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Abstract: Immune checkpoint inhibitor (ICI) therapies have shown great promise in cancer treatment.
However, the intra-heterogeneity is a major barrier to reasonably classifying the potential benefited
patients. Comprehensive heterogeneity analysis is needed to solve these clinical issues. In this study,
the samples from pan-cancer and independent breast cancer datasets were divided into four tumor
immune microenvironment (TIME) subtypes based on tumor programmed death ligand 1 (PD-L1)
expression level and tumor-infiltrating lymphocyte (TIL) state. As the combination of the TIL Z
score and PD-L1 expression showed superior prediction of response to ICI in multiple data sets
compared to other methods, we used the TIL Z score and PD-L1 to classify samples. Therefore,
samples were divided by combined TIL Z score and PD-L1 to identify four TIME subtypes, including
type I (3.24%), type II (43.24%), type III (6.76%), and type IV (46.76%). Type I was associated with
favorable prognosis with more T and DC cells, while type III had the poorest condition and composed
a higher level of activated mast cells. Furthermore, TIME subtypes exhibited a distinct genetic and
transcriptional feature: type III was observed to have the highest mutation rate (77.92%), while
co-mutations patterns were characteristic in type I, and the PD-L1 positive subgroup showed higher
carbohydrates, lipids, and xenobiotics metabolism compared to others. Overall, we developed a
robust method to classify TIME and analyze the divergence of prognosis, immune cell composition,
genomics, and transcriptomics patterns among TIME subtypes, which potentially provides insight
for classification of TIME and a referrable theoretical basis for the screening benefited groups in the
ICI immunotherapy.

Keywords: the Cancer Genome Atlas; immunotherapy; tumor immune microenvironment; pro-
grammed death ligand 1; tumor-infiltrating lymphocyte

1. Introduction

For the past few years, clinical results revealed that immune checkpoint inhibitor
(ICI) treatment, such as programmed death-1 (PD-1) and its ligand 1 (PD-L1) checkpoint
blockade, have shown an exhilaratingly long-term effect in a variety of cancer patients
and have become a research focus in current tumor immunotherapy [1–3]. However, it
has been reported that a number of patients showed a low response rate or treatment
resistance against the anti-PD-1/PD-L1 checkpoint blockade [4–6]. Thus, it is significant to
categorize patients into appropriate subpopulation, based on their cellular and molecular
characteristics, to elucidate an inner mechanism, resulting in divergence of multi-omics
patterns, and to ultimately provide clinical guidance on choosing corresponding treatment
strategies for stratifying patients.
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The various classifications of population-responding ICIs are mainly attributed to tumor
microenvironments (TMEs), especially the composition and quantities of tumor-infiltrating
lymphocytes (TILs), as well as numerous factors that independently predict clinical response
to ICIs, including PD-L1 expression, tumor mutation burden (TMB), neo-antigen genotype,
immune cell exhaustion, and disordered expression levels of cytokines [6–10]. It has been
reported that the TIL status in the tumor immune microenvironment (TIME) is positively
related to good clinical prognosis and could better predict the response to anti-PD-1/PD-
L1 therapies [11–14]. Considering the inhibitory effect of cancer cells on the function
of effector lymphocytes in TIME via immunological checkpoints, such as PD-L1, it is
more comprehensive and precise to stratify TIME into different types by combining the
two indicators above. Owing to the divergence of TIL status and PD-L1 expression, the
immunologic effects of different TIME subtypes can be various, and thus, the corresponding
immunotherapeutic strategies can be different. Recent research has described four different
subtypes of TIME based on the positive or negative status of TIL and PD-L1 expression,
including type I (PD-L1+/TIL+: adaptive immune resistance), type II (PD-L1−/TIL−:
immunological ignorance), type III (PD-L1+/TIL−: intrinsic PD-L1 induction), and type
IV (PD-L1−/TIL+: Other suppressors) [15–17], which may serve as a more systematic
biomarker to stratify patients in clinical use of immunotherapy [18,19].

However, there are several issues that need to be addressed. First, most of these
studies generally focused on one specific cancer type and classified samples into four
subtypes to investigate their molecular characteristics without analyzing the multi-omics
discrepancy of four subtypes in pan-cancer [16,20,21]. Second, they merely qualified the
PD-L1 expression on the membrane surfaces of tumor cells by immunohistochemistry
(IHC) [15–20]. However, several studies have reported that tumor cells are able to release
a vast of exosomes, containing majority PD-L1, to suppress antitumor immunity rather
than merely present PD-L1 on their cell surfaces [22,23]. This discovery may explain the
discrepancy of PD-L1 expression between the transcriptomic level and proteomic level and
reminds us that exclusive detection of expression of PD-L1 presenting on the membrane
surface may have certain limitations. Third, they only evaluated the TIL status according to
the CD8+T cell, which was the uppermost effector lymphocyte in TIME, without analyzing
other kinds of functional lymphocyte impacts [15,19–21,24–27]. In most big cohort studies
of immune-related cancer, researchers only used the expression levels of CD8+ T cell-related
genes, such as CD8A or CD8B, to characterize TIL [15,24–27]. Additionally, they classified
different patients into PD-L1 or TIL positive/negative subgroups without illustrating
how threshold criteria were set, which was not reasonable for classification or further
analysis [15,19–21,24–27]. Thus, the more precise indicator of TIL status, which reflects the
interaction among various leukocytes in TIME, needs to be further studied.

In this study, we constructed a new method for classifying TIL states, which are
an advanced predictor of responses to ICI. We then stratified patients into four TIME
subtypes of 8634 samples overall across 33 cancer types from The Cancer Genome Atlas
(TCGA) database, with more optimized classification methods. We analyzed the similarities
and differences of distribution of 8 immune cell types in each subtype: T cells, B cells,
macrophages, dendritic cells, natural killer cells, mast cells, neutrophils, and eosinophils.
We also performed difference analysis of the genomic and transcriptomic level among
four subtypes in order to elucidate the mechanism of TIME divergence. Hazard analysis
was conducted to identify the impacts of several factors, including our classification
patterns on survival statuses. Furthermore, we used 3069 breast cancer patients from the
Gene Expression Omnibus (GEO) database for a similar classification study to verify the
availability of analysis methods for widespread use. We believe that this stratification
of cancer patients sheds light on new approaches to rationally apply the optimal cancer
immunotherapeutic strategies for the four different TIME subtypes.
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2. Results
2.1. Prognostic Significance of TIL Z Score/PD-L1 to ICI Response Prediction and Stratification of
Four TIME Subtypes across Pan-Cancer Types

Five published datasets [28–32] on PD-L1/PD-1 blockade immunotherapy, including
pre-treatment transcriptome information and post-treatment clinical response data, were
downloaded to evaluate and compare the performance of the TIL Z score and other
common indicators, based on CD8A or CD8B expression, in predicting clinical response to
ICI. We used the receiver operating characteristic (ROC) curve to measure the true-positive
rates against the false-positive rates at various thresholds of the TIL Z score and CD8A and
CD8B expression (Figure 1A–C). The results showed that the predictive power of the TIL Z
score (AUC = 0.592) was higher than that of CD8A (AUC = 0.575) and CD8B (AUC = 0.552),
which suggested that the TIL Z score had a strong robustness to ICI response prediction and
was sufficient to characterize TIL. As PD-L1 was also related to ICI response, we assessed
the AUC of PD-L1, and the result indicated that the predictive power of PD-L1 (AUC = 0.53)
was lower than the TIL Z score (Figure 1D). We then combined PD-L1 expression and
the TIL Z score to evaluate their performances. As Figure 1E shows, the combination of
PD-L1 and the TIL Z score had a higher AUC (0.64) than others (0.53~0.59), which suggests
that this combined index exhibits strong robustness to ICI response prediction (Table 1).

Figure 1. Combination of the TIL Z score and PD-L1 predicts clinical response to ICI immunotherapy and the stratification of
four TIME subtypes across pan-cancer types. (A–E) ROC curves for the performance of CD8A, CD8B, the TIL Z score, PD-L1,
and the combined TIL Z score with PD-L1 for predicting anti-PD-1 immunotherapy response in patients who received ICI
therapy. (F) Kaplan–Meier survival curves of patients based on PD-L1 expression. (G) Kaplan–Meier survival curves of
patients based on the TIL score. (H), The proportions of patients in type I, type II, type III, and type IV. (I) Kaplan–Meier
survival curves of patients in type I, type II, type III, and type IV. Abbreviations: TIL: tumor-infiltrating lymphocyte, ICI:
immune checkpoint inhibitors, TIME: tumor immune microenvironment.
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Table 1. The sample size statistics and AUC value of different indicators for the immunotherapy research cohort.

