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Simple Summary: Rates of viral spread during first and second waves of the COVID-19 pandemic
for USA states, and for consecutive nonoverlapping periods of 20 days for the USA and 51 countries
across the globe associate with mean temperature, elevation, population density and age. Some
associations switch directions when comparing different periods. Even population density, which
presumably should always increase viral spread, at some periods seems to decrease spread rates. We
also observed systematic inversions between spread rates estimated at 80–100 day intervals. These
patterns remain unexplained and suggest difficulties in managing and predicting the pandemic, in
particular, negative correlations between population density and spread rates, which were observed
in independent samples and at different periods. Putatively, confinements could produce these
patterns, by selecting viral strains with longer contagiousness and/or latent periods.

Abstract: We present spread parameters for first and second waves of the COVID-19 pandemic for
USA states, and for consecutive nonoverlapping periods of 20 days for the USA and 51 countries
across the globe. We studied spread rates in the USA states and 51 countries, and analyzed associa-
tions between spread rates at different periods, and with temperature, elevation, population density
and age. USA first/second wave spread rates increase/decrease with population density, and are
uncorrelated with temperature and median population age. Spread rates are systematically inversely
proportional to those estimated 80–100 days later. Ascending/descending phases of the same wave
only partially explain this. Directions of correlations with factors such as temperature and median age
flip. Changes in environmental trends of the COVID-19 pandemic remain unpredictable; predictions
based on classical epidemiological knowledge are highly uncertain. Negative associations between
population density and spread rates, observed in independent samples and at different periods, are
most surprising. We suggest that systematic negative associations between spread rates 80–100 days
apart could result from confinements selecting for greater contagiousness, a potential double-edged
sword effect of confinements.

Keywords: exponential regression; SARS-CoV-2; contagiousness; pandemic; orthoevolution; nega-
tive heritability

1. Introduction

Spread parameters of daily new confirmed COVID-19 cases (calculated as the slope
of their logarithmic regression curve) estimates viral contagiousness. Previously, it was
shown that first wave spread, when comparing different countries, decreases with mean
annual temperature [1], and the opposite trend with temperature occurs for second wave
spread parameters [2].
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This is in line with observations on variation in spread across different regions of Italy,
in March 2020 (first wave period, negative correlation with temperature) and in May 2020
(second wave period, positive correlation with temperature) [3].

First and second wave spreads differ also in terms of other factors: The spread of
the first wave increases with the median population age and decreases the later the date
of its onset. On the contrary, the spread of the second wave decreases with the median
population age and increases the later the date of its onset. First and second waves also
differ because we detected no associations between second wave slopes and mean country
elevation, while first wave slopes increase with elevation up to 900 m and decrease beyond
that approximate altitude [2].

Inversion of trends for these independent covariates is difficult to explain. One could
invoke different explanations for each factor. A common, most parsimonious explanation
could involve deterministic mutation dynamics, resulting in parallel evolution of distinct
virus populations [4,5].

This working hypothesis expects cycles in the epidemiological behavior of the virus,
where pattern inversions occur each time a sufficient number of mutations cumulated to
cause a switch in secondary structure of the single-stranded RNA coronavirus. This would
explain the inversion in patterns between first and second waves. Because mutations
cumulate on average proportionally to time, one expects that epidemiological pattern
inversions occur after a fixed time interval.

Here, we calculate spread rates for daily new confirmed COVID-19 cases for consecu-
tive, nonoverlapping time windows of 20 days since the start of the pandemic in 51 different
countries, and in each of the 50 states of the USA (and the district of Columbia) until the
end of 2020, and examine these spread rates for inversions in patterns of correlations with
some environmental factors (temperature, elevation) and population properties (density,
median age), and across spread rates for different time windows. This approach, which
calculates spread rates for each consecutive period of 20 days, avoids difficulties inherent
to the objective definition of the start and end of different pandemic waves.

2. Materials and Methods

We used the methods as in previous analyses [1,2]. The coefficients (slopes) of regres-
sion analyses are considered as estimates of viral spread rates. We adjust the exponential
model y = a × exp(b × x), where y is the daily number of new confirmed COVID-19
cases, x is the number of days since wave onset, a is a constant and b is the slope. The log-
transformed version of this is ln y = ln a + b × x. Daily numbers of new cases per countries
are from the site www.worldometers.info/coronavirus/ (accessed on 25 December 2020).

Spread rates are determined for running windows of 20 consecutive days, where
consecutive time windows are nonoverlapping. Hence, if the first new case in a country
occurred 280 days ago, 14 spread rates were calculated, one for each of the nonoverlapping
20-day periods. Spread rates are estimated for these running windows as described above,
the slope of the exponential model of new daily cases with time.

For countries, sources for mean elevation, mean temperature, population density and
median population age and numbers of genomic variants are as previously described [2].
For the 50 states of the USA, we used the following sources in Table 1:

www.worldometers.info/coronavirus/
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Table 1. Web sites for data sources, accessed on 20 August 2020.

Temperature https://www.currentresults.com/Weather/
US/average-annual-state-temperatures.php

Elevation https://en.wikipedia.org/wiki/List_of_U.S.
_states_and_territories_by_elevation

Density
https://en.wikipedia.org/wiki/List_of_

states_and_territories_of_the_United_States_
by_population_density

Median age https://en.wikipedia.org/wiki/List_of_U.S.
_states_and_territories_by_median_age.

We also analyze daily new confirmed case data for each of the 50 states of the USA and
the district of Colombia, estimating first and second wave spread rates as done previously
for countries across the globe [1,2], using for the USA the exact same methods as described
previously [1,2].

Note that the slopes we evaluate from daily data in daily new cases estimate the
acceleration in increase of new cases: in the first differential model proposed for the
COVID-19 outbreak [6], the variable is the number of cumulative cases at time t, denoted
Xt, the velocity is the number of daily new cases, denoted Yt = (Xt − Xt − 1)/(t − (t − 1)),
and the acceleration is the slope of the curve of these daily new cases, denoted Zt = (Yt −Yt− 1)/
(t − (t − 1)). This acceleration as observed in simulation of the differential model, has a
first phase where daily new cases grow exponentially, until an inflection point is reached
with acceleration zero before the saturation phase.

We tested for normality of the distribution of variables used in correlation tests with
the Kolmogorov–Smirnov test, as available at Kolmogorov–Smirnov Calculator (Test of
Normality) (socscistatistics.com, accessed 20 December 2020). For variables statistically
significantly diverging from normality (p < 0.05), we calculated both parametric Pearson
and nonparametric Spearman rank correlation coefficients at Spearman’s Rho Calculator
(Correlation Coefficient) (socscistatistics.com, accessed on 20 December 2020)).

