m., and the participants per-

formed both stimulation days at a similar time of day (there was no

significant difference in the time at which participants started both

sessions, p = .795).

2.7 | iTBS application

Participants were randomly assigned by a computer to an active or

sham-first stimulation session. Theta burst stimulation was applied

using a Magstim Rapid2 Plus1 magnetic stimulator (Magstim Company

Limited, Minneapolis, MN) connected to a 70 mm “butterfly-”shaped

coil. For the sham stimulation, a specially designed sham coil was

used, visually identical to the active one and producing a similar sound

without active stimulation. Both active stimulation and sham coils

were placed on the individually located DLPFC. To accurately target

the left DLPFC, we used Brainsight neuronavigation (Brainsight,

Rogue Resolutions, Inc.) to locate the center part of the left mid-

prefrontal gyrus based on the individual anatomical MRI data. The

individual resting motor threshold (110%) was determined by inducing

a motor evoked potential on the right abductor pollicis brevis muscle.

The following parameters were used for the iTBS sessions: 50 Hz fre-

quency; 5 Hz burst frequency; 1,620 pulses in 54 cycles, each includ-

ing 10 burst each 3 pulses with a train duration of 2 s and an

intertrain interval of 6 s. Sessions (either sham or active) were sepa-

rated by a 5 min resting period.

2.8 | fMRI data preprocessing

rsfMRI images were preprocessed using CONN (Whitfield-Gabrieli &

Nieto-Castanon, 2012; version 18a), which is an open source MATLAB

based analysis toolbox for functional connectivity analysis (http://

www.conn-toolbox.org). The software is powered by SPM12 (including

susceptibility distortion correction, motion correction/realignment,

slice-timing correction, outlier identification, coregistration, tissue-class

segmentation, Montreal Neurological Institute [MNI] normalization,

and smoothing). All functional images were first slice time corrected

(interleaved, bottom-up). Realignment parameters were estimated with

respect to the first functional scan of the run. Artifact Detection Tool

based outlier detection was run to identify possible outliers for first

level analysis scrubbing (95% conservative parameters; z-threshold—

3.0; movement threshold—0.5). Anatomical images were coregistered

and spatially normalized to the MNI template. Images were spatially

smoothed with a 4 mm full-width-at-half-maximum Gaussian kernel.

Linear detrending and band-pass filtering of 0.01–0.08 Hz was applied

on the blood oxygen level-dependent (BOLD) signal to avoid low-

frequency noise and high-frequency artifacts. White matter and cere-

brospinal fluid principal components were regressed out from noise

regions of interest (ROIs), in which signal is unlikely to be related to

neural activity.

First, correlation maps were obtained by extracting the BOLD

time course from the individual left DLPFC seed regions, then com-

puting the correlation coefficients characterizing the correlations

between that time course and the time courses from all other brain

F IGURE 1 An overview of the study protocol. Abbreviations: DLPFC, dorsolateral prefrontal cortex; MRI, magnetic resonance imaging; TSST,
Trier Social Stress Test; VAS, Visual Analogue Scale; iTBS, intermittent theta burst stimulation
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voxels. These correlation maps were submitted to a random-effects

analysis in SPM12. A one-sampled t test was performed, corrected for

multiple comparisons with the FWE option at cluster level, p < .001

(see Figure 2).

Second, to answer our main research question, ROIs were defined

as spheres of different radii using the CONN interface. The left

DLPFC ROI was defined according to the individual stimulation areas

detected with neuronavigation, as 12 mm radii spheres. The coordi-

nates of five left and right ACC structures (subgenual, caudal, dorsal,

rostral, perigenual) were defined according to Kelly et al. (2009), as

6 mm spheres (see Figure 3).