Cohorts
Cancer
Type

Drug No. of
Patients

No. of Re-
sponders

No. of Non-
Responders

AUC Value

CD8A CD8B TIL
(Z Score) PD-L1 PD-

L1/TIL

Hugo [28] melanoma
anti-PD-1

(pembrolizumab
and nivolumab)

26 13 13 0.503 0.497 0.686 0.598 0.722

Riaz [31] melanoma anti-PD-1
(nivolumab) 49 26 23 0.587 0.566 0.557 0.523 0.609

Miao [30] ccRCC anti-PD-1
(nivolumab) 33 20 13 0.554 0.488 0.515 0.415 0.658

Snyder [29] urothelial
cancer

anti-PD-L1
(atezolizumab) 25 9 16 0.646 0.632 0.611 0.59 0.611

Mariat-
Hasan [32]

urothelial
cancer

anti-PD-L1
(atezolizumab) 298 68 230 0.585 0.578 0.589 0.564 0.6

We analyzed 8634 tumor samples of 33 cancer types from the TCGA dataset using
PD-L1 mRNA expression and the TIL Z-score to classify samples. The value distribution of
PD-L1 expression varied according to the cancer types (ranging from 0.03 to 521.31, Figure
S1A, Table S2), which reminded us that there may not be one universal definition of positive
or negative PD-L1 expression for each cancer type. Thus, we defined PD-L1 subgroups by
percentile rather than establishing a definitive cut-off value for PD-L1 expression. The cut-
points chosen to define the PD-L1 positive subgroup were the top 10%, 20%, 30%, 40%, and
50% in each independent experiment. We then performed Kaplan–Meier survival analysis
on each positive vs. negative PD-L1 group (Figure 1F, Figure S1B). Since patients had the
most significant difference in overall survival state (Figure 1F) when the cut-point was set
at the top 10%, this threshold was selected to determine the PD-L1 positive subgroup for
further analysis.

Analogously, since the distribution of TIL in pan-cancer varied (ranging from 1.69 to
4.86, Figure S1C, Table S2), we classified TIL subgroups by percentile, and the cut-points
chosen to define TIL positive group were the same as PD-L1. Our result of Kaplan–Meier
survival analysis with a log-rank test showed a significant difference in positive vs. nega-
tive TIL groups (Figure 1G, Figure S1D). Here, we selected the top 50% of patients who
exhibited the most significant difference in the overall survival state (p value = 4 × 10−16)
to determine the TIL positive subgroup for further analysis. Particularly, our results of cor-
relation analysis revealed a weak relationship (Spearman correlation, p value < 2.2× 10−16,
R = −0.159) between TIL status and PD-L1 expression (Figure S1E), which indicated that
the two indicators were mutually independent.

As the classification PD-L1 and TIL Z score showed prognostic significance in overall
survival of cancer patients, respectively, we further intended to investigate the difference
between subtypes in response to ICI treatment. We grouped ICI immunotherapy samples
into four TIME subtypes by combining these two predictive indicators, and the result
showed that the response rate was higher in type I (40%) and lower in types II and III
(28.73%, 29.41%), which indicated that type I samples exhibited a more favorable response
rate and may benefit from ICB immunotherapy (Figure S1F, Table S1).

We also grouped all TCGA cancer samples into four TIME subtypes by combining
these two predictive indicators (Figure 1H). Among all patients, only 3.24% of the samples
were classified as type I (PD-L1+/TIL+), while the proportions of type II (PD-L1−/TIL−),
type III (PD-L1+/TIL−), and type IV (PD-L1−/TIL+) were 43.24%, 6.76%, and 46.76%,
respectively. Additionally, these proportions were comparable to those reported previ-
ously (13.44~54%, 15.4~43.4%, 1~26.20%, 15.4~54.79%, respectively) [14–17]. The clinical,
pathological, cellular, and molecular characteristics of overall cancer cases, according to
TIME subtypes, are summarized in Table 2. Kaplan–Meier survival analysis of these four
subgroups (Figure 1I) showed that the overall survival of patients within type I was signifi-
cantly the most favorable, while the patients within type III showed the poorest prognostic
condition. Notably, the TIL positive groups (type I and IV) had better survival outcomes
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than the TIL negative groups (type II and III), which revealed an association between TIL
status and increased survival (p value < 2× 10−16).

Table 2. Clinical, pathological, and molecular characteristics of pan-cancer, according to tumor immune microenvironment
subtypes based on programmed death ligand 1 (PD-L1) expression and tumor infiltrating lymphocyte (TIL).

Type I Type II Type III Type IV p Value

No. 280 3733 584 4037
Age 56.22 ± 15.01 57.86 ± 14.87 61.84 ± 13.70 58.94 ± 13.72 9 × 10−11

Gender 0.0004998
Male 133 (47.50%) 1562 (41.84%) 303 (51.88%) 2077 (51.45%)

Female 147 (52.50%) 2171 (58.16%) 281 (48.12%) 1960 (48.55%)
Stage 0.0004998

I 40 (14.29%) 630 (16.88%) 157 (26.88%) 933 (23.11%)
II 36 (12.86%) 749 (20.06%) 122 (20.89%) 815 (20.19%)
III 41 (14.64%) 489 (13.10%) 107 (18.32%) 649 (16.08%)
IV 34 (12.14%) 231 (6.19%) 61 (10.45%) 334 (8.27%)

T cells 0.47 ± 0.18 0.28 ± 0.13 0.36 ± 0.14 0.36 ± 0.13 <2.2 × 10−16

B cells 0.08 ± 0.08 0.09 ± 0.09 0.10 ± 0.09 0.09 ± 0.10 0.0086
Macrophages 0.31 ± 0.17 0.46 ± 0.17 0.41 ± 0.14 0.37 ± 0.15 <2.2 × 10−16

DC cells 0.06 ± 0.06 0.04 ± 0.06 0.05 ±0.06 0.05 ± 0.06 <2.2 × 10−16

NK cells 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.03 0.05 ± 0.04 <2.2 × 10−16

Mast cells 0.04 ± 0.04 0.08 ± 0.07 0.05 ± 0.04 0.07 ± 0.07 <2.2 × 10−16

Eosinophils 0.00 ± 0.00 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 4.2 × 10−11

Neutrophils 0.00 ± 0.01 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 2.1 × 10−13

TMB 4.22 ± 13.22 6.76 ± 30.72 6.85 ± 13.61 3.65 ± 12.33 1.8 × 10−8

Neoantigens 333.62 ± 1972.69 353.96 ± 1625.59 313.25 ± 677.87 187.79 ± 619.51 1.4 × 10−5

TP53-mut 65 (23.21%) 1409 (37.74%) 286 (48.97%) 1074 (26.60%) <2.2 × 10−16

BRAF-mut 35 (12.50%) 151 (4.05%) 30 (5.14%) 297 (7.36%) <2.2 × 10−16

HRAS-mut 13 (4.64%) 33 (0.88%) 20 (3.42%) 49 (1.21%) 8.734 × 10−6

IDH1-mut 6 (2.14%) 346 (9.27%) 11 (1.88%) 85 (2.11%) <2.2 × 10−16

POLE-mut 4 (1.43%) 120 (3.21%) 27 (4.62%) 92 (2.28%) <2.2 × 10−16

POLD1-mut 5 (1.79%) 65 (1.74%) 6 (1.03%) 38 (0.94%) <2.2 × 10−16

PDCD1LG2 CNA <2.2 × 10−16

Amplification 28 (10.00%) 114 (3.05%) 85 (14.55%) 88 (2.18%)
Deletion 1 (0.36%) 166 (4.45%) 13 (2.23%) 101 (2.50%)

PD-L1 CNA <2.2 × 10−16

Amplification 28 (10.00%) 114 (3.05%) 84 (14.38%) 87 (2.16%)
Deletion 1 (0.36%) 166 (4.45%) 13 (2.23%) 100 (2.48%)

PDCD1 CNA 8.064 × 10−5

Amplification 0 (0.00%) 101 (2.71%) 9 (1.54%) 47 (1.16%)
Deletion 34 (12.14%) 382 (10.23%) 89 (15.24%) 294 (7.28%)

CTLA4 CNA 0.001178
Amplification 2 (0.71%) 136 (3.64%) 19 (3.25%) 88 (2.18%)

Deletion 16 (5.71%) 149 (3.99%) 46 (7.88%) 125 (3.10%)
Immuno-activating

cytokines 2.81 ± 3.76 2.19 ± 3.49 4.52 ± 6.75 1.37 ± 2.37 <2.2 × 10−16

Immuno-suppressive
cytokines 39.38 ± 33.96 39.24 ± 39.31 50.47±29.03 34.76 ± 37.71 <2.2 × 10−16

Cytolytic activity 34.68 ± 36.73 11.46 ± 19.96 47.71±72.69 12.15 ± 30.09 <2.2 × 10−16

