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Processing of multimodal information is essential for an organism to respond to
environmental events. However, how multimodal integration in neurons translates into
behavior is far from clear. Here, we investigate integration of biologically relevant visual
and auditory information in the goldfish startle escape system in which paired Mauthner-
cells (M-cells) initiate the behavior. Sound pips and visual looms as well as multimodal
combinations of these stimuli were tested for their effectiveness of evoking the startle
response. Results showed that adding a low intensity sound early during a visual
loom (low visual effectiveness) produced a supralinear increase in startle responsiveness
as compared to an increase expected from a linear summation of the two unimodal
stimuli. In contrast, adding a sound pip late during the loom (high visual effectiveness)
increased responsiveness consistent with a linear multimodal integration of the two
stimuli. Together the results confirm the Inverse Effectiveness Principle (IEP) of multimodal
integration proposed in other species. Given the well-established role of the M-cell as a
multimodal integrator, these results suggest that IEP is computed in individual neurons
that initiate vital behavioral decisions.

Keywords: multimodal integration, behavioral decision-making, visual loom, inverse effectiveness principle,
Mauthner-cell, startle plasticity

INTRODUCTION

Integration of sensory information from different modalities is essential for decision-making of
appropriately timed behavioral responses. In vertebrates, neurons processing multimodal inputs
are found throughout the CNS, prominently the cortical sensory processing areas and superior
colliculus in mammals (Meredith et al., 1987; Wallace et al., 1998; Ghazanfar and Schroeder,
2006; King and Walker, 2012), and the optic tectum and hindbrain in birds, amphibians, and fish
(Winkowski and Knudsen, 2006; Hiramoto and Cline, 2009; Mu et al., 2012; Medan et al., 2018).
Multimodal integration depends on overlapping timing and/or spatial location of unimodal stimuli
and typically results in an enhancement of the neural and behavioral response. Specifically, the
Inverse Effectiveness Principle (IEP) predicts an inverse relationship between individual effectiveness
of two unimodal stimuli presented alone and their combined effectiveness, i.e., multimodal
integration of two weak stimuli will produce a response that is disproportionately larger than the
response evoked by the integration of two strong stimuli. (Meredith and Stein, 1986; Stein et al.,
2014). However, establishing causal links between the firing patterns in multimodal neurons and
behavioral supporting the IEP has proven difficult (Stanford and Stein, 2007; Holmes, 2009; van
Atteveldt et al., 2014). Thus, our goal was to study the IEP phenomenon in a downstream circuit
where a distinct behavior can be directly related to sensorimotor neural processing.
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We used the startle escape behavior in goldfish, which
is controlled by a pair of high-threshold, integrate-and-fire
neurons, the Mauthner-cells (M-cells). M-cells receive visual and
acoustico-lateralis inputs via separate dendrites, and a single
action potential (AP) in one M-cell activates contralateral spinal
motor circuits for a C-shaped body bend, or ‘‘C-start’’ startle
escape response away from a potential threat (Fetcho, 1991;
Eaton et al., 2001; Weiss et al., 2006). Importantly, the one-
to-one relationship between M-cell threshold and behavioral
threshold casually links sensory integration at the M-cell level
to startle behavior (Zottoli, 1977; Weiss et al., 2006). Indeed,
auditory 8th nerve afferences provide disynaptic (1.8 ms) input
via mixed electrical and chemical synapses to the lateral M-cell
dendrite (Zottoli, 1977; Szabo et al., 2006). Visual information
is mediated through a polysynaptic pathway (∼20 ms) to the
ventral dendrite via the optic tectum (Zottoli et al., 1987;
Preuss et al., 2006; Dunn et al., 2016). Similarly, abrupt (5 ms)
sound pips or gradually increasing (300–1,000 ms) visual looms
evoke startles initiated by M-cells (Preuss and Faber, 2003;
Preuss et al., 2006; Weiss et al., 2006; Burgess and Granato,
2007; Dunn et al., 2016). Here, we explore the multimodal
integration of these two stimuli in goldfish and results indicate
supralinear and linear summation of startle rates consistent
with the IEP.