2.9 | Statistical analyses

To examine whether the stress task provoked a similar psychological

stress response during both sessions, mood changes were analyzed

using a mixed MANOVA, with stimulation (active vs. sham stimula-

tion) and time (T1, T2, T3, T4, and T5) as the within-subject factors,

Order (active-first vs. sham-first) as the between-subjects factor,

and the six VAS mood scales (“fatigue,” “vigor,” “anger,” “tension,”

“depression,” and “cheerfulness”) as the multiple dependent variables

(positive mood scales were reversed). Higher scores indicate more

negative affect.

Cortisol levels were log transformed because they did not show

normal distributions. Following the formulas proposed by Pruessner,

Kirschbaum, Meinlschmid, and Hellhammer (2003), we computed the

area under the curve with respect to the increase (AUCi), as an index

of the sensitivity of the HPA-axis to the stressful event, and the area

under the curve with respect to the ground (AUCg), as an index of

the total cortisol release by the HPA-axis and reflecting the intensity

of the HPA-axis response (Fekedulegn et al., 2007; Pruessner et al.,

2003). Because in this study, we are specifically interested in the

influence of rsFC on the effects of iTBS on the HPA axis activity in a

stressed subject, the AUCi and AUCg were calculated using the five

salivary samples collected after the stress task. Importantly, we also

investigated the change in cortisol levels from baseline to the cortisol

peak after the stress task, to assess whether the stress task provoked

a significant increase in participants' cortisol levels. Paired t tests

show that the increase in cortisol levels was statistically significant

for the active (M = 0.34, SD = 0.72; t(33) = −2.47, p = .018) and the

sham group (M = 0.40, SD = 0.94; t(33) = −2.73, p = .010). Moreover,

paired t-tests showed that there were no significant differences

between the two stimulation days in cortisol levels at baseline,

F IGURE 2 Seed-to-voxel functional connectivity map showing the whole-brain correlation with individual left dorsolateral prefrontal cortex
(DLPFC) seed regions in a group analysis. One-sampled t tests were performed using SPM12. All analyses were corrected for multiple
comparisons with the FWE option at cluster level, p < .001. Images made with BrainNetViewer (Xia, Wang, & He, 2013). Note: A priori defined
regions of interest (ROIs) of the anterior cingulate cortex (ACC) used in the seed-to-seed analysis were added for visualization purposes: Caudal
ACC (cACC), dorsal ACC (dACC), rostral ACC (rACC), perigenual ACC (pACC), and subgenual ACC (sgACC). Equally, the individual left DLPFC
seeds are made smaller than the actual 12 mm spheres for clear visualization
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immediately before the stress task (i.e., after the preparation phase),

and immediately after the stress task (before the first iTBS/sham ses-

sion), regardless of stimulation type (p > .459). The statistical conclu-

sions are the same if the analyses are performed controlling for the

change in cortisol levels from baseline to immediately after the

stress task.

We performed two mixed ANOVAs to investigate the effects of

iTBS on the AUCi and AUCg indexes. The active and sham AUCi and

AUCg values were used as the dependent variables. As a within-

subjects factor we included Stimulation (active-iTBS vs. sham-iTBS),

and as a between-subjects factor, we included Order (first session

active vs. first session sham). In a second step, to investigate the influ-

ence of the rsFC between ACC and left DLPFC on the effects of iTBS

on cortisol secretion, we used mixed ANCOVAs with AUCi and AUCg

values as dependent variables, stimulation (active-iTBS vs. sham-iTBS)