Pan-cancer samples are divided into four groups based on PD-L1 expression and the TIL Z score as follows: type I, PD-L1 positive with
TIL positive; type II, PD-L1 negative with TIL negative; type III, PD-L1 positive with TIL negative; and type IV, PD-L1 negative with TIL
positive. The immuno-activating cytokines of each sample were calculated by using the mean values of interferon gamma, tumor necrosis
factor, interleukin-12 subunit alpha, and interleukin-12 subunit beta. The immuno-suppressive cytokines of each sample were calculated by
using the mean values of vascular endothelial growth factor A, transforming growth factor beta 1, interleukin 6, and interleukin 10. The
cytolytic activity of each sample was calculated by using the mean values of granzyme and perforin 1. The predicted neoantigen number
was referenced in a previous report written by Vésteinn Thorsson. Abbreviations: TMB, tumor mutation burden; TP53, tumor protein
53; BRAF, B-Raf Proto-Oncogene; HRAS, HRas proto-oncogene; IDH1, isocitrate dehydrogenase (NADP(+)) 1; POLE, DNA polymerase
epsilon; POLD1, DNA polymerase delta 1; PDCD1LG2, programmed cell death 1 ligand 2; PD-L1, programmed death ligand 1; PDCD1,
programmed cell death 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4; CNA, copy number alteration; mut, mutation; x±σ, mean
± standard deviation.
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Additionally, the proportion of four TIME types was calculated for a specific cancer
type (Figure S1G and Table S2), occurring in different tissues, to display distribution of
four subgroups. Notably, thymoma (THYM) was revealed to harbor the highest proportion
of type I (55.26%) compared to other cancer types, indicating that tumors derived from
lymphoproliferative organs are prone to form a lymphocyte-enriched immune microenvi-
ronment. Comparatively, the uterine carcinosarcoma (UCS) was majorly composed of type
II (88.24%), while lung squamous cell carcinoma (LUSC) and liver hepatocellular carcinoma
(LIHC) processed the highest proportion of type III (31.78%) and type IV (84.13%), respec-
tively. In general, we stratified patients into four subtypes based on their PD-L1 expression
and TIL status and proclaimed the distribution divergence of subgroups across pan-cancer.
Our results support the hypothesis that combining these two indicators could better predict
the prognostic status and the potential response levels of immunotherapy.

2.2. The Composition and Abundance of Lymphocyte among Four Subtypes

Considering the differences of types and abundances of various immune cells would
reflect the TIME, and studying the types and content of immune cells in TIME is of a great
significance to further reveal immunization surveillance and malignant progression. We
used the CIBERSORT tool to classify and estimate the level of immune cell infiltration
by the deconvolution algorithm. Here, we divided 22 immune cells into 8 categories:
T cells, B cells, macrophages, dendritic cells, natural killer cells, mast cells, neutrophils,
and eosinophils. The abundance difference among 8 types of immune cells within four
subtypes is shown in Figure 2A and Table S3. Compared to other subtypes, type I (PD-
L1+/TIL+) contained a high level of T lymphocytes and DC cells but the lowest proportion
of macrophages and mast cells (p values < 0.0001, respectively). In contrast, type II (PD-
L1−/TIL−) had the lowest infiltrative levels of T lymphocytes and DCs in four subtypes,
whereas its macrophage and mast cells were higher than other subtypes (p value < 0.0001,
respectively). The infiltration level of NK cells in type IV (PD-L1−/TIL+) was the highest
among four subtypes; however, its infiltration level of T lymphocytes was lower than that
of the type I subtype (p value < 0.0001).

We further analyzed the details of immune cells in six main categories within four
TIME types (Figure 2B, Table S4). In the T cells category, CD8+ T cells were mainly involved
in killing tumor cells, as immune effector activity partially reflected by its content. Type
I contained the most CD8+ T cells (43.56%) compared to other subtypes, while type III
and type IV were closed to each other (39.43% and 33.81%, respectively), and type II was
composed of the least CD8+ T cells (27.44%). The result revealed that better survival of
patients may be related to the increased number of CD8 + T cells. The infiltration level of
CD4+T memory resting cells in type I (15.03%) and type III (24.86%) were both less than
that of type II (41.49%) and type IV (36.15%), yet the infiltration level of CD4+ memory T
activated cells in type III was the highest (16.04%). T cells regulatory (Tregs) mainly play a
role in suppressing immune cell effects, and their infiltration levels of type I, type II, and
type IV were 12.11%, 10.53%, and 11.82%, respectively, which were higher than that of type
III (8.05%), but the difference was not obvious. We supposed that Tregs content was not
the main contributor to the difference in immune infiltration level.

As for other types of immune cells, the infiltration level of macrophages M2 was
similar in type I, type II, and type III, which were 33.88%, 39.88%, and 35.87%, respectively,
while that of type IV (45.42%) was higher than the other three types. In addition, the
infiltration level of mast cells activated a range from 14.45% to 25.29% in four subtypes,
while the TIL positive subgroups (type I/IV) were less than the other two types. The
infiltrating level of DC activated cells of type I was the least, while that of type II, type
III, and type IV were 39.91%, 33.92%, and 38.02%, respectively. Additionally, the content
of NK activated cells in type IV exceeded the other three subtypes, ranging from 49.76%
to 74.56%. Notably, the infiltration levels of the subpopulation of B cells were closer in
composition among the four subtypes. Additionally, as myeloid-derived suppressor cells
(MDSCs) infiltration and the T cell exhaustion state were revealed to be associated with
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immunosuppression, we further explored the comparison of proportion of MDSCs and
the state of T cell exhaustion between the four subtypes. It was observed that the T cell
exhaustion score was higher in PD-L1 positive groups (subtype I and subtype III), but
there were no significant differences between subtype I and subtype III (Figure 2C). The
results showed that the scores of both polymorphonuclear MDSCs (PMN- MDSCs) and
monocytic MDSCs (M- MDSCs) were the highest in subtype III (PD-L1+/TIL−), and higher
in PD-L1 positive groups compared to negative groups, and higher in TIL negative groups
compared to positive groups (Figure 2D).

Figure 2. The composition and abundance of immune cells among four TIME subtypes. (A) The
abundance difference among eight types of immune cells within four subtypes. (B) The abundance
difference of six main subclass immune cells in each subtype. (C) The T cell exhaustion score between
four subtypes. (D) The MDSC signature score between four subtypes. Abbreviations: M_MDSCs:
monocytic MDSCs, PMN_MDSCs: polymorphonuclear MDSCs. ****, p < 0.0001; ***, p < 0.001;
**, p < 0.01; *, p < 0.05.

In general, the TIL positive subgroups that acquired good survival outcomes contained
a high proportion of key immune cells, including activated CD8+T cells and NK cells. We
speculated that the immunophenotype difference in four subtypes may be due to the
abundance difference of these divergent cells.
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2.3. Genomics Pattern Discrepancy in Four TIME Subtypes

Here, we investigated the discrepancy of TMB and neoantigen among four subtypes
(Figure 3A, Table S5) and we found that type III had a remarkable high somatic mutation
burden and neoantigen compared to others (p value < 0.0001). As for type I, type II, and
type IV, there were no significant differences of neoantigen, as well as type I and type IV
of TMB. We also constructed a 3-dimensional dot plot base on TIL, TMB, and neoantigen
and performed linear regression analysis between every two factors (Figure 3B). Notably,
a statistically significant correlation between the TMB and the neoantigens number was
found (Spearman correlation, R = 0.885, p value < 2.2 × 10−16, Figure 3B). However, there
was no significant correlation between TMB and TIL (Spearman correlation, R = −0.084,
p = 6.031 × 10−14, Figure 3B) or neoantigen and TIL (Spearman correlation, R = −0.066,
p = 4.234 × 10−7, Figure 3B). A correlation between PD-L1 expression and TMB or neoanti-
gen was not found either (Spearman correlation, R = 0.099, p value < 2.2 × 10−16 and
R = 0.151, p value < 2.2 × 10−16, respectively) (Figure S2A, Figure 2B).

Figure 3. The genomics pattern discrepancy in four TIME subtypes. (A) The distribution of TMB and neoantigen among
four subtypes; (B) correlation analysis among TIL, TMB, and neoantigen; (C) the alteration landscape of somatic variants
across four subtypes. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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We sought to investigate the alteration landscape of somatic variants across four
subtypes and the specific tumor mutation spectrum, the frequencies of which varied in
the top 10 mutant genes. Generally, we found that the patients of type III had the highest
altered rate (77.92%) among four subtypes. As shown in Figure 3C and Table S6, five gene
mutations were found in all four subtypes: TTN (29%, 29%, 46%, and 26%, respectively),
TP53 (24%, 41%, 51%, and 29%, respectively), LRP1B (10%, 11%, 23%, and 9%, respectively),
MUC16 (16%, 18%, 28%, and 16%, respectively), and CSMD3 (11%, 13%, 25%, and 9%,
respectively). Specifically, compared to others, tumors of type III acquired the highest
mutation rate of these five genes. We then investigated the unique mutated genes of
each subtype: BRAF (13%), FAT1 (10%), GTF2I (10%), and PCLO (9%) in type I, ZFHX4
(20%) and SPTA1 (17%) in type III, APC (9%) and KMT2D (9%) in type IV, and no unique
characteristics of type II mutated genes. We further investigated the relationship between
TIL and gene mutation. The result indicated that there was a statistically significant
difference of TIL status between the TP53 mutation subgroup and the wild-type subgroup
(p value < 0.0001, Figure S2C) and the proportion of patients who were TIL positive in the
wild-type subgroup was higher than that of the mutation subgroup (Figure S2D).