3. Results
3.1. Mutations Cumulate over Time during the COVID-19 Outbreak

Figure 1 plots the total number of genomic variants described for a country since
the start of the pandemic, on 20 December 2020, as a function of the numbers of days
since 1 January 2020 when the cumulated number of confirmed cases in a country reached
100 cases. This method for estimating the duration of the pandemic is not adequate for
states/countries for which the pandemic presumably stopped before end 2020. These are
excluded from analyses. Overall, the longer the pandemic is ongoing in a country (few
days since 1st of January), the more mutants have been described in that country. The
negative correlation confirms that numbers of mutations are proportional to time. A similar
result was found on 31 May 2020 [2]. Hence, this phenomenon is stable over time.

https://www.currentresults.com/Weather/US/average-annual-state-temperatures.php
https://www.currentresults.com/Weather/US/average-annual-state-temperatures.php
https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_elevation
https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_elevation
https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_States_by_population_density
https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_States_by_population_density
https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_States_by_population_density
https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_median_age
https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_median_age
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Figure 1. Numbers of genomic variants of SARS-COVID-19 as a function of days since 1 January 2020 until 100 confirmed
cases were detected in a country.

It is probable that numbers of variants reported from a country reflect also the se-
quencing efforts in that country, which vary among countries. However, the association in
Figure 1 is too strong to be only due to this factor, and probably reflects also, or even more,
an actual natural cumulation of mutant variants. Indeed, along that rationale, population
size should also increase variant numbers, but no such effect is observed, as small and
large countries fit equally well the curve.

3.2. Spread Parameters for First and Second Waves in the USA

Table 2 presents for each of the 50 states of the USA onset dates and slopes of first
and second waves, as detected by visual inspection as previously [2]. At mid-August, 42
among 50 states have a second wave. Second wave slopes are lower than first wave slopes
in all but three states: Oklahoma (slopes basically identical), and Kansas and Ohio (second
wave spread greater than first wave spread).
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Table 2. Spread parameters of first and second waves in the 50 states of the USA and the district of Columbia.

State T E D A Date 1 Slope 1 Date 2 Dis Slope 2

Alabama 17.1 150 37 39.2 21.03 0.3338
Alaska −3 580 1 34.6 16.03 0.175 23.05 7 0.051

Arizona 15.7 1250 23 37.9 22.03 0.1841 25.05 6 0.0733
Arkansas 15.8 200 22 38.3 19.03 0.0967 10.05 8 0.0502
California 15.2 880 95 36.8 14.03 0.1662 10.05 −4 0.0223
Colorado 7.3 2070 20 36.9 20.03 0.1989 11.06 2 0.0408

Connecticut 9.4 150 286 41 18.03 0.2759
DC 50 34 21.03 0.1011 30.06 6 0.0719

Delaware 12.9 20 187 40.7 22.03 0.1463 6.06 −6 0.0412
Florida 21.5 105 145 42.2 15.03 0.2584 26.05 −11 0.0785
Georgia 17.5 180 68 36.9 15.03 0.2536 25.05 0 0.0293
Hawaii 21.1 920 86 39.2 23.03 0.1433 2.05 −21 0.0906
Idaho 6.9 1520 7 36.6 24.03 0.2793 5.06 −3 0.0991
Illinois 11 180 89 38.3 16.03 0.4308 15.06 1 0.0289
Indiana 10.9 286 71 37.9 24.03 0.1093 22.06 1 0.0348

Iowa 8.8 340 21 38.2 24.03 0.1017 16.04 2 0.0893
Kansas 12.4 610 14 36.9 23.03 0.0876 12.04 1 0.096

Kentucky 13.1 230 43 38.9 23.03 0.1743 10.6 −7 0.0344
Louisiana 19.1 30 41 37.7 15.03 0.2022 23.05 −6 0.0382

Maine 5 180 16 44.9 21.03 0.1092 18.04 0 0.0373
Maryland 12.3 110 238 38.8 25.03 0.1216 14.04 0 0.0127

Massachusetts 8.8 150 336 39.4 13.03 0.3015 15.06 −33 0.0129
Michigan 6.9 270 67 39.8 18.03 0.4173 15.06 2 0.0612
Minnesota 5.1 370 26 38.1 20.03 0.1194 14.04 −6 0.1172
Mississippi 17.4 90 24 37.7 20.03 0.0863

Missouri 12.5 240 34 38.7 21.03 0.1762 29.05 14 0.0307
Montana 5.9 1040 2 39.9 14.03 0.2485 5.06 4 0.0965

North
Carolina 15 210 79 38.9 19.03 0.1458 4.05 0 0.0272

North Dakota 4.7 580 4 35.2 27.03 0.0545 8.05 7 0.0914
Nebraska 9.3 790 9 36.6 29.03 0.0775 19.06 −7 0.0248
Nevada 9.9 1680 10 38.1 18.03 0.1992 23.06 −2 0.054

New
Hampshire 6.6 300 57 43 21.03 0.1426

New Jersey 11.5 80 470 40 16.03 0.3797
New Mexico 11.9 1740 17 38.1 24.03 0.1126 9.06 −5 0.0347

New York 7.4 300 162 39 10.03 0.5503
Ohio 10.4 260 109 39.4 19.03 0.2369 15.04 1 0.2485

Oklahoma 15.3 400 22 36.7 24.03 0.1267 8.06 2 0.1285
Oregon 9.1 1010 16 39.4 19.03 0.106 17.05 −9 0.0564

Pennsylvania 9.3 340 110 40.8 17.03 0.2935 14.06 1 0.0472
Rhode Island 10.1 60 394 40.1 21.03 0.146 24.05 1 0.0435

South
Carolina 16.9 110 62 39.6 18.03 0.1536 24.05 0 0.0609

South Dakota 7.3 670 4 37.1 29.03 0.1716
Tennessee 14.2 270 61 38.8 17.03 0.2258

Texas 18.2 520 40 34.8 17.03 0.241 20.4 1 0.0281
Utah 9.2 1860 14 31 19.03 0.1146 11.05 −6 0.0329

Vermont 6.1 300 26 42.8 22.03 0.0546
Virginia 12.8 290 81 38.4 19.03 0.1789 15.06 0 0.0173

West Virginia 11 460 29 42.7 23.03 0.0985 5.06 1 0.0565
Washington 9.1 520 41 37.2 14.03 0.0657 14.04 0 0.0494
Wisconsin 6.2 320 41 39.6 18.03 0.0910 12.04 0 0.0200
Wyoming 5.6 2040 2 38 28.03 0.2346 29.05 0 0.0646

P K-S 0.907 0.008 0.007 0.530 0.274 0.228

Columns are: 1. State, 2. Mean annual temperature, 3. Mean elevation, 4. Population density, 5. Median age, 6. Onset date of first wave, 7.
Exponential slope of first wave, 8. Onset date of second wave, 9. Days separating onset date in column 8 vs. onset date determined by
statistical analysis. P K-S is p-values along the Kolmogorov–Smirnov test for normality.
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Hence, overall, spread decreased from the first to the second wave, from mean first
wave slope = 0.1902 to mean second wave slope = 0.0585.

In the USA, first wave slopes decrease with time since first wave onset (r = −0.5306,
two-tailed p = 0.000074, Spearman rank correlation coefficient rs = 0.415, p = 0.003). This is
similar to the decrease in slopes previously reported for comparisons across countries [2].
Comparing countries, second wave slopes increase with time since second wave onset [2].
However, for the USA, no such increase could be detected, the trend might fit with that
observed for the first wave (r = −0.29, p = 0.06, Spearman rank correlation coefficient
rs = −0.365, p = 0.019). Also contrasting with previous analyses of variation between
countries, there is no association in the USA between first and second wave slopes and
mean annual temperature. A positive association exists between first wave slope and time
since second wave onset (r = 0.4469, two-tailed p = 0.003), which could indicate that high
initial spread rates contribute to early onset of ulterior waves. Note that this effect does not
explain the absence of second waves in several states with particularly high first waves,
such as Illinois, New Jersey and New York.