as the within-subject factor, order (first session active vs. first session

sham) as a the between-subjects factor, and the rsFC indexes as

covariates. Independent analyses were performed for each rsFC index

(i.e., left cACC-DLPFC, right cACC-DLPFC, left dACC, right dACC-

DLPFC, left rACC-DLPFC, right rACC-DLPFC, left pACC-DLPFC, right

pACC-DLPFC, left sgACC-DLPFC, right sgACC-DLPFC). Given the

number of analyses performed to investigate the influence of rsFC on

the effect of iTBS on AUCi and AUCg, we applied a Bonferroni correc-

tion to the p-value of the mixed ANCOVAs in order to avoid Type I

error. Therefore, the significance level was set at p = .0025 (0.05

divided by 20 comparisons), two-tailed. When analyses showed a sta-

tistically significant interaction between stimulation (active-iTBS

vs. sham-iTBS) and the rsFC indexes, correlations were used to inves-

tigate the relationship between AUCg and AUCi for the sham and

active iTBS sessions and the rsFC indexes. Importantly, the time of

day when the experiment is performed may affect the stress-induced

changes in HPA axis activity (for a meta-analysis see Goodman

et al., 2017). The statistical conclusions of this study remain unaltered

if the time of day when the stress task was performed is included as a

covariate in the analyses (results are presented in supplementary

materials). We screened our data for univariate and multivariate out-

liers (jzj ≥ 3 SD). No outliers were found in this study. All the analyses

were performed using SPSS 24.0 (IBM SPSS Statistics 24.0).

3 | RESULTS

The final sample included in the rsFC analyses was 34 participants.

For rsFC and cortisol values of the final sample included in the ana-

lyses (n = 34), we refer to Table 1. For the mood analyses, one more

participant was excluded on the basis of missing data. For VAS values

of the final sample included in the analyses (n = 33), we refer to

Table 2.

F IGURE 3 (a) Overview of regions of
interest included in the analyses. Note:
Coordinates for the anterior cingulate
cortex (ACC) regions were derived from
Kelly et al. (2009): Caudal ACC (cACC),
dorsal ACC (dACC), rostral ACC (rACC),
perigenual ACC (pACC), and subgenual
ACC (sgACC). Functional connectivity
indices were calculated from each ACC

region of interest (ROI) with the individual
stimulation sites on the left dorsolateral
prefrontal cortex (DLPFC). The mean of
these individual sites is depicted here for
visualization purposes but is not used in
analyses. (b) Depiction of all individual
stimulation regions used for the analyses.
Note: Images made with BrainNetViewer
(Xia et al., 2013). The individual left
DLPFC seeds are made smaller than the
actual 12 mm spheres for clear
visualization
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3.1 | Mood

Mixed MANOVA revealed a significant main effect of Time

(F(24,488) = 3.55, p < .001) and a significant interaction between stim-

ulation and order (F(6,26) = 3.52, p = .011). There was no significant

main effect of stimulation type (F(6,26) = .46, p = .834) or interaction

between stimulation and time (F(24,488) = 1.06, p = .390). Performing

univariate analyses of variance (ANOVAs) on the subscales of

VAS results, we found no significant effect of time on “fatigue”

(F(4,124) = 2.08, p = .088), “depression” (F(4,124) = .11, p = .979) or

“cheerfulness” (F(4,124) = .51, p = .727). There was a significant

main effect on “tension” (F(4,124) = 12.78, p < .001) and “anger”

(F(4,124) = 3.14, p = .017) as it increased during the experiment, while

“vigor” (F(4,124) = 2.88, p = .026) decreased. We only found a signifi-

cant interaction effect between stimulation and order on “anger”

(F(1,31) = 5.35, p = .028) and “tension” (F(1,31) = 5.78, p = .022).

Although anger and tension generally increased during the protocol,

participants who received active stimulation in the second session

were angrier and more tense compared to participants who received

sham stimulation. This effect could not be found when the active

stimulation was given during the first session.

3.2 | Left DLPFC seed-to-voxel correlation
connectivity maps

Concerning our predefined ACC ROIs, we found that at the group

level, the left DLPFC seeds to whole brain voxel connectivity over-

lapped in particular with the left caudal ACC seed showing overall a

negative correlation (see Figure 2).