Considering that many mutated genes were co-occurring or displayed strong ex-
clusiveness, we then explored the potential different somatic interactions among four
subtypes to expound their mutation pattern (Figure S2E). The interaction of these genes
with oncogenes suggests a close relationship to cancer occurrence and development. In
type I, specific interaction patterns were found: GTF2I and BRAF mutations were both
significantly mutually exclusive to other gene mutations (p value < 0.01, respectively),
while the other mutations co-occurred more obviously. However, in type II, type III, and
type IV, most of the gene mutations were significantly co-occurring (p value < 0.01), except
for TP53 with SYNE1 in type II and PIK3CA with TP53 in type IV. We further evaluated
and identified oncogenes in each subtype (Figure S2F, Table S7). Type IV owned the
most oncogenes (16 in total) compared to the other three subtypes, and the most common
oncogene KRAS mutation appeared across all four subtypes. Of these oncogenes, three
of them (GTF2I, BRAF, and PIK3CA) had relatively higher mutated frequencies in type I
compared to the other three subtypes. In addition, the BRAF mutation subgroup had a
higher proportion of patients who were TIL positive (p value < 0.0001, Figure S2G, Figure
S2H). However, the difference of TIL levels between the HRAS mutation subgroups and
wild-type subgroup was not found, though HRAS mutation was uniquely identified in
the TIL positive subgroup (type I/IV) (p value = 0.78, Figure S2I). Furthermore, differ-
ent PD-L1 expression between the IDH-1 mutation subgroup and wild-type subgroup
was statistically significant (p value < 0.0001, Figure S2J). In conclusion, the specific so-
matic mutation spectrum of each subtype could help us accurately classify patients into
such subgroups.

2.4. Transcriptomics Pattern Discrepancy in Four TIME Subtypes

Understanding the divergence of immunomodulators (IM) expression and state is
critical to descript transcriptomics patterns of each subtype. We thus examined the IM
gene expression, as well as copy number variation (CNV), including amplification and
deletion (Figure 4A, Table S8). In general, the gene expression differences of IMs across
immune subtypes were not significant. Thereinto, PD-L1 positive subgroups (type I/III)
presented similar states in co-inhibitor, ligand, receptor, and other modulators, as their
gene expression levels were largely higher than PD-L1 negative groups (type II/III). For
copy number alterations, type I generally showed low frequency amplification and dele-
tion of IM genes, except for IM genes PDCD1LG2 and CD274 (PD-L1), which amplified
a higher frequency, and noticeably, these genes had the highest frequencies in type III.
Additionally, CD28, VTCN1, PDCD1, CTLA4, and ICOS had higher frequency deletion in
type III as well. We found that the PD-L1 expression level in PDCD1LG2 and CD274 copy
number amplification subgroups were higher than that of non-amplification subgroups
(p value < 0.0001, Figure S3A,B, respectively), but PDCD1 or CTLA4 subgroups suggested
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opposite conclusions (p value < 0.01 & < 0.0001, Figure S3C,D, respectively). In conclusion,
these marked divergences in IM genes clarified the perspective of PD-L1 subgroups refer-
ring molecular patterns discrepancy, which may be reflective of the immunomodulator
state of the TIME in patients.

Figure 4. The transcriptomic pattern discrepancy in four TIME subtypes. (A) The immunomodulators gene expression and
copy number variation for each subtype. (B) The shared and unique pathway features for each subtype. (C) The distinct
difference weight score of pathways in each group. Abbreviations: CH*: carbohydrates, A*: Amino acid, E*: Endocrine,
Im*: Immune, C*: Cancer, Xeno*: Xenobiotics.
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To reveal the key deregulated pathways occurring in each subtype, we analyzed
different gene expression and calculated gene scores based on log fold changes values by
comparing samples within one subtype with the other three integrated samples. Magnitude
of pathway dysregulation was calculated by gene scores and assigning scores, based on the
enrichment pathways of different expressed genes (DEGs) from The Kyoto Encyclopedia
of Genes and Genomes (KEGG). As shown in the result, four TIME subtypes exhibited
common signatures but maintained some unique features of their own (Figure 4B). Type I
exhibited six unique pathways, including amphetamine addiction, hematopoietic cell lin-
eage, primary immunodeficiency, renin-angiotensin system, salivary secretion, starch, and
sucrose metabolism. Proximal tubule bicarbonate reclamation and staphylococcus aureus
infection were the only unique pathways activated in type II. Notably, the most common
pathways showed in type III were metabolic-related processes, such as alanine, aspartate,
and glutamate metabolism, arginine biosynthesis, and ABC transporters. The specific
pathway terms in type IV were also different, such as the glucagon signaling pathway and
cysteine and methionine metabolism. We deemed that dysregulation of unique pathways
in each subtype suggested different TIME signatures and potential differential sensitivity,
providing the fundamentals of theoretical mechanism research for therapeutic intervention.
We also determined the distinct difference weight scores of pathways in each subtype,
which indicate enrichment degree and differential status of DEGs (Figure 4C, Table S9).
With few exceptions (e.g., immune system, carcinogenic process), there was significant
enrichment in metabolic genes that were frequently shared across all subtypes, but to a
different degree. Overall, type I and type III (PD-L1+) harbored higher pathway scores than
the other two types. Specifically, type III exhibited the highest score of pathways, except
for PPAR signaling, bile secretion, and complement and coagulation cascades, while some
were consistent with type I. Compared to type II and type IV (PD-L1−), these pathways in
type IV changed more dramatically.

We then analyzed the expression distributions of cytokines and cytotoxic-related
genes in each subtype found that the gene expression of immuno-activation cytokines
(IFNG, TNF, IL12A, and IL12B), immuno-suppressive cytokines (TGFB1, IL6, and IL10),
and cytolytic factors (GZMB and PRF1) were largely higher in type I and type III (PD-L1+)
than the other two PD-L1 negative subtypes (Figure S3E, Table S10), which may indicate
that PDL1 expression is involved in regulating immune balance. Moreover, there were
also differences in cytokines observed among types I and III or typed II and IV. TGFB1,
IL6, and IL10 were higher in TIL negative groups compared to TIL positive groups, which
indicated the potential immunosuppressive effects brought by these cytokines. However,
IFNG, TNF, and IL12A were also higher in type III compared to type I and higher in
type II compared to type IV, suggesting the complexity of the immune microenvironment
(Figure S3E, Table S10). Moreover, it emerged that the tumor vasculature itself constituted
an important barrier to T cells. We analyzed the association between angiogenesis-related
growth factors, as well as their receptors with TIL subtypes. We found that expression of
EDN1, EDNRA, VEGFB, KDR, and FLT1 were higher in TIL negative groups; to be specific,
they were higher in type III compared to type I and higher in type II compared to type IV
(Figure S3F,G). Additionally, the correlation analysis showed the gene expression of growth
factors and receptors were negatively correlated with the TIL score; EDNRA especially
exhibited a higher negative correlation coefficient with the TIL score (Figure S3H). These
results further suggested the adverse effects of tumor vasculature disorder on TIL.

2.5. Hazard Analysis for Multiple Omics Factors across Four TIME Subtypes

Significant variables (p value < 0.05) of the univariate analysis were into entered
a multivariate Cox model. In the model, we examined several factors, including age,
gender, tumor stage, TIL status (overall and specific cell types), TMB, neoantigen level,
TP53, BRAF, and IDH1 mutation state, copy number variation of PD-L1, PDCD1, and
CTLA4, and immuno-activating/suppressive cytokines and cytolytic activity (Figure 5,
Table 3). We found that positive TIL was associated with a good prognosis and higher
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overall survival (Hazard Ratio (HR): 0.846; 95% CI: 0.734–0.975; p value = 0.02). In contrast,
high Macrophage M2 and activated mast cells were associated with significantly higher
overall mortality and were not conducive to survival (HR: 1.244; 95% CI: 1.079–1.434;
p value = 0.0026 and HR: 1.242; 95% CI: 1.044–1.477; p value = 0.015, respectively). Fur-
thermore, an advanced tumor stage, such as stage IV (HR: 3.406; 95% CI: 2.787–4.163;
p value < 2 × 10−16) and stage III (HR: 1.874; 95% CI: 1.546–2.272; p value = 1.69 × 10−10), a
high level of immuno-suppressive cytokines (HR: 1.165; 95% CI: 1.001–1.356; p value = 0.048),
and TP53 mutation (HR: 1.322; 95% CI:1.138–1.535; p value = 0.000255) were all associated
with poorer overall survival.