First wave slopes increase with population density (r = 0.3777, one-tailed p = 0.0034,
Figure 2A). This association is expected, but was not observed when comparing differ-
ent countries [1,2]. Six New England states have relatively low slopes considering their
densities. Excluding them from calculations increases the strength of this correlation with
density (r = 0.5538, one-tailed p = 0.00005).

Density in principle increases spread rate. This was not observed for first and second
wave slopes when comparing countries [1,2]. However, this density principle is confirmed
for first wave slopes from the USA (Figure 2A). Unexpectedly, second wave slopes decrease
with population density (r = −0.459, two-tailed p = 0.0022, Figure 2B). Unexplained pattern
inversions between first and second waves have been reported for covariates such as
temperature, time since wave onset and median population age when comparing different
countries [2]. Decrease of slopes with density in the USA is foremost astounding because it
does not at all fit with any knowledge on disease spread.

3.3. Visual Inspection vs. Objective Statistical Analysis

Arguably, determining onsets of waves from visual examinations of graphs is subjec-
tive. This issue has been raised in the past [7,8], but has no obvious simple solutions and
requires extensive simulation analyses curtailed to each specific dataset, meaning in this
case for each state [9,10]. We therefore use a simplified method. Statistical analyses based
on calculating Pearson correlation coefficients r for a running window of 20 days determine
a local maximum for r within five days of the second wave onset date determined visually
for 80 percent of the countries examined [2]. We applied this method for the 42 second
waves detected for the USA (Dis, Table 2). Most of the onset dates determined by running
windows (62%) are within five days of the date determined visually, in line with similar
previous analyses for other countries [2]. The spread rates calculated for nonoverlapping,
consecutive windows of 20 days presented below do not suffer difficulties inherent to
defining wave onset.

3.4. Spread Rates for Consecutive Nonoverlapping 20-Day Windows

We estimated spread rates for 14 and 15 consecutive, nonoverlapping 20-day periods
for the 50 states of the USA and the district of Colombia (Table 3), and 51 countries across
the globe (Table 4). Note that because the start of the pandemic varies among states and
countries, spread rates are not exactly for the same period when comparing states/countries.
Numbers of states and countries where rates are positive are highest for the earliest period
(approximately end of February to beginning of March, day 20). This number is lowest
during the warmer spring and summer months. This is in line with an overall decrease of
spread with high temperatures.
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Figure 2. Spread parameters (slope of exponential regression) of first (A) and second (B) waves in USA states as a function
of population density. Trend inverted between first and second wave. A: the New England states with high densities
(filled circles) follow a different pattern than the rest of states, with a slower increase in spread with increasing density.
B: the second wave slopes (as determined in August 2020) are overall lower than first wave slopes, and counter-intuitively
decrease with population density. Patterns remain statistically significant with nonparametric Spearman rank correlation
tests, see text.

Table 5 presents the pairwise Pearson correlation coefficients for the spread rate data
from Tables 3 and 4 (USA, above diagonal, data from Table 3; countries across the globe,
below diagonal, data from Table 4). These 91 and 105 r’s include 16 cases (eight cases
for the USA) where the correlation between spread rates for two periods are positive and
statistically significant (p < 0.05, 2-tailed tests), and 14 and 19 cases, respectively, where r
is negative and statistically significant (p < 0.05, 2-tailed tests). Among the 16 statistically
significant positive cases, a statistically significant majority, 13, are between consecutive
periods (two-tailed sign test, p = 0.011). This indicates that spread rates are relatively
similar across two consecutive periods of 20 days, hence for about 40 days.
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Table 3. Spread rates (×100) for COVID-19 in the 50 states of the USA and the district of Columbia for 14 consecutive nonoverlapping 20-day time periods. N > 0 are numbers of positive
rates, Mean indicates mean rates. Days are since pandemic onset in that state, which differs among states. P K-S are p-values along the Kolmogorov–Smirnov test for normality.

State\Day 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Alabama 24.82 0.51 2.67 4.61 6.49 5.17 −0.59 −4.30 −0.26 2.37 0.88 1.71 1.07 2.13
Alaska 14.70 −8.70 −2.76 14.64 0.52 6.41 5.18 0.60 0.35 1.64 2.81 3.03 0.29 −4.71

Arizona 28.61 −0.07 2.09 1.79 8.31 1.97 −0.58 −6.02 −3.77 3.92 4.05 4.03 6.06 2.25
Arkansas 23.24 1.66 −4.17 12.99 3.53 −0.57 0.39 −1.08 1.24 1.19 −0.71 −0.15 0.72 1.30
California 26.21 0.06 0.55 2.83 1.54 3.88 0.30 0.94 −1.79 −0.50 −0.06 3.14 7.85 6.02
Colorado 23.83 −0.17 0.42 −2.01 −4.76 2.25 1.56 −2.61 0.59 5.25 2.59 5.33 1.36 −2.47

Connecticut 32.48 3.46 −3.92 −3.20 −4.99 3.62 3.10 1.25 5.22 −1.33 2.86 4.44 0.24 −0.64
DC 18.43 1.18 2.00 −2.08 −4.00 2.50 1.52 −1.83 −1.70 0.98 4.37 4.06 2.96 1.71

Delaware 28.25 −4.30 9.34 −4.42 −2.68 5.02 −0.38 0.44 −0.16 1.33 2.04 2.78 5.10 3.54
Florida 22.08 −2.26 −0.88 −0.08 7.87 5.21 −1.21 −3.72 −1.81 0.11 1.26 3.72 2.18 1.86
Georgia 25.76 −0.58 0.03 0.60 2.28 5.68 0.41 −1.63 −1.06 −1.14 −0.25 1.87 2.48 4.07
Hawaii 22.85 −7.89 −9.60 −3.84 16.15 5.10 3.19 6.53 0.84 −3.67 −2.12 0.70 −0.43 1.59
Idaho 32.63 −9.28 −5.88 10.37 4.65 6.68 −0.40 −1.76 −1.81 4.39 1.93 1.50 1.40 −0.50
Illinois 23.16 1.72 2.51 −1.82 −5.17 1.47 1.68 0.61 0.53 0.47 2.26 4.61 −0.67 −0.52
Indiana 34.25 0.06 0.50 −0.26 −0.38 3.05 1.49 −0.26 0.08 0.83 3.39 4.90 1.09 0.23

Iowa 26.93 6.86 1.39 −2.82 −0.96 4.40 1.35 0.95 −1.62 2.78 2.55 6.94 −4.71 −1.99
Kansas 24.21 1.49 3.91 −4.31 3.20 5.06 −3.57 −2.44 −2.71 1.11 2.23 0.11 2.03 −1.89

Kentucky 23.89 4.07 0.83 −1.77 −3.16 3.47 2.67 −0.02 1.91 1.60 0.86 2.50 2.57 0.39
Louisiana 29.89 −7.88 −2.11 −0.57 2.96 9.53 0.65 −2.44 0.31 −1.71 −4.58 −0.96 4.92 1.24