MATERIALS AND METHODS

Subjects
Twelve goldfish (Carassius auratus) purchased from Billy
Bland Fishery (Taylor, AR) of standard body length (mean:
6.15 ± 0.39 cm) and weight (mean: 9.17 ± 1.53 g) maintained
in holding tanks (95 L; 30 × 30 × 60 cm; pH 7.2–7.6, 18 ± 1◦C)
were acclimated for at least 1 week prior to experimentation.

Apparatus and Stimuli
Experiments were performed in a circular tank (77.5 cm
diameter, 30.5 cm deep) located on an anti-vibration table
to minimize external mechanosensory cues and covered with
a translucent plastic lid, which served as a projection screen
for visual stimuli (Preuss et al., 2006). A circular mesh
(27.6 cm height; 39 cm diameter) confined the swimming
arena. Startle escape behavior was recorded at 1,000 frames/s
(Olympus iSpeed2; Figure 1A). Visual loom stimuli consisted
of a projected black disc exponentially expanding in size (initial
size 8 mm, final size 360 mm, duration 900 ms) produced
with custom software (Visloom 1.01) and projected onto the
lid with a DLP projector (Plus U4-131; display rate 60 H;
Figure 1A). The vertical position of goldfish in the water
column varied between 4 and 18 cm resulting in initial view
angles subtended on the retina between 2.5 and 11.4 degree
(view angle θ = 2∗ tan−1 (d/2 s), where d is the diameter
of the projected disk and s the distance from the screen
to the fish; Figure 1A). The luminance ratio (LHigh/LLow)
between background screen (55 lux) and the expanding disc
(19 lux) was 1.8.

Auditory stimuli consisted of sound pips (200 Hz; 5 ms;
152 or 158 dB re 1 µPa in water), generated by a stimulator

(Master8 AMP), a function generator (Agilent 33210), a
power amplifier (Samson Servo 120), and were delivered
via either of two underwater loudspeakers (Electro-Voice
Model UW-30).

Stimulus Design and Specific Experiments
In goldfish, sound pips produce a sigmoid stimulus response
curve (Neumeister et al., 2008), whereas startle rates during
a visual loom increase exponentially, i.e., few responses early
and peak response rates at 70%–90% of loom duration (Preuss
et al., 2006). Accordingly, to produce multimodal stimuli with
varying effectiveness, we applied low effective sound pips at
different times during a visual loom. However, true stimulus
effectiveness can only be assessed after data analysis and revealed
that experiment 1 did not include a highly effective stimulus
combination. Thus, we performed a follow-up experiment
(Exp. 2) in a new set of fish where multimodal stimulus
effectiveness was increased by triggering sound stimuli later
in the loom and using a higher intensity sound. Stimulus
presentation was randomized for every fish.

Experiment 1 was run on six fish, each subjected to four
different paradigms, with six presentations for every stimulus
namely, audio only (152 dB), visual only, as well as a combination
of the two where the audio stimulus was triggered either
at 221 or 672 ms after loom onset referred to as AVLow
and AVMed, respectively.

Experiment 2 (six fish; five stimulus paradigms; six trials each
paradigm) included the auditory and visual stimuli of Exp. 1, an
added auditory stimulus of higher intensity (158 dB re 1 µPa in
water), and two multimodal paradigms where the two auditory
stimuli were triggered 832 ms after loom onset (AVHigh152 dB
and AVHigh158 dB).

All procedures were performed according to and approved by
the Institutional Animal Care and Use Committee (IACUC) of
Hunter College1.

Analysis
The predicted linear multimodal summation of startle
probability was calculated based on probability observed in
visual only and auditory only stimulus trials using the Addition
Rule of Probabilities of independent events P(X OR Y) = P(X)
+ P(Y) − P(X)∗P(Y) (Samuels et al., 2012). Mean ± standard
deviations (SD) are reported in the text.

RESULTS

Auditory stimuli evoked overall low response probabilities
(Exp. 1, 152 dB, M = 0.14 ± 0.26 and Exp. 2, 152 dB
M = 0.06 ± 0.09; 159 dB M = 0.08 ± 0.09; Figure 1B). No
significant differences were found between Exp. 1 and 2 for
the 152 dB stimulus (N = 6; p = 0.85 Wilcoxon rank-sum test;
Cohen’s d = 0.46), or between the 152 dB and 158 dB auditory
stimuli in Exp. 2 (N = 6; p = 0.68; Friedman repeated measure;
Cohen’s d = 0.35). Essentially, all auditory stimuli showed low
effectiveness. In contrast, visual looms elicited sizable mean