Figure 5. The forest plot of prognostic values for multivariable cox proportional hazard regression models. Abbreviations:
HR: hazard ratio; CI: confidence interval; TIL: tumor infiltrating lymphocyte; TMB: tumor mutation burden. ****, p < 0.0001;
***, p < 0.001; **, p < 0.01; *, p < 0.05.
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Table 3. Univariate and multivariate cox proportional hazards analysis for overall survival in pan-cancer patients.

Variable
Univariate Prognostic Analysis Multivariate Prognostic Analysis

HR 95% CI p-Value HR 95% CI p-Value

Age > 60 years (vs. < 60 years) 1.87137 1.712–2.046 <2 × 10−16 1.848602 1.5988–2.1374 <2 × 10−16

Gender, male (vs. female) 1.14972 1.054–1.255 0.002 1.159753 1.0093–1.3326 0.036577
Stage II (vs. stage I) 1.44218 1.219–1.706 1.89 × 10−5 1.326312 1.0929–1.6095 0.004236
Stage III (vs. stage I) 2.27638 1.934–2.679 <2 × 10−16 1.873979 1.5455–2.2723 1.69e-10
Stage IV (vs. stage I) 4.66921 3.957–5.509 <2 × 10−16 3.406277 2.7873–4.1627 <2 × 10−16

PD-L1 positive (vs. negative) 1.1452 0.9999–1.312 0.0501 ———— ————— ————
TIL positive (vs. negative) 0.69328 0.6345–0.7575 4 × 10−16 0.845795 0.7335–0.9752 0.021152

CD8+T high (vs. low) 0.7363 0.6744–0.8039 8.31 × 10−12 0.91313 0.7891–1.0567 0.222529
CD4+T activated high (vs. low) 1.1385 1.043–1.242 0.00355 1.071685 0.9069–1.2664 0.416427

Treg high (vs. low) 0.8552 0.7836–0.9333 0.000453 0.9463 0.8254–1.0849 0.428814
Macro M2 high (vs. low) 1.15472 1.058–1.26 0.00128 1.244084 1.0794–1.434 0.002581

Mast activated high (vs. low) 1.56816 1.422–1.73 <2 × 10−16 1.241577 1.0436–1.4771 0.014614
DC activated high (vs. low) 1.18640 1.086–1.296 0.000148 1.028179 0.8939–1.1827 0.697222
NK activated high (vs. low) 0.81109 0.7432–0.8852 2.66 × 10−6 1.272744 1.0986–1.4744 0.001312

B memory 1.20193 1.087–1.329 0.000331 1.200665 1.0121–1.4244 0.035958
TMB high (vs. low) 1.71388 1.559–1.884 <2 × 10−16 1.231722 0.9973–1.5213 0.053035

Neoantigens high (vs. low) 1.5202 1.361–1.698 1.01 × 10−13 1.029541 0.8496–1.2476 0.766486
TP53 mutation (vs. wild type) 1.72522 1.58–1.884 <2 × 10−16 1.321964 1.1383–1.5353 0.000255
BRAF mutation (vs. wild type) 0.4703 0.3531–0.6263 2.44 × 10−7 0.772879 0.5504–1.0854 0.136993
IDH1 mutation (vs. wild type) 0.6939 0.5493–0.8765 0.00218 1.211248 0.5724–2.5631 0.616285
POLE mutation (vs. wild type) 0.96719 0.7449–1.256 0.802 ———— ————— ————

POLD1 mutation (vs. wild type) 0.7212 0.4474–1.163 0.18 ———— —————— ————
PD-L1 amplification yes (vs. no) 1.4735 1.208–1.797 0.000128 1.026873 0.764–1.3802 0.860481

PDCD1 deletion yes (vs. no) 1.24219 1.084–1.424 0.00182 0.839484 0.6544–1.077 0.168638
CTLA4 deletion yes (vs. no) 1.44534 1.193–1.752 0.000173 1.007358 0.7006–1.4484 0.968436

Immuno-activating cytokines
high (vs. low) 1.33658 1.224–1.46 1.1 × 10−10 0.987575 0.8485–1.1494 0.871716

Immuno-suppressive cytokines
high (vs. low) 1.69775 1.552–1.857 <2 × 10−16 1.165356 1.0013–1.3563 0.048076

Cytolytic activity high (vs. low) 1.1153 1.022–1.217 0.0144 1.018329 0.8541–1.2141 0.839546

The immuno-activating cytokines of each sample were calculated by using the mean value of interferon gamma, tumor necrosis factor,
interleukin-12 subunit alpha, and interleukin-12 subunit beta. The immuno-suppressive cytokines of each sample were calculated by
using the mean value of vascular endothelial growth factor A, transforming growth factor beta 1, interleukin 6, and interleukin 10. The
cytolytic activity of each sample was calculated by using the mean value of granzyme and perforin 1. The predicted neoantigen number
was referenced in a previous report written by Vésteinn Thorsson. “High” means the value is higher than the median, and “low” means the
opposite. Abbreviations: HR: hazard ratio; 95% CI: 95% confidence interval; PD-L1, programmed death ligand 1; TIL: tumor infiltrating
lymphocyte; Macro, macrophages; TMB, tumor mutation burden; TP53, tumor protein 53; BRAF, B-Raf Proto-Oncogene; IDH1, isocitrate
dehydrogenase 1; POLE, DNA polymerase epsilon; POLD1, DNA polymerase delta 1; PDCD1, programmed cell death 1; CTLA4, cytotoxic
T-lymphocyte-associated protein 4.

2.6. Validation in GEO Dataset

To further validate the widespread use of this classification method based on PD-
L1 and TIL level, we performed similar analysis at a public mRNA expression dataset
(GSE96058) containing sufficiently large numbers of breast cancer samples (n = 3069)
deposited in GEO. As before, we set the intervals that define PD-L1 and TIL positive to
multiple percentiles: top 10%, 20%, 30%, 40%, and 50%. We then performed the Kaplan–
Meier survival analysis log-rank test and found that, when PD-L1 and TIL positive were
in the top 10% (p value = 0.009) and top 50% (p value = 0.032), respectively, the difference
of the overall survival curve was the most significant, which was consistent with the
results of TCGA dataset analysis, indicating that the thresholds we took were appropriate
(Figure 6A,B, Figure S4A,B). We further grouped the GEO samples into four TIME subtypes
based on the combination of PD-L1 and TIL, as previously described. The difference of
overall survival curve of the four subtypes was statistically significant (p value = 0.015), the
prognosis condition of type III was poorest, and the survival outcomes of the TIL positive
groups (type I and IV) were better than the TIL negative groups (type II and III), which
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were similar to the results of TCGA dataset analysis, but the prognosis condition of type
I was not the most favorable, unlike the TCGA dataset analysis (Figure S5A). Among all
patients in GEO validation, the proportions of type I, type II, type III, and type IV were
3.68%, 43.66%, 6.32%, and 46.34%, respectively, which was similar to the results of the
TCGA cohort (Figure S5B).

Figure 6. Stratification of four TIME subtypes in the GEO database. (A) Survival analysis of positive vs. negative PD-
L1 groups. (B) Survival analysis of positive vs. negative TIL groups. (C) The T cell exhaustion score between four subtypes.
(D) The MDSCs signature score between four subtypes. (E–G) The gene expression distributions of cytokines and cytolysis
factors in each subtype. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05.

As before, we used the CIBERSORT tool to classify and evaluate the infiltration level
of immune cells. The abundance difference among eight types of immune cells within four
subtypes was shown in Figure S5C and Table S11. Analogously, type I (PD-L1+/TIL+)
contained the highest level of T lymphocytes and the lowest proportion of macrophages
and mast cells (p values < 0.0001, respectively), and type II (PD-L1−/TIL−) had the lowest
infiltrative levels of T lymphocytes and the highest level of macrophage and mast cells
(p value < 0.0001, respectively), and the infiltration level of T lymphocytes of type IV was
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lower than that of the type I subtype (p value < 0.001). However, there was no significant
difference in the abundance of DC cells among the four TIME subtypes.