Maine 22.35 −0.72 5.22 2.02 −3.99 −2.01 1.06 −1.42 0.17 2.29 0.41 7.93 1.97 5.99
Maryland 30.02 5.99 2.67 −1.11 −5.58 0.26 3.50 −1.58 0.94 −1.87 1.25 2.11 3.17 1.53

Massachusetts 33.10 2.80 −2.26 −3.74 −8.44 0.53 2.26 −1.50 0.58 1.50 1.08 3.73 1.75 2.75
Michigan 37.94 −4.00 −2.67 −2.12 −4.92 3.78 1.31 −0.70 0.28 0.30 2.46 5.67 −0.76 −5.05
Minnesota 19.01 4.60 10.34 0.17 −2.17 2.23 0.68 −0.94 2.25 2.73 1.34 5.57 1.74 −4.48
Mississippi 32.25 4.00 0.99 2.18 0.03 4.08 3.05 −2.57 0.33 −1.73 0.05 −2.05 0.65 1.93

Missouri 27.29 −0.48 −2.61 0.99 0.45 2.81 3.59 4.79 −0.07 1.11 1.81 2.43 −2.17 −2.36
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Table 3. Cont.

State\Day 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Montana 23.86 −6.12 −12.88 0.37 1.80 6.77 2.18 1.47 3.11 2.09 5.24 1.53 2.02 0.28
Nebraska 19.14 6.55 4.39 0.15 −3.17 1.24 2.96 −1.57 −0.87 3.00 3.52 5.69 −3.28 −4.55
Nevada 26.55 −0.48 −1.13 1.49 3.87 5.54 1.94 −2.36 −3.26 −0.86 0.93 1.23 3.48 1.25

New
Hampshire 21.28 0.15 1.25 −1.06 −5.27 −0.77 −0.26 −2.45 2.87 −1.76 3.97 4.10 3.68 2.58

New Jersey 37.46 0.15 −3.57 −2.64 −4.82 −0.34 0.72 1.42 1.39 2.89 3.09 4.41 2.64 0.98
New Mexico 14.28 2.46 1.26 −1.04 −1.64 3.72 1.49 −3.76 −1.33 4.51 5.04 2.87 3.75 −1.11

New York 24.05 −2.39 −3.75 −2.75 −3.60 −1.07 −1.39 0.34 2.43 −0.17 2.13 2.71 2.96 1.72
North Carolina 29.43 1.70 2.24 2.55 2.25 1.67 −0.78 −4.92 −0.54 1.87 1.86 1.48 3.16 3.14
North Dakota 16.30 6.56 −1.08 −3.77 −1.37 6.40 1.57 0.54 1.57 4.27 3.21 4.11 −1.41 −4.33

Ohio 28.97 5.10 −1.13 −0.19 0.40 2.70 −0.40 −1.75 2.29 −1.13 2.33 3.81 3.65 1.40
Oklahoma 28.27 −3.56 0.02 −1.77 7.42 3.31 2.65 −2.22 0.92 2.81 0.65 1.26 0.55 0.97

Oregon 20.27 −1.79 1.86 −4.64 7.45 2.49 0.80 −0.93 −0.16 1.03 0.64 3.44 2.56 −0.62
Pennsylvania 36.04 0.85 0.71 −2.20 −2.91 3.20 1.79 −0.87 1.90 0.38 2.64 3.76 3.93 2.27
Rhode Island 22.39 3.75 −2.60 −4.36 −4.45 −0.31 4.36 0.15 −2.40 2.90 4.50 3.31 1.90 −3.86

South Carolina 25.64 −1.69 0.97 1.62 5.17 2.57 −1.47 −3.29 2.79 −0.94 −0.61 0.54 2.35 4.14
South Dakota 28.01 5.63 3.39 −1.53 −1.63 0.91 3.10 1.72 0.78 5.42 5.22 2.97 −1.94 −2.23

Tennessee 26.84 6.02 0.08 0.87 1.11 5.39 2.35 −1.62 0.78 0.35 2.85 0.38 −0.82 3.97
Texas 27.73 0.05 2.81 −0.58 4.55 4.74 −1.22 −2.03 −2.72 1.57 2.34 4.11 1.29 3.50
Utah 27.54 0.26 0.87 0.11 1.53 0.46 −1.55 −1.20 1.68 4.67 0.97 1.45 0.94 −0.63

Vermont 22.07 −8.53 −0.13 8.59 −2.92 −2.88 −3.21 8.34 1.07 −1.86 9.30 4.99 9.21 3.59
Virginia 23.59 3.99 2.08 1.06 −4.81 0.55 1.80 −0.06 1.31 −1.40 1.70 1.57 3.72 3.33

W Virginia 26.40 −2.56 −1.81 1.89 4.96 8.56 1.41 0.19 3.71 1.37 3.18 4.71 1.54 −0.02
Washington 8.22 −6.72 1.03 0.59 0.89 3.15 0.85 −1.31 −2.75 2.27 2.45 4.66 2.43 0.46
Wisconsin 23.99 0.01 4.04 4.10 −0.82 3.90 0.40 −0.82 1.67 4.20 0.65 2.05 −3.06 −1.76
Wyoming 17.98 −3.48 8.95 0.17 9.48 3.00 3.04 −4.67 −2.25 5.93 3.27 3.86 1.90 −3.35

N > 0 51 29 32 24 26 44 37 16 31 37 45 48 41 31
Mean 25.38 −0.038 0.323 0.316 0.397 3.069 1.086 −0.831 0.253 1.321 2.075 3.033 1.765 0.491
P K-S 0.776 0.399 0.529 0.113 0.754 0.989 0.883 0.545 0.867 0.920 0.794 0.790 0.654 0.670
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Table 4. Spread rates (×100) for COVID-19 in the 51 countries for 15 consecutive nonoverlapping 20-day time periods. N > 0, numbers of positive rates, Mean is mean rates. Days are since
pandemic onset in that state, which differs among states. P K-S are p values along the Kolmogorov–Smirnov test for normality.

Country\Day 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Afghanistan 15.28 5.00 7.26 5.32 −1.29 −2.26 −0.48 −6.00 −6.08 −1.22 11.19 1.60 4.80 0.36
Albania 14.49 −0.84 −5.79 −2.20 5.02 0.97 1.30 1.88 −1.00 1.65 0.89 2.66 4.13 1.11
Armenia 16.65 −0.79 5.72 7.07 2.12 −0.68 −4.33 −0.87 0.48 1.45 3.92 1.69 −4.83 −3.31 −5.01
Australia 25.07 −4.71 −11.82 −0.04 0.83 11.06 9.07 2.56 −7.88 −4.05 −7.59 −0.08 −3.59 −1.24 7.08
Austria 30.23 4.16 −10.29 −4.76 −6.94 1.50 5.69 2.13 5.72 0.12 2.43 4.22 7.34 −2.42 −2.19