3.3 | Effects of iTBS on cortisol

3.3.1 | Direct effects of iTBS on the activity of the
HPA axis

The results of the mixed ANOVA with AUCi and AUCg as dependent

variables showed no significant main effect of Stimulation (AUCi:

F(1,32) = 0.95, p = .337; AUCg: F(1,32) = 0.03, p = .871), Order (AUCi:

F(1,32) = 0.49, p = .487; AUCg: F(1,32) = 0.68, p = .415), or the interac-

tion between Stimulation and Order (AUCi: F(1,32) = 1.10, p = .302;

AUCg: F(1,32) = 0.45, p = .508). These results indicate that iTBS does

not affect AUCi and AUCg after being stressed.

TABLE 1 Mean ratings and SD for AUCi, AUCg, and rsFC values
of the entire sample (n = 34)

M (SD)

AUCi Active 149.97 (681.97)

Sham 29.94 (529.25)

AUCg Active −252.01 (1,803.03)

Sham −230.73 (1,558.72)

rsFC right ACC cACC −0.09 (0.20)

dACC −0.18 (0.26)

rACC −0.09 (0.22)

pACC 0.06 (0.24)

sgACC 0.01 (0.23)

rsFC left ACC cACC −0.10 (0.12)

dACC −0.11 (0.27)

rACC 0.13 (0.25)

pACC 0.09 (0.31)

sgACC −0.02 (0.25)

Abbreviations: ACC, anterior cingulate cortex; AUCi, the area under the

curve with respect to increase; AUCg, area under the curve with respect

to ground; cACC, caudal ACC; dACC, dorsal ACC; rACC, rostral ACC; rsFC,

resting-state functional connectivity; pACC, perigenual ACC; sgACC, sub-

genual ACC.

TABLE 2 Mean ratings and SD for the VAS measures throughout the protocol (also see Figure 1)

VAS M (SD)

Time iTBS Fatigue Vigor Anger Tension Depression Cheerfulness

T1 Active 3.56 (2.24) 5.81 (2.17) 0.73 (1.01) 2.34 (2.01) 0.31 (0.46) 6.20 (1.95)

Sham 3.54 (2.47) 6.04 (2.00) 0.83 (1.24) 2.35 (2.15) 0.23 (0.25) 6.33 (2.19)

T2 Active 3.85 (2.11) 5.57 (2.26) 0.59 (1.16) 1.67 (1.81) 0.30 (0.34) 6.03 (2.10)

Sham 3.76 (2.10) 5.55 (2.21) 0.38 (0.41) 1.60 (1.94) 0.24 (0.27) 6.46 (1.88)

T3 Active 3.83 (2.17) 5.56 (2.22) 0.66 (1.61) 1.31 (1.47) 0.21 (0.20) 6.07 (1.94)

Sham 3.40 (2.25) 5.70 (2.08) 0.61 (0.97) 1.47 (1.97) 0.47 (1.31) 6.20 (2.14)

T4 Active 3.65 (2.18) 5.54 (2.31) 0.32 (0.48) 1.45 (1.90) 0.25 (0.25) 6.21 (2.10)

Sham 4.22 (2.60) 5.48 (2.48) 0.43 (0.60) 1.31 (1.98) 0.38 (1.27) 6.29 (2.34)

T5 Active 3.82 (2.18) 5.97 (2.24) 0.34 (0.40) 1.05 (1.43) 0.23 (0.29) 6.02 (2.48)

Sham 4.03 (2.60) 5.95 (2.44) 0.57 (1.15) 1.00 (1.84) 0.40 (1.27) 6.15 (2.42)

Note: Scores are expressed on scales from 0 to 10 cm ranging from absence of the emotion to the max of the emotion. N = 33.

Abbreviations: iTBS, intermittent theta burst stimulation; VAS, Visual Analogue Scale.
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3.3.2 | Influence of rsFC on the effects of iTBS on
the activity of the HPA axis

Independent mixed ANCOVAs with each rsFC index as a covariate

were performed to investigate the influence of rsFC between the

DLPFC and the subparts of ACC on the effects of iTBS on the activity

of the HPA axis after stress. We observed no significant main effect

of Stimulation and Order for all the analyses with AUCi (F(1,31)

< 1.25, p > .272) and AUCg (F(1,31) < 0.73, p > .400). Moreover, none

of the rsFC indexes showed a significant main effect (AUCi: F(1,31)

< 2.72, p > .109; AUCg: F(1,31) < 0.50, p > .484).