The proportion of 20 immune cell types classified into 6 main cell types among the
4 TIME subtypes was shown in Figure S5D and Table S12. Type I contained the most CD8+
T cells (37.82%) compared to other subtypes, while type II was composed of the least CD8+
T cells (29.39%) and type III and type IV were closed to each other (34.83% and 31.91%,
respectively). The infiltration level of CD4+T memory resting cells in type I (43.69%) and
type III (48.32%) were both less than that of type II (57.34%) and type IV (55.23%). The
infiltration levels of T cells regulatory (Tregs) among type I, type II, type III, and type IV
were 8.44%, 5.88%, 7.42%, and 6.64%, respectively, the difference of which was not obvious.
The infiltration level of macrophages M2 of type II (64.74%) and type IV (62.46%) were
higher than type I (47.91%) and type III (52.55%). The infiltration levels of mast cells of
type I (2.8%) and type IV (4.8%), which belong to TIL positive subgroups, were lower than
type II (6.15%) and type III (7.92%). The infiltration levels of the B cells subpopulation
were closer in composition among the four subtypes. As above, the proportions of cell
types among the four types were similar to those in the results of the TCGA dataset. We
also explored the comparison of proportion of MDSCs and the state of T cell exhaustion
between four subtypes in the GEO dataset. It was observed that the T cell exhaustion score
was higher in PD-L1 positive groups (subtype I and subtype III) but higher in subtype
I compared to subtype III. The results showed that the scores of both PMN-MDSCs and
M-MDSCs were higher in PD-L1 positive groups compared to negative groups and higher
in TIL positive groups compared to negative groups (Figure 6C,D).

As in the TCGA dataset analysis, the expression levels of immuno-activation cytokines
(IFNG, TNF, IL12A, and IL12B), immune-suppressive cytokines (VEGFA, TGFB1, IL6, and
IL10) and cytolytic factors (GZMB and PRF1) were higher in the PD-L1 positive subtypes
(type I and type III) than in the PD-L1 negative subtypes (type II and type IV) (Figure 6E–G,
Table S13). Consistent with the TCGA results, we found that the expression of growth
factors and their receptors were higher in TIL negative groups (Figure S5E,F). Additionally,
the correlation analysis showed the gene expressions of growth factors and receptors were
also negatively correlated with the TIL score (Figure S5G). In general, GEO dataset results
showed a similar pattern to that of the TCGA dataset, no matter the classification of PD-
L1 and TIL, the composition of immune cells, or the expression of transcriptome, indicating
the reliability of our results and universality of the classification method.

3. Discussion

PD-L1, as an immune checkpoint, is generally upregulated in TIME and promotes
immune escape of tumor cells [33,34]. As a main target of immunotherapy, PD-L1 im-
munoblockade therapy brings great benefits to many patients, but its clinical application
still has certain limitations. For example, many studies have found that the PD-L1 expres-
sion state is not directly correlated to the response rate or immunotherapy prognosis in
different cancer types [35,36]. In this study, using a large scale of TCGA pan-cancer datasets,
we systematically investigated the distribution of PD-L1 expression and TIL status, ex-
amined their prognostic impacts, and stratified 8634 patients into four subtypes across
33 cancer types by combining these two factors. We also used the GEO breast cancer dataset
to validate our findings and found analogous conclusions. Although a positive correlation
between PD-L1 expression and CD8+T cells was reported by previous researches [37,38],
our results showed that TIL status was independent of PD-L1 expression, which allowed a
further reasonable classification. Overall survival analysis illustrated that patients in TIL+
groups (type I and type IV) had better prognostic outcomes than that in TIL− groups (type
II and type III), which were consistent with the prognostic outcome of TIL alone. Type I
has a higher survival rate than that of type IV, suggesting that the prognostic outcome of
PD-L1+/TIL+ subtypes was better than that of PD-L1−/TIL+ results, which is inconsistent
with some previous studies [20], since only CD8+ T cells were considered as TILs in their
research. Notably, the lower proportion of PD-L1 positive subtypes (type I and III) that
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was revealed by our study may imply a relative low proportion of patients who would
potentially benefit from PD-L1 immunosuppressor. In particular, the distribution of four
subtypes varied among the 33 cancer types, which inspired us to consider that different
immunotherapy strategies should be adopted for different cancer types, even different
patients with the same kind of cancer, to achieve precise treatment effect [20].

The TIME is a bidirectional, dynamic, and intricate interaction network between
tumor cells and non-malignant cells, including immune cells and stromal cells [11,39].
Among them, owing to the difference of types and abundance of various immune cells,
the formation of different TIME types could guide the tumor occurrence, development,
and even transfer patterns. Therefore, analyzing the type and abundance of immune
cells in corresponding subtypes of TIME is of great significance for further revealing the
molecular mechanism of tumorigenesis and malignant progression [40,41]. Our results
show that CD8+T cells and DC cells in type I were richer than the other three subtypes. We
believe that the higher CD8+T cell infiltration level may endow type I patients with higher
immunity, since the cytolytic activity-related gene GZMB and PRF1 expressions were
also higher in type I, as shown in transcriptome analysis, thus giving a more promising
prognostic effect. The proportion of T cells of type IV was lower than that of type I, while its
content of NK-activated cells was higher than that of type I. We hypothesize that the tumor
killing effect of type IV patients is more dependent on NK cells. The intrinsic mechanism
of different subtypes in recruiting T cells and NK cells, particularly the presence of PD-L1,
remains to be elucidated. T cell exhaustion state was higher in PD-L1 positive groups,
which further suggest the strong association between PD-L1 signals and T cell exhaustion.
Of immune cells that exert immunosuppressive effects, Treg cells were not responsible for
differences in immune microenvironment, but TIL negative groups had higher rates of
MDSCs compared to the positive subtypes, as well as the relatively high proportions of
M2 macrophage. Therefore, we reasoned that MDSCs and M2 macrophage were important
factors to prevent T cell infiltration, and the difference of immune microenvironment in
different subtypes is mainly reflected by a relative abundance of CD8+ T cells, MDSCs, and
M2 macrophage [42,43].

Previous research has reported that TMB and neoantigen were associated with better
immunotherapy effect, but its predictive effect has a limited effect on certain cancers, such
as non-small cell lung cancer and colorectal cancer [44,45]. Our results reveal a significant
correlation between TMB and neoantigens, but the relationships between TIL and TMB or
neoantigen were not found. Therefore, we expect that high TMB or neoantigen would not
primarily lead to high levels of immune infiltration, which remind us that novel and robust
factors predicting the immunotherapy effect for various cancer should be further discov-
ered. We also investigated the mutation landscape of high frequency foreach subtypes. For
high frequency mutated genes of specific subtype, gene BRAF in type I encodes a protein
belonging to the RAF family of serine/threonine protein kinases, which have been identi-
fied in various cancers [46]. Some research has reported that BRAF V600E mutation would
sustain IFN-γ inducible PD-L1 expression by coactivating STAT1 and increasing protein
translation and is associated with high levels of PD-L1 expression [47–50], and the patients
with BRAF mutations appeared to benefit from monotherapy with PD-L1 inhibitors, which
is consistent with results of the present study, to some extent. APC gene in type IV encodes
a tumor suppressor protein that acts as an antagonist of the Wnt signaling pathway, which
was involved in other processes, including cell migration and adhesion, transcriptional
activation, and apoptosis [51]. However, we did not retrieve any reports concerning the
relationship between this gene mutation and PD-L1 expression. As for oncogenes for each
subtype, we found that KRAS mutation was the most common oncogene, while some
studies reported that PD-L1 expression was upregulated by KRAS G12D mutation and
KRAS mutations could serve as a potential predictor of anti-PD-1/PD-L1 immunother-
apy [52,53]. In general, gene mutation spectrums present genomics divergence among four
subtypes, and, in the future, highly specific targeted drugs for different patients need to
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be used to maximize the therapeutic effect, and the combination of targeted therapy and
immunotherapy will be a promising treatment.

The divergence of transcriptomic patterns between PD-L1 positive groups and PD-
L1 negative groups demonstrated that difference of IM gene expression pattern might
attribute to a PD-L1-related pathway, while this assumption needs further confirmation.
In the unique pathway studies, the association of immune types with signaling pathways
was investigated based on RNA expression data of DEGs. Type I was associated with
hematopoietic cell lineage, which could be contributed to CD4+T cells, suggesting a funda-
mental role of TIL in hematopoiesis through the secretion of cytokines or interferon [54]. It
is the arginine biosynthesis pathway that mainly draws our attention to type III, whose
concentrations impact the metabolic fitness directly and T cells capacity, which are crucial
for anti-tumor functionality in TIME, as previously reported [55]. Arginine biosynthesis is
more active in the cancer cells of type III and indicate that lack of arginine, because of weak
competition in immune cells, may lead to energy depletion and less TIL in local TIME.
Combined with previous research, our results suggest that TIL is associated with multiple
biological states, such as genesis of blood cells and synthesis and metabolism of amino acid
in TIME. Other TIL-related factors need further confirmation.