1http://research.hunter.cuny.edu/IACUC.htm
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FIGURE 1 | Auditory and visual evoked Mauthner-cell (M-cell) startle responses. (A) Schematic of behavioral setup. Visual loom stimuli were projected onto the
translucent lid of the experimental tank and sound pips were delivered through underwater loudspeakers (θ indicates subtended view angle, d is the diameter of the
projected disk, and s is the distance from the lid to the fish). (B) Boxplots of startle probabilities to unimodal auditory and visual stimuli used in Exp 1 and 2. Dots
indicate data of individual fish. (C) Line graph plotting sound evoked cumulative startle frequency vs. response latency for all audio stimuli trials (152 dB and 158 dB
re 1 µPa in water). (D) Line graph plotting visual evoked cumulative startle frequency vs. response latency. Arrows indicate time points when audio stimuli were
triggered in multimodal paradigms. Note: startle escape probabilities increase dynamically during the loom, with most responses occurring between 80% and 95%
loom duration.

startle probabilities (Exp. 1, M = 0.608 ± 0.18 and Exp. 2,
M = 0.49 ± 0.27) with no significant difference between Exp.
1 and 2 (N = 6; p = 0.78, Wilcoxon rank-sum test; Cohen’s
d = 0.47; Figure 1B).

To illustrate the range of response latencies evoked by
auditory stimuli and visual stimuli we combined all responses
for a given modality showing that auditory evoked startles occur
within a narrow range of latencies (Figure 1C). In contrast,
startles in response to visual looms show a wider latency range
with most responses occurring between 75%–95% of loom
duration (Figure 1D).

We next analyzed startle rates for the different multimodal
stimulus paradigms (i.e., AVLow, AVMed and AVHigh) by
graphing the frequency of responses over the duration of
the loom (Figure 2A). Results show three response modes
(Figure 2A: M1, M2, M3) within a time window typical for
auditory responses (Figure 2A dotted lines and 1C) suggesting
that they are due to a multimodal integration process that
enhances responsiveness.

IEP predicts that multimodal integration disproportionately
enhances responsiveness more for weaker than for stronger

unimodal stimuli combinations (Meredith and Stein, 1986;
Holmes, 2009). Accordingly, we compared the observed
changes in startle probabilities in multimodal stimulus
paradigms with those predicted by a linear summation
of the unimodal auditory and visual startle probabilities
(see ‘‘Materials and Methods’’ section for details). Visual
only startle probabilities for the multimodal response
modes (Figure 2A; M1, M2, M3) were derived from those
occurring within 30 ms of a prospective auditory stimulus
(arrows Figure 1D).

Results showed higher than predicted startle probabilities
for individual fish for the AVMed paradigm (Figure 2Bii;
Mpred = 0.19 ± 0.25 vs. Mobser = 0.53 ± 0.32, Cohen’s
d = 1.18). In contrast, responsiveness for the AVLow
paradigm (Mpred = 0.16 ± 0.25 vs. Mobser = 0.33 ± 0.29;
Cohen’s d = 0.63) and the two AVHigh paradigms
(152 dB: Mpred = 0.21 ± 0.15 vs. Mobser = 0.22 ± 0.17,
Cohen’s d = 0.06; 158 dB: Mpred = 0.19 ± 0.12 vs.
Mobser = 0.28 ± 0.14 Cohen’s d = 0.69) was variable or
even less than predicted for some fish (Figures 2Bi,iii,iv).
Comparing the evoked changes for a given AV stimulus
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FIGURE 2 | Multimodal integration in the M-cell startle system. (A) Line graph illustrates startle frequency plotted against visual loom duration for all three
audio-visual (AV) stimulus paradigms. M1, M2, M3 represent distinct frequency modes for AVLow and AVMed or AVHigh trials, respectively. Vertical dotted lines indicate
onset of the auditory stimulus. (B) Graph illustrates observed and predicted individual startle escape probability for AVLow and AVMed stimulus paradigms using an
auditory stimulus of 152 dB re 1 µPa in water (i,ii) and the AVHigh paradigms involving auditory stimuli of 152 dB re 1 µPa in water (iii) and 158 dB re 1 µPa in water
(iv). Predicted startle escape probabilities were based on linear summation of response probabilities evoked in unimodal visual only and auditory only stimulus trials.
Note: fish overlap in (Bii). (C) Box plots of differences between observed minus predicted startle escape response probabilities for the indicated AV stimulus
paradigm (∗p = 0.043, one-sample t-test with a test value of 0, i.e., linear summation; N = 6).