Regarding the influence of the rsFC on the effects of iTBS on the

stress response, we observed a significant rsFC interaction between

the left DLPFC and the left cACC and the factor Stimulation for AUCi

(F(1,31) = 12.52, p = .001), but not for AUCg (F(1,31) = 4.23, p = .048).

None of the other interactions between rsFC indexes and Stimulation

showed a significant effect (AUCi: F(1,31) < 1.56, p > .221; AUCg: F

(1,31) < 2.92, p > .098).

Finally, correlation analyses were performed to further investi-

gate the meaning of the significant interaction between Stimulation

and the rsFC between the left DLPFC and the left cACC. The results

of the correlation analysis showed a significant rsFC association

between left cACC-DLPFC and the AUCi during the active iTBS

session (r = .511, p = .002), but not during the sham iTBS session

(r = −.166, p = .347) (Figure 3). These results indicate that the wea-

ker the rsFC between the left DLPFC and the left cACC, the lower

the AUCi during active-iTBS, but not during sham-iTBS (see

Figure 4).

4 | DISCUSSION

The present study is the first to investigate how baseline rsFC

between the individual stimulation site on the left DLPFC and distinct

parts of the ACC may predict the effects of iTBS on stress reactivity

in healthy subjects. Concerning the baseline group functional connec-

tivity analysis, we observed a negative correlation between the indi-

vidual left DLPFC targets and the more dorsal parts of the ACC.

In general, active and sham stimulation did not affect the stress

response differently. Only when considering individual differences in

rsFC strengths, and with active iTBS only, we found that stronger

baseline rsFC anticorrelations between the individual stimulation site

(left DLPFC) and the left cACC showed predictive value for lower cor-

tisol levels (AUCi) after stress. These observations suggest that the

incorporation of individual brain biomarkers may be of essence to

optimize rTMS effectiveness in terms of stress regulation and increase

its response rate.

The dorsal and caudal components of the ACC are known to have

strong connections with the DLPFC. This more “cognitive” subdivision

of the ACC is part of a larger cognitive control network—including the

DLPFC—that plays a central role in the neurobiology of depression

(Li et al., 2018; Pizzagalli, 2011; Wang, Yang, Sun, Shi, & Duan, 2016)

and takes part in emotion and stress regulation (de Raedt &

Hooley, 2016). In line with this, the cACC has been linked to defense

preparation, and activates as a result of negative social feedback

(Büchel et al., 2002; Rijpkema, Smidts, Klucharev, & Hyto, 2009). The

latter is also an important component of our paradigm used to evoke

acute stress and manipulate HPA-axis activity. The TSST has indeed

F IGURE 4 (a) Resting-state
functional connectivity (rsFC)
predictive for intermittent theta burst
stimulation (iTBS) effects on cortisol
area under the curve with respect to
increase (AUCi). Image made with
BrainNetViewer (Xia et al., 2013).
(b) Scatterplots for the rsFC
associations between the left caudal
anterior cingulate cortex (cACC) and
the left DLPFC and the AUCi during
sham (left panel) and active (right
panel) iTBS

5308 De WANDEL ET AL.



been found to activate multiple parts of the ACC including the cACC,

as well as parts of the HPA-axis (Dedovic, Aguiar, & Pruessner, 2009).