The common pathway analysis revealed distinguishing patterns of activity shared
by four subtypes. Surprisingly, type I and type III exhibited higher scores in most shared
metabolism pathways, suggesting that PD-L1 high expression is more likely associated
with metabolic alternations in TIME. The previous study discovered an unexpected role for
PD-L1 in regulating tumor cell metabolism in the D42m1-T3 mice model. Specifically, PD-
L1 could enhance the glycolysis of tumor cells by association with some signaling proteins,
such as mTOR [56]. Combined with our study, higher PD-L1 expression may affect certain
energy metabolism in tumor cells and thus weaken the nutrient intake of immune cells
due to competition in type I and type III, compared to type II and type IV. Xenobiotics was
metabolized by cytochrome P450, which could be induced by aryl hydrocarbon receptor
(AHR) activation [57]. Type I and type III exhibit a more active xenobiotics metabolism,
while type II and type IV show less, indicating that xenobiotics metabolism may influence
PD-L1 expression through AHR signaling in TIME [58]. More work is required to determine
how PD-L1 signals and the accurate connection between PD-L1 and metabolic pathways
or biological processes in tumor and immune cells. Moreover, malignant cells can deprive
glucose in TIME, thus blocking effective anticancer immunity, as glucose is used by T cells,
NK cells, macrophages, and DCs to support their effector functions [56,59]. Glycolysis was
shown to regulate TIL on account of metabolic competition in the tumor microenvironment,
which can blunt Ca2+ signaling, glycolytic capacity, and cytokine production of TILs
because glucose consumption by tumors metabolically restricts T cells [59,60]. Our research
shows that cancer cells in type III (PD-L1+/TIL−) had more active glycolysis, suggesting
that glycolysis is vital to TIL and is affected by PD-L1 expression. In summary, PD-
L1 positive subtype (type I/III) and PD-L1 negative subtype (type II/IV) harbor distinct
alterations in cell metabolism pathways, while the TIL subtypes have minor differences, and
it seems that there are more potential connections between PD-L1 and TIME metabolism.
These results may catalyze a better understanding of the role of immune cells’ altered
metabolism in anti-cancer ability and provide novel means to stratify patients based on
metabolic features and immunological status. Moreover, gene expression of endothelial-
related growth factors and receptors were lower in TIL positive groups, which suggest that
endothelial tumors and disorganized vasculature establish the barrier preventing T cell
infiltration into tumors [61].

Hazards analysis identified several reliable indicators for evaluation of clinical treat-
ment effects, except for common factors present, such as age, gender, and tumor stage. Most
of the multivariable prognostic factors, such as macrophages M2, activated mast cells, TP53
mutation, and immuno-suppressive cytokines expression, are unfavorable for survival
by promoting the occurrence and development of tumors. In particular, TIL is implied
to reduce the risk of death and is considered a good prognostic factor in cancer patients.
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In addition, consideration of the combination of more factors may improve sensitivity or
specificity of clinical diagnosis and treatment.

4. Materials and Methods
4.1. Data Collection and Preprocessing

Immunotherapy dataset: Pre-treatment transcriptome information and post-treatment
clinical response data from the five datasets of previous studies [28–32], whose patients
received anti-PD-1 or anti-PD-L1 immunotherapy and were downloaded to evaluate the
power of CD8A, CD8B, the TIL Z score, PD-L1, and the PD-L1/TIL Z score to predict
clinical response to ICIs.

TCGA dataset: We acquired available level-3 data published by TCGA, including
8634 samples with available survival information of 33 cancer types. Genomic somatic
mutation data, copy number variation (CNV) data, mRNA expression data, and clinical
information of each sample were downloaded from the GDC Data Portal (https://portal.
gdc.cancer.gov, accessed on 30 April 2019).

GEO dataset: A public mRNA high throughput sequencing dataset (GSE96058),
containing sufficiently large numbers of breast cancer samples (n = 3069) deposited in
GEO, was used to construct the validation cohort. The expressing matrix of mRNA plus
clinical metadata were downloaded from GEO. Clinical metadata were used for Kaplan–
Meier overall survival analysis, and mRNA expression profiles, which were constructed by
GPL11154 of the Illumina HiSeq 2000 platform, were presented as fragments per kilobase
of exon model per million mapped fragments (FPKM) and were transformed into TPM for
transcriptome analysis.

4.2. Tumor-Infiltrating Lymphocyte Z Score

We calculated a comprehensive TIL score for each sample by applying an algorith-
mically optimized method, which was based on the expression of representative genes
or gene sets of single samples from 26 determinants, consisting of 20 single factors (clas-
sified in MHC molecules, immunoinhibitors, and immunostimulators) and 6 immune
cell types (activated CD4+ T cells, activated CD8+ T cells, effector memory CD4+ T
cells, effector memory CD8+ T cells, Tregs, and MDSCs). The calculation was conducted
through R code, developed by Charoentong et al. [42], and the source codes are available
(https://github.com/mui-icbi/Immunophenogram, accessed on 20 May 2019). The RNA
expression matrix was transformed into log2 (TPM+1) values and used as an input to
calculate the comprehensive score of TILs. The result file generated by algorithm operation
contained an average Z score and immunophenoscore (IPS); therefore, the Z score was
selected as a TIL comprehensive score for further research.

4.3. TIME Subtypes and Immune Cells Proportion

According to previous reports regarding the four TIME types [5], we stratified PD-
L1 expression level and the TIL Z score into positive and negative groups: type I, PD-
L1 positive with TIL positive; type II, PD-L1 negative with TIL negative; type III, PD-
L1 positive with TIL negative; and type IV, PD-L1 negative with TIL positive, with a
cut-off value of 90 percentile and median value, respectively. Additionally, a deconvolution
approach [62], CIBERSORT, was applied to calculate the proportion of 22 immune cell
types (https://cibersort.stanford.edu, accessed on 3 June 2019).

4.4. Genomic Analysis

The resulting data, consisting of detected somatic variants, was stored in mutation
annotation format (MAF), and R package “Maftools” was used to summarize, analyze,
annotate, and visualize MAF files in an efficient manner [63]. To evaluate TMB across
samples, multiple somatic mutations, including nonsynonymous mutations, insertion-
deletion mutations, and silent mutations, were counted and summated, with the exome

https://portal.gdc.cancer.gov
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size of 38 Mb, while germline mutations without somatic mutations were excluded [8]. The
neoantigen number (n = 5,798) was evaluated by Vésteinn Thorsson et al. [64].

The data of amplification, deletion, and neutral status within a CNV threshold,
recorded as “1”, “−1”, and “0”, respectively, was calculated by Gistic 2.0 [65]. mRNA
expression profiles, which were constructed by the Illumina HiSeq V2 platform, were
presented as counts and were transformed into transcripts per million (TPM) for analysis.
Genes with multiple probes were represented by mean values of probes.

4.5. Differential Gene Analysis and Pathway Score Analysis

In this part, each subtype was determined as an experimental group in turns, while
others were set as control groups, and R package “edgeR” was subsequently performed
on differential gene expression analysis [66,67]. Differential gene lists were identified with
statistical significance (|log2FC| ≥ 2, FDR < 0.05). Pathways were downloaded from the
Kyoto Encyclopedia of Genes and Genomes (KEGG), and Metascape (http://metascape.org,
accessed on 14 July 2019) was performed on gene annotation and functional enrichment
analysis with a significant threshold (p value < 0.01, enriched genes number ≥ 3) [68].
Gene and pathway scores were calculated via Python 3.7.1. Gene scores were computed by
differential gene lists of each subtype in order to calculate which single pathway scores
contributed to shared pathways. The calculation processes of each pathway score for type
k (k = I, II, III, IV) was described as follows.

For each gene, the mean log2FC score was firstly calculated across 4 subtypes:

Mean log2FC score =
(
∑IV

k=I |log2 FCk|
)

/ 4, (1)

where log2FCk is the log2 fold change score of type k (k = I, II, III, IV). If there is no such
gene in the differential gene list of this subtype, then log2 FCk = 0.

Gene score of type k was then determined by an equation:

Gene score =| log2 FCk| / Mean log2FC score, (2)

Mean log2FC score is the result of Equation (1).
Finally, the pathway score of type k was calculated:

Pathway score = ∑(Gene score) / ∑IV
k=I

[
∑(Gene score)

]
k, (3)

where t∑ (Gene score) represents the total gene score at the same pathway of type k and
∑IV

k=I [∑(Gene score)]k is the total gene score of that pathway from all subtypes. At the end,
we visualized the result by using Power-BI (https://powerbi.microsoft.com) to plot a radar
map of thr pathway score.

4.6. Gene Set Variation Analysis (GSVA) Score of Gene Expression Signature

To compare the difference in the proportion of T cell exhaustion and MDSCs between
four TIME subtypes, we used the gene set obtained for previous studies [69,70] to calculate
the GSVA score across four subtypes.