paradigm to a hypothetical value of zero (i.e., to a linear
summation; two-tailed, single sample t-test) revealed a
supralinear increase in startle probability for the AVMed
paradigm (Figure 2C; p = 0.0118; p = 0.04 after Benjamini-
Hochberg correction). No significant differences to a linear
summation of startle probabilities was found for AVlow
(p = 0.23), AVhigh 152 dB (p = 0.90), and AVhigh158 dB
(p = 27; Figure 2C).

DISCUSSION

Here, we asked if the IEP (Meredith and Stein, 1986)
applies for downstream sensorimotor neurons that directly
initiate behavior such as the M-cells. Our findings largely
support this notion. Specifically, we observed startle rates
consistent with a linear integration of highly effective
stimuli, but a supralinear multimodal integration to
stimuli of reduced effectiveness (AVmed), i.e., an inverse
relationship between the individual effectiveness of two
stimuli and their combined effectiveness. However, the AVlow
paradigm did not produce the largest enhancement. Such
a discrepancy to IEP might be due to stimulus floor effects

(Holmes, 2009), and has been previously observed in for
multimodal integration in the auditory cortex of primates
(Lakatos et al., 2007).

Is the M-cell indeed the site of multimodal integration?
Indeed, M-cell recordings in African cichlid fish and zebrafish
revealed that a preceding light flash enhances auditory evoked
synaptic currents, startle responsiveness, and directionality (Page
and Sutterlin, 1970; Canfield, 2003, 2006; Mu et al., 2012).
Importantly, chronic recordings in free-swimming goldfish
and imaging in zebrafish showed visual loom stimuli and
acoustic stimuli both trigger M-cell APs and initiate startle
(Zottoli, 1977; Preuss et al., 2006; Weiss et al., 2006; Dunn
et al., 2016). The presumed role of the M-cell is to initiate
early parts of startle directly and/or to control threshold in
segmental M-cell homologs, which are part of the brainstem
escape network that produces later stages of the startle escape
behavior (Liu and Fetcho, 1999; Gahtan et al., 2002; Kohashi
and Oda, 2008; Nakayama and Oda, 2014; Neki et al., 2014).
In other words, the M-cell is the first reticulospinal neuron
active during a startle escape, or C-start, and the final
common path for startle decisions (Zottoli, 1977; Fetcho, 1991;
Weiss et al., 2006).
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M-cell in vivo recordings showed that back propagating visual
and auditory postsynaptic synaptic potentials (PSPs) interact at
the dendritic level (Medan et al., 2018). Also, M-cell dendrites
possess membrane non-linearities that enhance the effectiveness
of such PSPs (Faber and Korn, 1986; Medan and Preuss, 2014).
Both these properties likely contribute to the multimodal
integration observed here. The latter notion however, does
not exclude multimodal tectal neurons providing also critical
input to the M-cell (Hiramoto and Cline, 2009; Truszkowski
et al., 2017). Moreover, startle (i.e., M-cell) threshold is tightly
controlled by at least two independent feedforward inhibition
systems, which further influence sensory processing and
multimodal integration (Preuss et al., 2006; Medan and Preuss,
2014; Medan et al., 2018). Together these findings suggest
that a single neuron such as the M-cell can provide a neural
correlate for the IEP phenomenon. In mammals, evidence for
IEP in individual neurons derives from, e.g., recordings in
cerebellar granule cells and superior colliculus neurons showing
supralinear summation in spike rates during simultaneous
auditory and visual stimulation (Ishikawa et al., 2015;
Miller et al., 2015).

We used a stimulus combination that conceptually mimicked
a diving bird breaking the water surface (Medan and Preuss,
2014). Thus, it is not surprising that all multimodal stimulus
combinations enhanced startle escape responsiveness when
compared to unimodal stimulus conditions. Functionally, such
an enhancement might be particularly important when the
salience of the individual stimuli is still low vs. a situation where

stimuli are already highly salient (Holmes and Spence, 2005;
ten Oever et al., 2016).
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