Bangladesh 5.26 24.62 4.00 3.71 2.10 −0.57 −0.49 1.25 −2.11 −1.02 0.53 1.10 2.44 −1.72
Belgium 29.94 5.88 −2.79 −3.27 −5.26 −1.73 1.74 6.97 −0.49 2.05 3.52 9.38 −8.02 −4.66 −0.16
Bolivia 14.65 7.18 8.70 5.72 1.63 2.12 1.10 0.23 −2.76 −0.96 −2.08 −1.72 1.90 6.46
Bosnia 18.43 4.10 −0.38 −5.19 5.36 6.15 0.90 0.32 1.22 −0.42 −2.27 7.65 −2.09 −2.28 −3.57
Brazil 33.73 8.57 5.18 6.82 2.17 2.05 −0.93 1.46 −0.73 −2.52 −0.86 0.53 1.65 2.28 0.04

Canada 25.04 14.58 1.87 −1.82 −2.58 −4.04 0.10 1.97 0.88 2.09 4.29 1.54 2.68 1.28 1.28
Chile 31.06 6.44 1.73 5.41 1.47 −1.95 −2.31 −0.97 −1.28 0.70 1.06 0.00 2.05 0.88 1.54

Czechia 30.07 2.34 −6.20 −1.42 −2.70 2.91 −4.90 1.87 0.34 8.70 2.59 8.27 −2.65 −1.15 5.81
Georgia 7.56 5.78 −0.16 0.08 2.65 −6.34 3.13 −6.75 −2.31 15.53 6.30 8.63 4.03 0.63 −6.27

Germany 35.16 7.43 −5.98 −5.09 −5.06 3.36 −2.52 4.94 4.69 −2.04 2.07 6.73 4.30 0.30 3.30
Greece 18.28 −1.52 −3.81 −2.05 6.38 0.93 1.25 12.28 1.55 0.62 0.30 5.47 2.79 −3.74 −4.50

Hungary 19.48 6.03 −0.99 −3.38 −7.37 −1.73 6.18 1.61 2.73 10.63 1.61 4.88 3.25 1.92 −4.47
India 19.78 14.27 4.25 5.48 3.25 3.71 3.24 2.23 0.40 1.75 −0.67 −1.73 0.01 −0.20 −2.43

Indonesia 31.30 6.62 0.21 3.57 3.00 1.29 0.54 0.85 2.18 1.26 −0.09 −0.51 2.31 1.57 1.37
Iran 40.40 6.66 −4.41 −0.19 1.85 −0.87 0.10 0.02 −0.48 −1.72 2.88 1.14 4.16 2.47 −2.79
Iraq 14.82 8.94 −5.01 3.21 9.96 3.94 1.20 2.04 3.05 0.49 −0.95 −1.32 −0.96 −2.68 −2.93

Ireland 30.39 6.56 −5.86 −7.61 −10.15 −4.52 4.66 9.26 1.82 4.31 3.79 3.43 −3.89 −1.98 8.65
Israel 28.61 12.23 −2.47 −11.53 12.25 5.22 7.81 −0.06 1.18 3.82 1.80 −10.38 0.55 1.70 3.79
Italy 35.43 6.45 −1.99 −5.16 −5.06 −2.65 −2.39 1.62 4.41 6.08 0.35 7.27 6.76 −0.68 −2.62

Kazakhstan 21.10 5.98 0.55 6.71 −0.22 8.67 −0.94 −6.96 −7.08 −1.47 2.07 9.07 1.27 −0.50
Kuwait 4.17 6.19 3.04 7.45 −0.56 −2.01 0.33 0.15 1.49 0.99 −1.78 2.36 −0.29 −4.74 −1.18

Lithuania 21.70 −3.11 −9.79 −2.26 −0.20 2.46 6.22 4.34 −0.17 5.18 1.44 8.25 0.67 1.40
Luxemburg 29.22 −8.42 −6.55 −6.81 0.46 14.02 5.36 −5.47 0.30 2.60 4.25 7.57 −2.28 0.16

Malaysia 31.13 1.47 −6.38 −2.08 4.30 −3.72 2.53 3.78 3.42 6.77 4.92 5.48 0.82 1.23 2.00
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Table 4. Cont.

Country\Day 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Mexico 26.38 8.11 4.82 3.36 1.52 0.79 0.89 −0.24 0.39 −1.99 1.88 0.09 −0.83 1.38 0.45
Moldova 19.26 1.80 0.03 1.23 4.22 −4.23 0.68 1.60 0.83 −0.64 0.09 −0.30 1.41 −0.78
Morocco 25.02 6.01 −1.31 −5.95 4.98 6.50 4.17 3.80 −0.23 2.65 2.04 0.16 −1.43 −1.66

N Macedonia 19.60 5.10 −8.86 1.80 10.53 0.38 0.31 −0.69 −4.68 3.92 5.90 5.55 1.80 −3.23
Netherlands 33.96 6.11 −1.67 −4.50 −2.12 −6.07 −1.05 8.25 1.24 2.96 6.15 4.91 −3.62 −0.79 5.22

Norway 32.24 3.04 −4.34 −4.61 −5.32 −4.10 −8.34 10.91 2.80 5.89 −0.32 1.04 5.25 −2.75 1.26
Pakistan 32.05 5.03 6.72 2.79 7.68 −2.83 −5.12 −5.37 −3.39 2.12 −0.64 3.03 4.91 0.68 −3.49
Panama 25.65 2.63 0.32 1.01 4.09 1.48 −1.03 −0.60 0.20 −0.35 1.03 1.06 4.05 3.42 1.44

Philippines 23.02 1.90 −0.50 −0.89 3.50 3.59 2.59 5.20 −1.10 0.90 −1.60 −2.30 −1.77 −0.62 0.97
Poland 32.90 6.28 −0.37 1.45 1.00 −2.38 0.93 4.22 1.28 −3.03 6.77 7.00 1.16 −4.49 −0.04

Portugal 32.57 3.86 −4.33 −1.82 2.48 1.43 0.19 −2.99 −0.43 4.72 1.36 7.84 3.59 −4.45 −1.16
Romania 25.79 3.61 −0.81 −4.61 0.44 1.88 5.16 0.03 −0.50 1.01 3.58 2.86 1.94 −1.54 −3.23

Russia 24.49 15.79 5.52 −0.90 −0.10 −1.62 −0.46 −0.76 −0.46 0.81 3.51 1.89 1.35 1.18 0.40
S Korea 39.90 −5.49 −8.29 −5.98 7.20 3.22 0.91 −2.40 −3.56 13.72 −5.90 −0.99 1.88 5.77 3.62

Saudi Arabia 26.61 6.47 6.99 3.68 1.52 −0.50 −2.70 −3.71 −1.80 −2.88 −2.03 −0.83 −1.19 −1.99 0.01
Serbia 24.03 8.49 −5.76 −1.45 5.40 9.67 1.79 −3.79 −6.40 0.43 4.49 14.24 7.72 0.85 −3.55
Turkey 42.42 3.06 −4.63 −2.49 3.35 −1.02 −0.54 1.67 1.82 0.18 0.31 1.41 6.30 1.44
UAE 5.12 16.42 1.89 2.99 −2.70 −0.51 −2.32 −1.13 3.67 4.10 2.32 1.31 −0.34 0.03 0.45
UK 35.66 14.62 0.24 −1.45 −4.09 −2.13 −3.28 0.73 2.28 4.96 4.96 3.90 0.68 −3.83 4.09