4.7. Survival Analysis

Univariate and multivariate logistic regression analyses were performed to determine
significant factors of clinicopathologic characteristics. Patients who lacked follow-up or
death time were pre-excluded when performing survival analyses. For categorical variables,
such as TIME subtypes, PD-L1 expression status, and TIL status, a prognostic condition
was estimated via Kaplan –Meier plots with a log-rank test and Cox proportional hazards
regression analysis. Survival times were determined in months, from initial pathological
diagnosis to death, or the last time the patient was known to be alive. p values less than
0.05 were considered statistically significant.

http://metascape.org
https://powerbi.microsoft.com
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4.8. Statistical Analysis

R package “pROC” was used to plot the rate of response at various threshold settings
of CD8A, CD8B, or the TIL Z score for generating the receiver operator characteristic
(ROC) curve. Spearman rank correlation analysis was applied to compute the statistical
significance of two continuous variables, which were exemplified as TMB, neoantigens, the
TIL Z score, PD-L1 expression, and so on. One-way analysis of variance or a Wilcoxon rank
sum test was applied for significance of differences between continuous values, which were
listed as the immune cells proportion, tumor mutation burden, number of neoantigens,
gene expression, such IFNG expression, and so on. Comparison of proportion according to
categorical variables was performed using Pearson’s Chi-square test or the Fisher exact
test. p values less than 0.05 were considered statistically significant.

5. Conclusions

In the current study, we developed a more robust method for classifying TIME sub-
types at the big data analysis level and studied their characteristics shaping their corre-
sponding microenvironments. It is noteworthy that the performance in the prognosis and
prediction of the response to ICI immunotherapy of our method is superior to previous
methods used in previous research. Considering the effectiveness, our classification method
exhibits a better performance, which provides a potential option for clinical research and
applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22105158/s1. Figure S1: Based on survival analysis of positive vs. negative PD-L1 or
TIL subgroups to classify samples. (A) The value distribution of PD-L1 expression across 33 cancer
types. (B) Survival analysis of positive vs. negative PD-L1 subgroups in each cut-point. (C) The value
distribution of TIL status across 33 cancer types. (D) Survival analysis of positive vs. negative TIL
subgroups in each cut-point. (E) Correlation relationship between TIL status and PD-L1 expression.
(F) Response rate to ICI immunotherapy of four TIME subtypes. (G) The proportions of 4 TIME
subtypes across 33 cancer types. Figure S2: Genomic characterization between four subtypes. (A)
The correlation between tumor mutation burden and PD-L1 expression. (B) The correlation between
neoantigens and PD-L1 expression. (C) Difference in TIL between TP53 mutation and wild type.
(D) The samples proportion of TIL+ and TIL− between TP53 mutation and wild type. (E) Somatic
mutational interactions among 4 subtypes. (F) The oncogene pattern in each subtype. (G) Difference
in TIL between BRAF mutation and wild type. (H) The samples proportion of TIL+ and TIL−
between BRAF mutation and wild type. (I) Difference in TIL between HRAS mutation and wild
type. (J) Difference in PD-L1 expression between IDH1 mutation and wild type. ****, p < 0.0001;
***, p < 0.001; **, p < 0.01; *, p < 0.05. Figure S3: The transcriptomic patterns discrepancy in four
TIME subtypes. (A) Difference in PD-L1 expression between PDCD1LG2 amplification and not
amplification. (B) Difference in PD-L1 expression between PD-L1 amplification and not amplification.
(C) Difference in PD-L1 expression between PDCD1 deletion and not deletion. (D) Difference in
PD-L1 expression between CTLA4 deletion and not deletion. (E) The gene expression distributions
of cytokines and cytolysis factors in each subtype. (F) The gene expression distributions of growth
factors and receptors in each subtype. (G) The gene expression distributions of growth factors and
receptors between TIL positive and TIL negative samples. (H) The correlation coefficient between
the TIL score and expression of growth factors, as well as receptors. ****, p < 0.0001; ***, p < 0.001;
**, p < 0.01; *, p < 0.05. Figure S4: Survival analysis of positive vs. negative PD-L1 or TIL subgroups in
the validation cohort from the Gene Expression Omnibus database. (A) Survival analysis of positive
vs. negative PD-L1 subgroups in each cut-point. (B) Survival analysis of positive vs. negative TIL
subgroups in each cut-point. Figure S5: The composition and abundance of immune cell types and
expression distribution among four TIME subtypes in validation cohort from the Gene Expression
Omnibus database. (A) Survival analysis of type I, type II, type III, and type IV. (B) The proportions
of patients in type I, type II, type III, and type IV. (C) The abundance difference among 8 types of
immune cells within 4 subtypes. (D) The abundance difference of 6 main subclass in each subtype.
(E) The gene expression distributions of growth factors and receptors in each subtype. (F) The gene
expression distributions of growth factors and receptors between TIL positive and TIL negative
samples. (G) The correlation coefficient between the TIL score and expression of growth factors,
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as well as receptors. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05. Table S1: The response
rate to ICI immunotherapy among four subtypes. Table S2: Statistical data of PD-L1 TPM, TIL
(Z score), and subtypes proportion across pan-cancer. Table S3: Statistical data of 8 immune cell
proportion across the four subtypes of tumor immune microenvironment. Table S4: The relative
proportion of 20 immune cell subtypes across the four subtypes of tumor immune microenvironment.
Table S5: Statistical data of the log2 value of TMB and the log2 value of neoantigens across the four
subtypes of tumor immune microenvironment. Table S6: Mutation rate of the top 10 genes across
the four subtypes of tumor immune microenvironment. Table S7: The drive gene detected of the
four subtypes of tumor immune microenvironment. Table S8: Statistical data of 75 immune related
genes across the four subtypes of tumor immune microenvironment. Table S9: The pathway scores
of the shared pathways across the four subtypes of tumor immune microenvironment. Table S10:
Statistical data of the specific gene TPM across the four subtypes of tumor immune microenvironment.
Table S11: Statistical data of 8 immune cell proportion across the four subtypes of tumor immune
microenvironment in the validation cohort from the Gene Expression Omnibus database. Table
S12: The relative proportion of 20 immune cell subtypes across the four subtypes of tumor immune
microenvironment in the validation cohort from the Gene Expression Omnibus database. Table S13:
Statistical data of the specific gene TPM across the four subtypes of tumor immune microenvironment
in the validation cohort from the Gene Expression Omnibus database.
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TCGA The Cancer Genome Atlas;
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BRAF B-Raf Proto-Oncogene;
FAT1 FAT Atypical Cadherin 1;
GTF2I General Transcription Factor Iii;
PCLO Piccolo;
ZFHX4 Zinc Finger Homeobox 4;
SPTA1 Spectrin alpha, erythrocytic 1;
APC Adenomatous polyposis coli;
KMT2D Lysine methyltransferase 2D;
PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha;
PDCD1LG2 Programmed Cell Death 1 Ligand 2;
VTCN1 V-set domain containing T cell activation inhibitor 1;
PDCD1 Programmed Cell Death 1;
CTLA4 Cytotoxic T-lymphocyte-associated protein 4;
DEG Different expressed gene;
KEGG Kyoto Encyclopedia of Genes and Genomes;
IFNG Interferon gamma;
TNF Tumor necrosis factor;
TNFA Tumor Necrosis Factor Alpha;
IL6 Interleukin 6;
IL12 Interleukin 12;
IL12A Interleukin 12A;
IL12B Interleukin 12B;
IL10 Interleukin 10;
GZMB Granzyme B;
PRF1 Perforin-1;
KRAS Kirsten ras;
VEGFA Vascular endothelial growth factor A;
TGFB1 Transforming growth factor beta 1;
HRAS HRas proto-oncogene;
IDH1 Isocitrate dehydrogenase (NADP(+)) 1;
POLE DNA polymerase epsilon;
POLD1 DNA polymerase delta 1;
MUC16 Mucin 16;
RYR2 Ryanodine receptor 2;
SYNE1 Spectrin repeat containing nuclear envelope protein 1;
FLG Filaggrin;
USH2A Usherin;
CDKN2A Cyclin dependent kinase inhibitor 2A;
MB21D2 Mab-21 domain containing 2;
NDUFA13 NADH:ubiquinone oxidoreductase subunit A13;
DGCR6L DiGeorge syndrome critical region gene 6 like;
S100A1 S100 calcium binding protein A1;
IAPP Islet amyloid polypeptide;
SLC3A2 Solute carrier family 3 member 2;
KLF3 Kruppel like factor 3;
GNG12 G protein subunit gamma 12;
NRAS NRAS proto-oncogene;
RAB9B RAB9B, member RAS oncogene family;
SH3BGRL2 SH3 domain binding glutamate rich protein like 2;
TNP1 Transition protein 1;
RPL22 Ribosomal protein L22;
MRPL22 Mitochondrial ribosomal protein L22;
CBLN3 Cerebellin 3 precursor;
PAIP2 Poly(A) binding protein interacting protein 2;
SEC61B SEC61 translocon subunit beta;
DBI Diazepam binding inhibitor;
GNA11 G protein subunit alpha 11;
ARHGAP1 Rho GTPase activating protein 1.
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