The connectivity between the stimulated DLPFC and cACC might

therefore be essential to stress reactivity and regulation. Our results

imply that a stronger anticorrelated rsFC between the left DLPFC and

left cACC in healthy individuals can be predictive for more effective-

ness of iTBS in the regulation of HPA-axis activity. A whole-brain

meta-analysis of Hamilton et al. (2012) similarly described a dissocia-

tion between these regions by revealing that when confronted with

negative stimuli, depressed individuals showed greater amygdala and

ACC activation, while the DLPFC showed an attenuated response

compared to healthy individuals. In line with this, several studies

reported reduced left DLPFC activation linked to psychobiological

stress levels and anxiety, while increased activation in more dorsal

parts of the ACC was found to be related to threat (Balderston

et al., 2017; Qin, Hermans, van Marle, Luo, & Fernández, 2009).

Furthermore, Seeley et al. (2007) showed that a stronger ACC con-

nectivity with a salience network responding to personally relevant

information, was linked with greater anticipatory anxiety before the

experiment. Since the experimental setting, the stressor and the suc-

cessive stress-recovery period serve as a negative or stressful context

and set these specific regions and networks into action, iTBS might

show more effectiveness in individuals who are at baseline more sen-

sitive to negative information and experiences. Although they did not

look at the effects on the HPA-axis specifically, in line with our results

Klooster et al. (2019) linked structural connectivity between the

patient-specific stimulation site in the left DLPFC and the caudal and

posterior parts of the ACC with clinical response to accelerated iTBS

in depressed patients. Contrary to what we might have expected

based on previous literature, baseline rsFC with the sgACC was not

found to be predictive for iTBS outcome on the stress system. Being

part of an emotional network influenced by fluctuations in mood

states it is possible that the left DLPFC-sgACC connections are not

stable enough to be used as predictor for mood and stress changes

induced by iTBS in a nondepressed sample. The absence of a pre-

existing hyperconnectivity between these regions in healthy subjects

might limit the range to which this connection and these regions can

be altered by iTBS. Indeed, in a clinically depressed sample the sgACC

is found to be more continuously hyperactive and could be a more

reliable biomarker in MDD patients (Disner 2011; Fox et al., 2012;

Fox, Liu, & Pascual-leone, 2013).

Although this study has several important strengths, such as the

use of a within-subjects design where each participant receives both

sham and active stimulation, as well as the use of a well-validated

stressor, it should be noted that our study also has several limitations.

A first limitation entails the timing of our stimulation. So close to the

stressor, iTBS stimulation might have affected both the peak of stress

as well as the recovery speed, making it more difficult to disentangle

these effects. Second, we also used a 5-min interval in between the

two iTBS sessions, contrasting with most iTBS protocols using a

10–15 min interval. Third, since we only included female subjects in

our study, our results cannot be simply generalized to men as gender

differences are documented in response to the TSST (Kelly, Tyrka,

Anderson, Price, & Carpenter, 2008; Kirschbaum et al., 1992). A fourth

limitation entails the fact that we did not include a behavioral measure

of subjective stress experience, notwithstanding that the VAS subscale

tension scores significantly increased after being stressed by the TSST.

We can only rely on the cortisol values to assess the effectiveness of

the TSST in our sample. Finally, it could be considered that the use of

hormonal contraceptives could have interfered with our results, as dif-

ferences in menstrual cycle phase (active vs. inactive) might have

affected cortisol responses. However, although our within-subjects

design does indeed not negate the issue of hormonal variation unless

participants would be assessed in the same stage of their menstrual

cycle for each testing session, a recent study found no difference in

stress response between women in the active versus inactive phase

(Ycaza, Faude, Nielsen, Locke, & Mather, 2019).

In conclusion, the results of this study highlight the importance of

considering individual differences in rsFC in order to optimize iTBS

effectiveness, and to potentially increase treatment response rate for

stress-related disorders. Neurostimulation based upon rsFC between

the DLPFC and cACC might prove to be a more effective method to

attenuate the HPA-axis deregulation. Nevertheless, future research is

needed to further elucidate the effects of iTBS on the HPA-axis in

depressed individuals, considering rsFC parameters.
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