Ukraine 27.04 10.09 −0.42 −0.49 3.69 −0.96 2.53 2.75 1.24 1.99 2.88 3.10 2.34 −1.29
USA 35.93 24.23 0.89 −0.29 −0.67 0.17 3.35 0.60 −0.80 −1.64 0.54 0.79 3.63 2.38 1.99

Uzbekistan 14.33 1.90 1.02 3.81 4.71 4.62 1.32 −0.89 −3.71 2.43 −2.68 −2.47 −1.17 1.02
N > 0 51.00 44.00 21.00 21.00 33.00 27.00 33.00 33.00 27.00 36.00 37.00 39.00 35.00 25.00 21.00
Mean 25.15 6.02 −1.20 −0.35 1.35 0.88 0.85 1.06 −0.15 2.03 1.58 2.87 1.31 −0.33 0.14
P K-S 0.730 0.109 0.927 0.871 0.880 0.657 0.532 0.324 0.430 0.224 0.994 0.599 0.933 0.962 0.868
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Table 5. Pearson correlation coefficients r (×100) between spread rates. Above the diagonal, consecutive nonoverlapping 20-day periods from the USA (Table 3), and, below the diagonal,
from various countries (Table 4). Highlights are for p < 0.05, two-tailed test.

Period 20 40 60 80 100 120 140 160 180 200 220 240 260 280

20 8.44 −20.28 −14.06 −12.91 2.06 −5.35 1.08 19.97 −20.66 −16.90 −13.99 1.25 22.38
40 −12.19 34.97 −35.06 −41.88 −27.16 19.09 −20.75 8.95 11.97 9.16 12.29 −32.21 −10.46
60 −30.70 46.88 −13.30 −14.46 −21.45 −17.35 −37.87 −25.24 27.82 4.15 26.25 5.78 −1.48
80 −43.48 19.60 60.91 18.56 3.12 −7.80 0.98 −3.24 2.78 1.03 −19.44 9.14 7.52

100 −16.05 −12.48 2.74 14.58 45.82 −16.25 −15.34 −29.57 −0.86 −34.56 −38.75 0.67 10.38
120 −3.47 −28.73 −29.64 −9.71 30.60 10.69 −14.23 −11.02 −2.38 −31.61 −31.53 −16.50 −14.27
140 −10.69 −13.90 −38.06 −35.52 10.33 39.24 16.86 10.11 6.74 −2.21 3.73 −42.42 −38.85
160 18.81 −3.84 −31.98 −36.01 −28.21 −25.49 4.07 33.33 −29.27 22.71 13.97 −7.00 −7.52
180 19.53 13.42 −11.88 −35.10 −34.54 −36.00 −9.64 49.67 −24.47 −2.14 −2.01 −10.99 0.32
200 −1.15 −18.88 −28.08 −37.32 −7.39 −25.39 1.72 −4.11 15.19 30.54 28.37 −32.57 −49.68
220 0.65 17.93 6.56 −8.7 −23.01 −35.36 −7.58 −8.67 10.00 11.19 46.64 10.23 −23.15
240 5.33 −19.27 −32.94 −13.92 −32.56 2.86 −9.33 −4.04 −3.33 19.67 40.71 −8.76 −22.56
260 15.67 14.91 −4.48 −3.11 4.91 −15.03 −14.76 −22.09 4.90 3.98 9.66 10.70 56.77
280 14.85 0.86 13.4 1.48 16.47 11.04 12.40 −29.26 −19.98 11.38 −20.61 −31.81 31.23
300 43.39 2.23 −32.48 −29.66 −26.21 4.74 4.05 33.80 −4.15 −4.35 −10.73 −26.07 −35.84 12.88
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The distribution of statistically significant negative correlations among spread rates
from Tables 3 and 4 in relation to time periods is greater than for positive correlations, but
13 among 14 cases are for periods separated by 40–140 days, on average 88 days with a
standard deviation of 30 days (Figure 3). Two statistically significant negative correlations
between spread rates are separated by 160–240 days.

Figure 3. Pearson correlation coefficients r between spread rates from Tables 3 and 4 (open cirles, USA; and +, other
countries, r from Table 5) as a function of numbers of days between the time frames when spread rates were estimated.
Blue lines indicate crirical values of r for p < 0.05 according to two-tailed tests. Most positive r’s with p < 0.05 are for
pairs of consecutive periods (20 days on x axis, green box), most negative r’s with p < 0.05 are for periods separated by
approximately 80 days, orange box.3.5.

3.5. Environmental Correlates of Spread Rates across Time

Table 6 presents Pearson correlation coefficients r between spread rates in Tables 3 and 4
and environmental variables from Tables 2 and 7. Results include inversions of directions
of correlations, as also shown in Table 5 and Figure 3. For mean annual temperatures,
around May (day 100), spread rates increase with temperature in the USA and in the
world, as previously reported for countries across the world [2], and for the period of
December (day 280, USA only). Temperature decreases spread rates at the end of summer
and beginning of autumn in the USA and across the world. Results for mean altitudes
show similar pattern inversions, including inversion between consecutive periods at days
180 vs. 200 (August vs. start of September, USA only). For the USA, an inversion in
correlation directions also occurs with median age, with positive vs. negative statistically
significant correlations at days 180 vs. 200. The negative correlation of spread rates with
age corresponds to the time when schools open (end of August to beginning of September).
Spread rates increase again with median age at the end of autumn (day 280, first part of
December). For countries across the world, median age increases with spread rates at
pandemic onset, and in summer–autumn, for the period spanning from day 160 to 240. In
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contrast, for the spring periods from days 60 to 100, spread rates decrease with median age
when comparing countries across the world. This might result from seasonal differences
between age-related behaviors, but other explanations are also possible.

Table 6. Pearson correlation coefficients r (×100) between spread rates for consecutive nonoverlapping 20-day periods
from Tables 3 and 4 with environmental variables from Tables 2 and 6. Rows starting with USA give r between spread
rates and environmental factors for the US states, rows starting with world are for countries. Rows starting with rs
present nonparametric Spearman rank correlation coefficients rs for the two variables, altitude and density, that differ at
p < 0.05 from normality according to Kolmogorov–Sminov tests. Bold, underlined indicate that correlations are statistically
significant at p < 0.05 according to a two- and one-tailed test, respectively.

Variable\Day20 40 60 80 100 120 140 160 180 200 220 240 260 280

Temp.
USA 25.12 4.70 −7.16 −16.21 47.06 21.18 −21.98 −19.91 −21.60 −40.10 −50.69 −49.46 16.29 51.98

World −19.04 4.51 23.03 34.31 31.66 15.94 7.09 −6.62 −5.28 −23.11 −38.76 −38.72 −10.68 13.34
Altitude

USA −23.09 −18.78 −1.66 6.53 32.71 11.81 1.28 −19.04 −29.20 49.98 14.48 1.34 3.90 −28.26

rs −4.8 −19.9 1.5 12.8 32.31 3.85 −8.56 0.52 −6.69 42.04 21.23 6.97 −1.97 −23.1
World −11.64 −10.61 29.92 33.46 18.73 −3.51 −13.12 −35.17 −30.11 −5.92 7.80 −24.34 12.08 22.81

rs −4.9 −8.9 22.88 19.79 27.61 6.34 −5.22 −36.68 −32.67 −13.16 −1.60 −21.75 26.36 25.92
Density

USA 38.85 17.62 −17.62 −36.69 −41.00 −31.03 14.32 13.56 14.52 −18.43 3.41 10.16 14.58 12.67

rs 11.54 26.24 −10.30 −36.64 −34.65 −5.49 7.61 16.86 12.70 −38.32 −9.86 10.74 8.77 20.96
World −19.90 24.74 6.45 −4.70 4.56 −4.78 1.62 10.29 7.00 13.47 −13.05 −10.58 −11.70 −14.60

rs 8.63 −5.25 −20.88 −25.96 7.27 0.91 4.33 19.35 32.83 36.69 0.22 12.44 −10.41 −23.4
Age
USA 15.17 −9.38 −5.15 −7.11 −13.10 −21.44 −7.13 17.25 32.06 −33.31 11.68 25.91 21.84 30.23

World 33.71 −16.10 −50.50 −54.53 −39.52 −2.62 9.08 30.14 25.74 29.10 12.27 57.83 7.62 −22.37

Table 7. Environmental variables for 51 countries, mean annual temperature, mean elevation,
population density per square kilometer, and median age. P K-S is the p-value along the Kolmogorov–
Smirnov test for normality.

Country Temperature Elevation Density Age

Afghanistan 12.6 1885 49 18.9
Albania 11.4 708 99.73 32.9
Armenia 7.15 1792 99 35.1
Australia 21.65 330 3 38.7
Austria 6.35 910 106 44

Bangladesh 25 85 1175 26.7
Belgium 9.55 181 378 41.4
Bolivia 21.55 1192 10 24.3
Bosnia 9.85 500 69 42.1
Brazil 24.95 320 25 32.6

Canada −5.35 487 4 42.2
Chile 8.45 1871 23 34.4
Czech 7.55 433 135 42.1

Georgia 5.8 1432 53.51 38.1
Germany 8.5 263 233 47.1

Greece 15.4 498 210 44.5
Hungary 9.75 143 272 42.3

India 23.65 621 412 28.1
Indonesia 25.85 367 141 30.2

Iran 17.25 1305 51 30.3
Iraq 14.03 312 90 20

Ireland 9.3 118 70 36.8
Israel 19.2 508 417 29.9
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Table 7. Cont.

Country Temperature Elevation Density Age

Italy 12.45 538 200 45.5
Kazakhstan 6.4 387 7 30.6

Kuwait 25.35 108 642 29.3
Lithuania 6.2 110 73 43.7

Luxemburg 8.65 325 237.39 39.3
Malaysia 25.4 538 99 28.5
Mexico 21 1111 64 28.3

Moldova 9.45 139 79.27 36.7
Morocco 17.1 909 80 29.3

N Macedonia 9.8 741 81 37.9
Netherlands 9.25 30 421 42.6

Norway 1.5 460 17 39.2
Pakistan 20.2 900 274 23.8
Panama 25.4 360 56 29.2

Philippines 25.85 442 362 23.5
Poland 7.85 173 123 40.7

Portugal 15.15 372 112 42.2
Romania 8.8 414 81.4 41.1

Russia −5.1 600 9 39.6
S Korea 11.5 282 517 41.8

Saudi Arabia 24.65 665 16 27.5
Serbia 10.55 473 89.08 42.6
Turkey 11.1 1132 106.12 30.9
UAE 27 149 116.87 30.3
UK 8.45 162 280 40.5

Ukraine 8.3 175 69.49 40.6
USA 8.55 760 34 38.1

Uzbekistan 12.05 2750 73 28.6
P K-S 0.199 0.024 0.002 0.259

The only statistically significant correlations with population density when comparing
countries across the world are detected using nonparametric Spearman rank correlation
analyses, with the only positive associations fitting trivial expectation on consecutive
periods spanning days 180 and 200 (p < 0.05, one-tailed tests). Density is expected to
increase spread rates. Such a positive association is observed at pandemic onset in the USA.
This pattern is inversed for three consecutive periods in the spring in the USA and at days
80 and 280 for countries across the world.

Negative associations of viral spread rate with density are unexpected and make no
sense in terms of classical epidemiological understanding, as these imply greater spread
rates in populations with low density.

4. Discussion
4.1. A Potential Epidemiological Explanation for Spread Rate Inversions

The inversion of patterns with time and other variables (altitude, temperature, median
population age) for slopes of pandemic waves renders predictions particularly dubious. In
addition, the negative correlation between second wave slopes and USA density (Figure 2B)
contradicts a proven and accepted epidemiological principle. The inversion of directions
of correlations between spread rates and several environmental factors (Table 6) confirms
previous observations regarding temperature [2]. Periods until inversions vary among
environmental factors. For example, associations of spread rates with age flip directions
from increasing to decreasing with median age at the transition between summer vacations
and the beginning of the school year, at least in the USA. One could find for each of the
inversions in directions in statistically significant r values in Table 6 a specific explanation,
such as that stated above about school openings. However, the almost systematic inversion



Biology 2021, 10, 623 16 of 21

of correlation directions for most environmental factors suggests a common cause for most
of these pattern inversions.

This point for a more general cause for pattern inversions is strengthened by correla-
tions between spread rates at different periods, for USA states and for countries across the
world. The spread rate hierarchy among US states and among countries is systematically
inverted after 80–90 days (Table 4 and Figure 3). The cause for these inversions is unclear,
but this inversion pattern is systematic, as spread rates at any period will be inversely
proportional to those at an ulterior time, typically 80–90 days later. Note that 80–90-day
intervals between slopes are too long for these slopes to be part of the ascending and
descending parts of the same wave, as proven in the next section.

A first potential explanation is that spread rates vary according to cycles of maxima,
intermediate and minima in daily case numbers, and that countries with the highest
maxima have the lowest minima and those with the lowest maxima have the highest
minima, about 80–100 days later. This hypothesis assumes that the same rules also apply
to periods with intermediate spread rates, and that ups and downs in spread rates are
synchronized between most countries. The latter assumption is adequate for the first wave
in late winter 2020, but could not hold throughout the complete period analyzed, also
because countries and states vary in confinement periods, lengths and efficiencies, which
causes decreases in spread rates. Hence, additional analyses are required to understand
the causes of these pattern inversions; however, the systematic aspect of these inversions in
spread rates is such that these should be accounted in the predictions and policymaking.
This is because results of correlation analyses hint at the possibility that steep decreases in
spread rates cause steep ulterior increases. In that respect, it might be optimal to mitigate
variations in spread rates by avoiding drastic policies suddenly increasing or decreasing
spread rates.

4.2. Negative Correlations between Spread Rates Are Not between Ascending and Descending
Parts of the Same Wave

We test here the hypothesis that negative correlations between spread rates from
different periods reflect negative associations between the steepness of the rate during the
ascending and the descending parts of the same wave can be tested. This is easily tested
using data in Tables 3 and 4, because spread rates in the ascending phase of a wave are
positive, and those in the descending phase of a wave are by definition negative. So, if
the hypothesis is correct, for statistically significant negative correlations in Table 5, we
should see systematically the opposite sign for rates in the two periods considered. If this
inversion of signs is not observed, the ascending/descending phase hypothesis is incorrect.

We tested this for each of the negative correlations with p < 0.05 in Table 5, as presented
below for a specific example. We considered the negative association between spread rates
for the USA between periods of 20 days starting at days 100 and 240 after the start of the
outbreak. For these periods, among the 51 states and district of Colombia, there are 26
and 48 positive spread rates. Hence, the probability of random assortment of identical
signs between these two periods expects 26 × 48/51 + 25 × 3/51 = 25.94 where spread
rates in the two periods have the same sign, and 51 – 25.94 = 25.06 cases where signs are
inverted between the two periods. The observed number of inverted signs between these
periods are 28. This slight increase as compared to the expected has p = 0.41 according to a
chi-square test.

This analysis was done for all negative correlations with p < 0.05 in Table 5. There
are 10 (USA, 5; countries across the world, 5) negative associations between spread rates
where sign inversion between periods is significantly greater than random predictions,
and 23 cases where this effect is not statistically significant as in the above example. This
means that the hypothesis of ascending/descending phases of a wave could contribute
in some cases to the phenomenon of negative associations observed between spread rates
from different periods, but is not the main cause of these negative associations.
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4.3. Does Confinement Increase Ulterior Spread Rates?

One mechanism that could be invoked in this context is that strict confinement policies
select for highly contagious viral strains and/or long contagion periods that are more
likely to overcome confined conditions. As case numbers decrease during confinements,
reopening societies to normal activity unleashes these more contagious viral strains while
potentially competing strains with lower infection abilities disappeared, resulting in higher
spread rates at the level of the whole population. This dynamic would presumably be
visible at the level of analyses such as those done here at time lags of 80–90 days, and would
presumably cause the systematic inversions in spread rates among countries and regions
described here. Note that the natural trajectory of viral evolution typically increases
contagiousness while at the same time decreases pathogenicity, also in the absence of
confinement. Confinements hasten the process of evolving greater contagiousness. Steep
increases in recent months (autumn of 2020) in the UK, apparently associated with a new
highly contagious viral variant, seem in line with this working hypothesis (Figure 4).

Figure 4. Daily new confirmed COVID-19 cases in the UK since 15 February 2020 until the end of 2020. The dates, with
months counted in roman numbers are indicated for specific datapoints.

A coolheaded analysis and evaluation of above and future results is crucial for better
managing the pandemic.

4.4. Intrinsic vs. Extrinsic Constraints

We discuss below additional potential, more speculative and genetics-oriented expla-
nations for inversions of directions of correlations with spread rates.

One hypothesis is that self-hybridization of the virus’ single-stranded RNA genome
protects nucleotides forming stems against mutations, while favoring mutations in loops [11].
Mutation cumulation presumably causes deterministic switches between few optimal struc-
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tures which differ in their properties in relation to temperature, etc. Such switches between
secondary structures have been suggested for COVID-19 after small insertion/deletion
mutations [12].

These patterns remind the little-known phenomenon of negative heritability. Usually,
heritabilities of traits are such that offsprings resemble their parents: if a parent is for a given
trait above average, his/her offspring will on average be also above average, and parents
below average for that trait have on average offspring which are below average for that
trait. In short, heritabilities are correlations between traits of parents and offspring. These
correlations are usually positive. Surprisingly, in some cases, negative correlations were
observed, meaning negative heritabilities, where above average parents produce below
average offspring for given traits, and vice versa for below average parents [13,14]. These
phenomena are not statistical artefacts [15] but are difficult to reproduce empirically [16].
This is expected when assuming negative heritability results from selection under changing
environmental conditions [17].

Inversion of trends, such as for negative heritabilities, could presumably result from
drastic environmental changes. For example, levels of channeling of Sorghum bicolor plant
populations towards developmental trajectories better adapted to NaCl salinity after early
low level NaCl exposure increased with population variability [18] in the first generation
exposed to salinity, but decreased with populational variability in their offspring [19,20].
This is in line with the concept that COVID-19 adapts to its new human host and to various
environments inhabited by that host.

It is possible that a large part of the variation in slopes during the pandemic is
due to factors intrinsic to evolutionary trajectories of the virus, genetic ones included.
This does not exclude environmental effects due to host population age structure, density,
temperature and altitude, among others. However, inversions of trends with these cofactors
at different periods of the pandemic suggest that unknown intrinsic factors have major
effects on the evolution of the pandemic.

Another approach stipulates that variations across different locations reflect to large
extents the dynamics at a single location, at different times. This principle where spatial
variation is tantamount to temporal variation has been observed in many different con-
texts, such as in astrophysics where larger distances are interpreted as reflecting more
ancient times [21], and in forest stage succession [22–24], ecological communities [25] and
biomolecules such as those involved in ribosomes [26–31]. The principle is also applied
in the renown Haeckelian statement “ontogeny recapitulates phylogeny” [32,33]. Vari-
ation among individuals in directional asymmetry is interpreted as reflecting different
termination timings of development [34]. The principle exists within the relationship
of the genetic code and the ribosome [35]. Similarly, the average order of translation of
amino acids in single proteins reflects the order of integration of amino acids in the genetic
code [36]. At the level of the pandemic, this would suggest that the macroscopic spread
rates correspond to viral replication cycles and/or rates of production of viral particles.
This hypothesis should be considered as suggestive at best, but could be proven useful as a
working hypothesis for the long-term dynamics of this still unknown disease at the level
of individuals.

Pattern inversions add to the problem of uncertainty in the data and in predictions [37,38].
Analyses of spread rates estimated for consecutive nonoverlapping periods of 20 days
confirm results obtained for visually determined waves. They show systematic inversions
in spread rates between countries/regions, which occur approximately every 80–90 days,
across the whole period studied. The causes for this are not well understood but might
indicate compensation mechanisms for reduced spread rates during confinement in periods
following the confinement. This reduction is shown and analyzed in many countries
imposing a confinement like England, France, Germany, Iran, Italy, Netherlands, Spain,
United States and China compared to countries like Sweden and South Korea, which did
not implement mandatory stay-at-home confinements [39–41]. A stochastic modeling
of the reducing effect of confinement is possible and shows a control depending on the
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characteristics of the countries concerned and on the early or late nature of this mitigation
policy [42].

However, confinements might select for more contagious viral strains, and/or viral
strains that are contagious for longer periods. The increased contagiousness and possibly
pathogenicity [43–45] of these viruses would cause higher spread rates after deconfinement
and therefore reduce the positive impact of restrictive measures such as the lockdown. This
working hypothesis on effects of lockdowns arises from the results presented above and
could be tested by ulterior analyses specifically designed to examine this working hypothesis.

5. Conclusions

In the USA, first and second wave slopes are not correlated with temperature, median
age or time since wave onset, but with population density. The principle of inverted
trends between first and second waves upholds; density effects are positive/negative for
first/second wave slopes. Negative associations between population density and viral
spread rates are also observed when examining countries across the world. Such negative
associations of viral spread with population density are not compatible with our present
understanding of the epidemiology of infectious agents. These inversions of directions of
associations between viral spread rates and environmental and populational variables are
confirmed by analyses of consecutive nonoverlapping periods of 20 days. We also observe
that viral spread rates at any time during the study period are inversely proportional to
rates 80-90 days later. These results were observed in two independent samples, US states
and 51 countries across the globe. They stress that pandemic dynamics are misunderstood
and probably mismanaged.
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